

## 伺服驱动器

# VPH 系列

## 伺服调整手册

资料编号 TI-14950A Ver. 2.2

喜开理日机电装株式会社

注意

- 1. 禁止擅自复印、复制、转载本伺服调整手册的部分或全部内容。
- 关于本伺服调整手册的内容,为了使得内容更趋完美,我们有可能未经事前联络就进行部分变更。 敬请谅解。
- 3. 我们对于本伺服调整手册的内容以期万全。如果用户发现有不清楚的地方或错误等问题,烦请向本 公司营业部门联系。

## 前言

本次承蒙采用 AC 伺服驱动器<VPH 系列>,特此致谢。

本手册中对于 AC 伺服驱动器<VPH 系列>和组合了 τ DISC 马达、τ 直线马达的系统的伺服调整步骤进行说明。 请结合 VPH 系列驱动器本体的使用说明书使用。

#### 术语定义

本手册中如无特别指定,以下术语具有如下含义。

| 使用术语         | 术语内容                                        |
|--------------|---------------------------------------------|
| 使用说明书        | 本公司 AC 伺服驱动器(VPH 系列)的使用说明书                  |
| 本驱动器         | 本公司 AC 伺服驱动器 (VPH 系列)                       |
| 本手册          | 本公司 TI-14950*( * 表示附加编号) VPH Series 伺服调整手册  |
| 马达           | 本公司 τ DISC 马达或本公司 τ 直线马达                    |
| Biss         | BiSS 编码器                                    |
| 0100         | BiSS®是 iC-Haus GmbH 的注册商标。···参照 2-1-6 节     |
| FnDat        | HEIDENHAIN ABS 编码器 ※对应 EnDat 的编码器           |
| Lindt        | EnDat®是 HEIDENHAIN 的注册商标。···参照 2-1-6 节      |
| ENSIS        | Mitutoyo ABS 直线标尺 ※对应 ENSIS 的编码器            |
| ыюто         | ENSIS®是株式会社 Mitutoyo 的注册商标。···参照 2-1-6 节    |
| HA 类型        | VPH 驱动器 I/O 规格                              |
| HB 类型        | VPH 驱动器 SSCNETIII/H 规格                      |
| HC 类型        | VPH 驱动器 CC-Link 规格                          |
| HD 类型        | VPH 驱动器 EtherCAT 规格                         |
| HE 类型        | VPH 驱动器 MECHATROLINK-III规格                  |
| P <b>***</b> | 参数编号("***"表示3位数的数字)                         |
| VPH DES      | VPH Data Editing Software(电脑用 VPH 系列数据编辑软件) |

## 安全方面的注意事项

在使用本手册前,务必仔细阅读本公司AC伺服驱动器<VPH系列>使用说明书的"安全方面的注意事项"。 本手册内在表示安全注意事项时,使用以下记号。

| <u>小</u> 危险 | 导致人体受重伤,有时会导致生命危险。此外,还会给机械造成重大损害。表示为了预防危险而强制性地(不得执行)。                                                                              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| ⚠注意         | 在错误操作时,有可能引起危险的状况,预想到即使不会危及生命,也会导致人体受中等程度的伤害或轻伤,发生物理损害。因此,请预先采取手册中记载的预防措施。<br>另外,即使是记载有本记号的事项,根据状况有可能导致重大的结果,所以务必采取<br>手册中记载的预防措施。 |

# 目录

| 第1章 概要及注意事项                    | 1-1    |
|--------------------------------|--------|
| 1-1 调整的流程                      | 1-1    |
| 1-2 相关参数                       | 1-3    |
| 1-3 马达的动作方向                    | 1-4    |
| 1 - 3 - 1 т DISC马达时            | 1-4    |
| 1-3-2 τ 直线马达时                  | 1-5    |
| 1-4 在试运行及调整时有益的解析功能            | 1-6    |
| 1-4-1 示波器                      | 1-6    |
| 1-4-2 频谱                       | 1-6    |
| 1-5 本驱动器的再启动                   | 1-7    |
| 1-5-1 需要再启动时,能够再启动时            | 1-7    |
| 1-5-2 无法再启动时                   | 1-8    |
|                                |        |
| 第2章 马达单独试运行                    | 2-1    |
| 2-1 从电源接通进行参数的设定               | 2-2    |
| 2-1-1 向维护模式的切换、安全功能参数的设定       | 2-2    |
| 2-1-2 系统构成                     | 2-3    |
| 2-1-3 本驱动器、马达信息的设定和<主工具条>画面的显示 | 2-8    |
| 2-1-4 向维护模式的切换                 | . 2-10 |
| 2-1-5 τDISC马达上的参数编辑            | . 2-12 |
| 2-1-6<br>τ 直线马达上的编码器设定         | . 2-13 |
| 2-1-7  τ 直线马达上的参数编辑            | . 2-15 |
| 2-1-8 单位的设定(只限于HA、HC类型)        | . 2-16 |
| 2-2 试运行的执行                     | . 2-18 |
| 第2章 选加字际在批进行调整                 | 0 1    |
| <b>第 5 早</b> 施加关防贝轼近11         | 5-1    |
| 3-1 自整定的执行                     | 3-3    |
| 3-1-1 自整定的动作                   | 3-3    |
| 3-1-2 无法执行自整定的条件               | 3-5    |
| 3-1-3 机械系统负载的惯量较大时             | 3-5    |
| 3-1-4 自整定的执行                   | 3-5    |
| 3-1-5 自整定执行时的错误                | 3-8    |
| 3-2 测试运行的执行                    | 3-9    |
| 3-3 定位指令时间的调整                  | . 3-11 |
| 3-4 S 字时间 1 的调整                | . 3-13 |
| 3-5                            | . 3-15 |
| 3-6 目整定水平调整                    | . 3-18 |
| 3-7 原无参数值的读入                   | . 3-20 |
| 3-8 回位直指令动作的上位控制器的设定           | . 3-21 |
| 第4章 实时伺服调整                     | 4-1    |
| 4-1                            | 4-1    |
| 4-1-1 速度回路比例增益分配率的调整           | 4-4    |
| 4-1-2 位置回路增益的调整                | 4-5    |
| 4-1-3 速度前馈率的调整                 | 4-6    |
| 4-1-4 惯量前馈率的调整                 | 4-7    |
|                                |        |
|                                | 4-8    |

| 4 - 2                                                                                  | 2-2 抑制马达停止时、停止中产生的振动          | 4-10                                   |
|----------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|
| 第5章 高                                                                                  | 5节拍时的调整                       | . 5-1                                  |
| 5 - 1<br>5 - 2<br>5 - 3                                                                | 加速时间、减速时间和 S 字时间 1, 2 的设定     | . 5-1<br>. 5-2<br>. 5-3                |
| 第6章 大                                                                                  | 大惯量时的调整                       | . 6-1                                  |
| $ \begin{array}{r} 6 - 1 \\ 6 - 2 \\ 6 - 2 \\ 6 - 2 \\ 6 - 3 \\ 6 - 4 \\ \end{array} $ | 自整定的设定                        | 6-1<br>6-2<br>6-2<br>6-4<br>6-5<br>6-6 |
| 第7章资                                                                                   | そ料                            | . 7-1                                  |
| 7 - 1<br>7 - 2<br>7 - 3<br>7 - 3<br>7 - 3<br>7 - 3                                     | 相关参数一览                        | 7-1<br>7-9<br>7-10<br>7-10<br>7-10     |
| 7 - 4<br>7 - 5                                                                         | 使用 FD-s 系列马达时的参数变更<br>自整定相关参数 | 7-12<br>7-13                           |
| 7 - 6<br>7 - 6<br>7 - 6                                                                | 测试运行的设定                       | 7-14<br>7-14<br>7-15                   |
| 7 - 6<br>7 - 7                                                                         | b-3 测试运行执行时的与达动作状态            | 7-16<br>7-17                           |

第1章



要使得马达适当地动作,需要配合机械负载设定伺服增益(有关"增益"的含义参照下页)、滤波器、加 减速时间相关参数。

这些参数不适当时,会引起马达振动、烧损、故障等异常。

本手册说明为使马达适当动作而用来设定参数值的步骤。调整时使用 VPH DES。

#### 1-1 调整的流程

从驱动器电源接通到调整结束为止的主要流程如图 1-1 所示。



※在 HB、HD、HE 类型上执行向维护模式的切换。从维护模式恢复至通常模式(通信模式)时,请参照 2 - 1 - 4 节。

#### 图 1-1 主要步骤的流程

- ●马达单独试运行:执行寸动动作,确认马达的动作方向和速度没有异常。
- ●自整定:设定惯量、粘性摩擦、增益相关参数。
- ●测试运行:确认连续定位动作。
- ●自整定水平调整:为提高马达的跟随性而进行调整。
- ●实时伺服调整:单独设定增益相关参数以提高马达的响应性。

这里就"增益""增益编号""SEL"进行说明。本手册经常使用这 3 个词语。它们都属于 7 - 1 节中说明的 "参数"的一种。

- "增益"=用来调整"马达(伺服系统)响应性的参数"。通过调整增益,马达(伺服系统)的响应 性将会提高。
- "增益编号" = "有时候要根据动作目的成批切换几个参数。系预先组合预想切换的参数,分配给该组合的编号"(通常使用编号"0")。
  为了以上目的时,通过指示增益编号(例:"0"→"1"→"2"→"0")参数就会被成批切换,可据此来控制马达的动作。
- "SEL"="有时候要根据动作目的成批切换作为几个指示值的参数。系预先组合预想切换的指示值, 分配给该组合的编号"(通常使用编号"0")。

试运行或各种调整时,主要使用表 1-1 中列举的参数。增益相关参数区分为增益编号 0~3,指令相关参数区分为 SEL0~7。请根据运行的目的或用途使用任意的增益编号及 SEL。参数的详情请参照 7-1 节及使用说明书。

| 参数编号      | 分类                            |
|-----------|-------------------------------|
| P200      | 增益相关共同参数                      |
| P210~P239 | 增益编号 0 参数 ※在本手册内的说明中使用        |
| P240~P269 | 增益编号1参数                       |
| P270~P299 | 增益编号2参数                       |
| P300~P329 | 增益编号3参数                       |
| P330~P379 | 共同滤波器参数                       |
| P515~P516 | 本驱动器内置指令共同参数                  |
| P517~P523 | 本驱动器内置指令 SEL0 参数 ※在本手册内的说明中使用 |
| P524~P530 | 本驱动器内置指令 SEL1 参数              |
| P531~P537 | 本驱动器内置指令 SEL2 参数              |
| P538~P544 | 本驱动器内置指令 SEL3 参数              |
| P545~P551 | 本驱动器内置指令 SEL4 参数              |
| P552~P558 | 本驱动器内置指令 SEL5 参数              |
| P559~P565 | 本驱动器内置指令 SEL6 参数              |
| P566~P572 | 本驱动器内置指令 SEL7 参数              |

表 1-1 相关参数概略

在 2 - 1 - 5 节、2 - 1 - 7 节中显示的下述<参数编辑>画面上执行参数的变更。将光标指向"设定值"栏, 输入数值, 或者从下拉菜单进行选择(单击相应栏会出现"▼")。

| 🖸 (đ      | ♥数编辑]无题 | ₫.c0pa0 |        |          |        |          |              |            |        | -          |         | ×  |
|-----------|---------|---------|--------|----------|--------|----------|--------------|------------|--------|------------|---------|----|
| 参数        | 设定 📄 新  | 建 🦻 打   | 开 冒 保存 | 冒 另存为    | 🖉 打印 🔞 | 》单位、电子齿轮 | ·设定<br>Ţ     |            |        |            |         |    |
| 驱动;<br>设定 | 器马达     | 增益设定    | 滤波器设定  | 指令设定     | 信号设定   | 通信设定     | 专用&特殊<br>规格  | 全部项目5<br>示 | ł      | 是十估        |         |    |
|           |         |         |        | PO       | 00 ~   |          |              |            |        | 最八值<br>最小值 |         |    |
| No.       | 项目      |         |        | 设定值      | :      | 初期值      | 单位           |            |        | 反映时期       | 176881  |    |
| P000      | 马达识别代   | 码       |        | 11008    | 0      |          |              |            | $\sim$ |            | 100-01- |    |
| P006      | 组合驱动器   | 额定输出    |        | 0.800    | 0.     | . 000    | kW           |            |        |            |         |    |
| P007      | 组合驱动器   | 电源电压    |        | 200      | 0      |          | V            |            |        |            |         |    |
| P014      | 马达额定速   | 度       |        | 300.000  | 0.     | . 001    | rpm          |            |        |            |         |    |
| P060      | 编码器类型   |         |        | C-SEN2   | 天      | 效        |              |            |        |            |         |    |
| P061      | 旋转类马达   | 编码器脉冲   | 数      | 3. 20000 | D 0.   | . 000000 | Mppr         |            |        |            |         |    |
| P067      | 马达最大速   | 度       |        | 300.000  | 0.     | . 000    | rpm          |            |        |            |         |    |
| P080      | 最大扭矩限   | 制值+     |        | 300. 0   | 30     | 00.0     | 96           |            |        |            |         |    |
| P081      | 最大扭矩限   | 制值-     |        | 300. 0   | 30     | 00.0     | 96           |            |        |            |         |    |
| P082      | 马达最大速   | 度特别设定   |        | 0.000    | 0.     | . 000    | rpm          |            |        |            |         |    |
| P083      | 马达电子过   | 电流保护器   | 测出有效值  | 0        | 0      |          | 96           |            |        |            |         |    |
| P083      | 马达电子过   | 电流保护器   | 时间常数   | 0        | 0      |          | s            |            | ~      |            |         |    |
| <         |         |         |        |          |        |          |              | >          |        |            |         |    |
| 比较        | 5       |         |        | 별        | 5入驱动器  | 从驱动器读出   | <del>Ц</del> |            |        |            |         | 关闭 |

标准连接有马达及编码器时的、各指令与马达动作方向的关系如下所示。

#### 1-3-1 τDISC 马达时



CCW: 逆时针旋转

CW: 顺时针旋转

图 1-2 TDISC 马达的动作方向的定义(从正面看转子转盘面)

表 1-2 TDISC 马达的正方向<sup>\*1</sup>、逆方向<sup>\*2</sup>

|         | 运行时的"正"方向 <sup>*1</sup> | 运行时的"逆"方向 <sup>*2</sup> |
|---------|-------------------------|-------------------------|
| 标准设定时   | CCW                     | CW                      |
| 逆设定时**3 | CW                      | CCW                     |

- ※1:所谓"正方向",是指在"2-2节的远程操作时指令 FJOG 时,以及在通常运行下发出'正方向' 指令时动作的方向"。
- ※2: 所谓"逆方向",是指在"2-2节的远程操作时指令 RJOG 时,以及在通常运行下发出'逆方向'指令时动作的方向"。
- ※3: 也可将动作的方向设为"逆设定"。所谓"逆设定",是指"在发出正方向指令,使得马达'逆方向' 动作的设定"。将[P161: 动作方向选择]的设定设为"1: 逆方向动作"。

第1章

附带有直线传感器或磁极传感器时,为了使这些传感器的引线与线圈单元组的引线成为相同的方向,请安装传感器。如表 1-3 所示,线圈单元的"正方向"为 <u>引线标准露出的方向</u>。

|         | 运行时的"正"方向**1     | 运行时的"逆"方向 <sup>**2</sup> |
|---------|------------------|--------------------------|
| 标准设定时   | 引线从线圈单元头露出的方向    | 相反                       |
| 逆设定时**3 | 引线线圈单元头"没有露出"的方向 | 相反                       |

表 1-3 τ直线马达的正方向\*、逆方向\*\*\*

- ※1:"正方向"是指在"2-2节的远程操作时指令 FJOG 时,以及在通常运行下发出'正方向'指令时 动作的方向"。
- ※2:"逆方向"是指在"2-2节的远程操作时指令 RJOG 时,以及在通常运行下发出'逆方向'指令时 动作的方向"。

※3: 也可将动作的方向设为"逆设定"。所谓"逆设定",是指"在发出正方向指令,使得马达'逆方向' 动作的设定"。将 [P161: 动作方向选择]的设定设为"1: 逆方向动作"。 在无法使得"磁极传感器、或直线传感器的引线与线圈单元的引线方向相同时,请将 [P066: 编码器 输入方向切换]的设定设为"1: 反转"。

根据表 1-3 的正方向、逆方向的定义,线圈单元、磁极传感器、直线传感器的引线露出方向与动作方向的 关系如图 1-3、1-4 所示。









VPH DES 上备有几个解析功能。请在试运行及调整时使用这些解析功能。有关各功能的使用方法,请参照 VPH DES 的帮助。

这些画面,在2-1-3节中<主工具条>画面出现后,单击 | 解析功能 | 按钮就会显示。

#### 1-4-1 示波器

一边利用本功能确认马达的状态一边进 行调整。本手册中测量的波形包括以下。

- CH1: 速度反馈
- CH2: 实际扭矩指令
- CH3: 位置偏差
- CH4: 定位完成1信号(PN1)



#### 1-4-2 频谱



图 1-6 频谱画面例

调整中发生共振时,利用本功能进行解 析。

后的共振。

(→参照3-5节)

#### 1-5-1 需要再启动时,能够再启动时

本节中说明的"再启动",是指"软件复位 (software reset)",与切断本驱动器的电源重新启动驱动器 的"硬件复位 (hardware reset)"不同。

在修正需要再启动的参数时等将软件信息写入硬件时,执行软件复位。

#### 即使在之后马上再启动也没有问题时

出现请求再启动的画面。若再启动也没有问题,就 单击 确定 按钮。本驱动器就会再启动。



再启动后,会出现"未能访问 USB。"的警告画面。 这是因为在软件复位时基于 USB 的与 VPH DES 的 通信必然会被暂时切断之故。即使显示此警告也不会 出现什么问题(若单击 确定 ,画面就会消失)。

也有可能因某种原因而无法再启动(参照1-5-2 节)。

# 未能访问USB。 请确认以下内容。 ・是否已连接USB线缆? ・是否已接通驱动器的电源?

#### 要在稍等片刻后再启动时

这种情况下,在请求再启动的画面上单击 取消

在已显示的<主工具条>画面左下出现"再启动" 图标。

在问题解决之后,单击此图标以再启动本驱动 器。

| 0 | 此请求再启动的画面就会消失。 |  |
|---|----------------|--|
| ~ |                |  |

| 🚰 VPH Data Editing Soft | ware <u>主工</u> 具条 |          |        | -      |     |            | ×       |
|-------------------------|-------------------|----------|--------|--------|-----|------------|---------|
| 文件(E) 帮助(B)             |                   |          |        |        |     |            |         |
| 数据编辑 状态显示               | 解析功能 调整功能         | 远程操作     |        |        |     |            |         |
| 参数                      | 程序                | 间接数据     |        |        |     | IKK<br>ENS | 1<br>50 |
| 进行参数的编辑。 进              | 行程序的编辑。 进行<br>辑。  | 目接数据的编   |        |        |     |            |         |
| USB OPEN                | 単位(               | .001 deg | 驱动器型号: | VPH-HA | 马达: | 特殊         | 动       |
| T                       |                   |          |        |        |     |            |         |
|                         |                   |          |        |        |     |            |         |

#### 1-5-2 无法再启动时

处于表 1-4 所示的状态时,会出现"无法进行驱动器的自动再启动"的信息画面,本驱动器无法再启动。

请确认同表的"无法再启动"的原因,进行适当的 处理。

| VPH Data | Editing Software                                                            | × |
|----------|-----------------------------------------------------------------------------|---|
|          | 需要再接通电源的参数已被变更。<br>因现在马达正在通电(MTON)而无法进行驱动器的自动再启动。<br>为了反映参数,请手动进行驱动器电源的再接通。 |   |
|          | 直至参数被反映为止,主工具条的状态中显示电源图标。                                                   |   |
|          | 确定                                                                          | ] |

| 状态    | 处理      |                                |                                |  |  |  |  |  |
|-------|---------|--------------------------------|--------------------------------|--|--|--|--|--|
| 马达通电中 | 将伺服开信   | 将伺服开信号(SON)设为 OFF,使得马达处于非通电状态。 |                                |  |  |  |  |  |
| 网络通信中 | 移除通信线   | <b>多</b> 除通信线缆,切断网络连接。         |                                |  |  |  |  |  |
| 警报发生中 | 主要是在与   | 外部(上位控制器)通信时会显示如下所知            | 示的警报。请确认原因,解                   |  |  |  |  |  |
|       | 除警报。    |                                |                                |  |  |  |  |  |
|       | (HA 类型基 | 本上不是通过外部的通信进行操作,所以             | 不会显示这样的警报。)                    |  |  |  |  |  |
|       | up 米刑   | AL. AO. 5: CPU 启动异常            |                                |  |  |  |  |  |
|       | IID 天空  | AL. AO. 6: CPU 异常              |                                |  |  |  |  |  |
|       | UC 米刑   | AL.007:通信 CPU 启动异常             | 大亚动现力的 CDU 自动时失                |  |  |  |  |  |
|       | IIL 天空  | AL. 009:通信 CPU 异常              | 半驱动器内的 UPU 后动的反                |  |  |  |  |  |
|       |         | AL. AO. 5: CPU 启动异常            | 全开吊川无法止吊列作。恣<br>今在 CDU 司告生地陪之虔 |  |  |  |  |  |
|       |         | AL. AO. 6: CPU 异常              | 会有 GPU 丘皮生 0 障之 戻。             |  |  |  |  |  |
|       | HD 类型   | AL. AO. 7: 通信 CPU 启动异常         | 石仁硬什反位后仍亚小相内<br>的数据            |  |  |  |  |  |
|       |         | AL. AO. 8: 伺服控制 CPU 间通信异常      | 的言派,就而安处们本犯幼<br>哭齿 CDU 的修理     |  |  |  |  |  |
|       |         | AL. AO. 9: 通信 CPU 异常           | 描F1 CI U U1 19 注。              |  |  |  |  |  |
|       | UE 米刑   | AL.005: CPU 启动异常               |                                |  |  |  |  |  |
|       | III     | AL. 006: CPU 异常                |                                |  |  |  |  |  |

#### 表 1-4 无法再启动时驱动器的状态、应予应对的处理

1-8



在将机械系统与马达连接前的无负载状态下,执行试运行(寸动动作)以确认动作方向和速度等没有异常。接下来对使用"增益编号0""SEL0"参数的情况进行说明。

使用 τ 直线马达时,在执行试运行前,请参照 1-3-2 节对线圈单元和直线传感器的设置方向进行再确 认。若设置方向和相关参数有误,则会在运行中发生警报或动作异常。





再次在图 2-1 中列出本章中执行的步骤的主要流程。



※在 HB、HD、HE 类型上执行向维护模式的切换。从维护模式恢复至通常模式(通信模式)时,请参照 2 - 1 - 4 节。

图 2-1 本章中执行的步骤的主要流程

#### 2-1 从电源接通进行参数的设定

#### 2-1-1 向维护模式的切换、安全功能参数的设定

在2-1-3节中<主工具条>画面显示后,请先于参数的编辑等执行以下2项操作。

- a)向维护模式的切换
- b)安全功能参数的设定
- a)向维护模式的切换 → 请参照 2-1-4 节。
- b)安全功能参数的设定

为了能够通过紧急停止措施、正方向或逆方向的超程停止措施等安全功能的信号来控制马达的动作, 必须预先进行分配以便能够在本驱动器内接收这些信号。

对各类型按以下方式进行设定。

HA 类型:初始设定下尚未分配这些信号,请变更设定。 ①在2-1-5节、2-1-7节中显示的<参数编辑>画面上, [P620:控制输入信号分配1]: "RST" "SON" "DR" "CIH"

[P621: 控制输入信号分配 2]: "SS1" "SS2" "MD1" "MD2"

已在初始设定下被分配(参照左下图。信号的含义请参照使用说明书中的"信号连接"相关章 节)。

②从中选出3个在实际运行中不需要的项目,如左下图所示将它们逐个地变更为"EMG""FOT""ROT" ③请将输入线缆连接到本驱动器的连接器 CN1 上。

HB、HC、HD、HE 类型:初期设定下这些信号已被分配。

在没有向连接器 CN1 连接输入信号的线缆,不使用安全功能令其动作时,要像右下图那样,将[P623] [P624]中的"EMG""FOT""ROT"的设定值从"ON/OFF 有效"改变为"OFF 固定"后令其动作, 并充分注意动作,用其他方法使其能够安全停止。



HA类型下的输入信号分配变更画面

HB、HC、HD、HE类型下的输入信号分配变更画面

#### 2-1-2 系统构成

这里按类型列出为进行无负载下的试运行最起码需要的系统构成图(马达为 τ DISC 马达时)。使用 τ 直线 马达时,只是以下构成图上的马达形状不同,基本上都是相同的。

HA 类型时



※希望配备安全功能时,请设定紧急停止(EMG)和超程(FOT、ROT)等安全功能的信号,在本驱动器内变 更信号分配后将输入线缆连接到连接器 CN1 上(参照 2 - 1 - 1)。

#### 图 2-2 HA 类型的系统构成图



- ※1: 本类型需要进行2-1-4节中所述的向维护模式的切换。
- ※2:希望配备安全功能时,只限于 EMG 和 FOT、ROT 等安全功能的信号,请将输入线缆连接到连接器 CN1 上。

#### 图 2-3 HB 类型的系统构成图



※希望配备安全功能时,只限于 EMG 和 FOT、ROT 等安全功能的信号,请将输入线缆连接到连接器 CN1 上。

图 2-4 HC 类型的系统构成图



- ※1: 本类型需要进行 2-1-4 节中所述的向维护模式的切换。
- ※2:希望配备安全功能时,只限于 EMG 和 FOT、ROT 等安全功能的信号,请将输入线缆连接到连接器 CN1 上。

#### 图 2-5 HD 类型的系统构成图



- ※1: 本类型需要进行 2-1-4 节中所述的向维护模式的切换。
- ※2:希望配备安全功能时,只限于 EMG 和 FOT、ROT 等安全功能的信号,请将输入线缆连接到连接器 CN1 上。

#### 图 2-6 HE 类型的系统构成图

#### 2-1-3 本驱动器、马达信息的设定和<主工具条>画面的显示

这里列出从电源接通至参数设定为止的步骤。



|   |                                                                  |                                                 |                                              | 第2章          |
|---|------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------|
| 4 | 马达信息的选择                                                          |                                                 |                                              | 料相合为         |
|   | <ol> <li>①所连接的马达信息,在刚交付后,无法通过</li> <li>从驱动器获取设定 按钮获取。</li> </ol> | - 马达                                            |                                              | \$11A+J/     |
|   | 请按下各项右侧的"▼",从上按照顺序选<br>择信息(若从下面的项目选择,或者跳项选                       |                                                 | 额定扭矩[Nm]: 15<br>额定转速[rev]: 5<br>-·           |              |
|   | 择,有可能不会显示正确的信息)。                                                 | e e                                             | .<br>峰值输出[%]: 250<br>-:                      |              |
|   | ※要输入的马达信息,请参考本公司产品目录<br>的记载。                                     | I                                               | -:<br>-:                                     | 从上按照<br>顺序选择 |
|   | 类型 → "马达类型"中记载的内容<br>马达型号 → "型号"<br>始知照**刑、"始知照**刑"              | 产品分类                                            | τDISC                                        | v            |
|   | 编码器解析度 → "检测脉冲"                                                  | 类型                                              | ND140-95-LS                                  | ~            |
|   | ②请选择马达信息,单击 决定 按钮。                                               | 马达型号<br>                                        | NMR-SRF*A2*-471<br>INC编码器                    | · ·          |
|   | ③出现用来确认将已设定的马达及编码器相<br>关参数信息发送至本驱动器的画面。                          | 编码器解析度[ppr]                                     | 3, 200, 000                                  | v            |
|   |                                                                  |                                                 |                                              | 决定           |
|   | 若所选的信息没有错误,就单击                                                   | VPH Data Editing Software                       | ×                                            |              |
|   | 面。                                                               |                                                 | 多数?                                          |              |
|   | 若所选的信息有误, 就单击 <b>[</b> 取消], 订正<br>信息。                            | 若单击"臣",就会发送参奏<br>若单击"百",不发送参数象<br>若单击"取消",就会停止参 | 数并向主工具条过渡。<br>1.向主工具条过渡。<br>1.数的发送和向主工具条的过渡。 |              |
|   |                                                                  | 是①                                              | 否(1)                                         |              |
|   | ※若单击 否 , 就会在没有向本驱动器发送参                                           | 参数信息的状态下向                                       | <主工具条>画面过渡                                   | o            |
|   | ④假设马达及编码器相关参数信息已被变更<br>(初期设定时也会显示"变更"),出现为将                      | VPH Data Editing Software                       | ×                                            |              |
|   | 其反映到本驱动器中而请求再启动的画面。<br>若再启动没有问题,就单击 <u>是</u> 按钮。本<br>驱动器前合再启动    | 马达编码器相关参数<br>为了反映参数,是否:                         | 已被变更。<br>需要再启动驱动器?                           |              |
|   | 小公司 柏叶 孙儿 云十子 /口 公月。                                             | 若单击"是",就会自动                                     | 加地再启动驱动器。<br>加驱动器就向主工具条过渡。                   |              |
|   |                                                                  |                                                 | 是(Y) 否(N)                                    |              |
|   | ※再启动后,本驱动器的警报显示消失。                                               |                                                 |                                              |              |
| 5 | 本驱动器信息、马达信息一旦被设定,从下没                                             | 灾电源接通时起这些                                       | 信息就会自动显示。                                    |              |
|   |                                                                  |                                                 |                                              |              |

| ●<主工具条><br>此画面包括 | 画面的标<br>5 个标3 | 示签<br>签,即       | 数据编         | 辑】            | 犬态显示             | 解析功能 | 调整功能   | ž      | 元程操作   | 乍。        |
|------------------|---------------|-----------------|-------------|---------------|------------------|------|--------|--------|--------|-----------|
|                  | 🜀 VPH Data    | Editing So      | ftware 主工具条 |               |                  |      |        | _      |        | ×         |
|                  | 文件(王) 素       | ₽助 ( <u>H</u> ) |             |               |                  |      |        |        |        |           |
|                  | 数据编辑          | 状态显示            | 解析功能        | 调整功能          | 远程操作             |      |        |        |        |           |
|                  | 参数<br>进行关款的结  |                 | 程序          | 211 62 12     | 间接数据             |      |        |        |        | KI<br>ISO |
|                  | 进行梦教的海        | <b>時</b> 。      | 世们柱序的编辑。    | 。  进17⊫<br>辑。 | <b>引接领U店口</b> 近两 |      |        |        |        |           |
|                  | USB OPEN      |                 |             | 单位 0.         | .001 deg         |      | 驱动器型号: | VPH-HA | 马达: 特殊 | キ马达 ┃     |

图 2-7 〈主工具条〉画面

- ·数据编辑:进行参数或程序、间接数据的编辑。
- ·状态显示:显示马达的状态、输入输出信号等信息。请参照使用说明书的"状态显示"相关章节。
- ·解析功能:参照1-4节。
- ·调整功能:进行自整定等。参照第3章。
- ·远程操作:执行本章中所述的试运行(寸动动作)等操作。参照2-2节。

#### 2-1-4 向维护模式的切换

这里列出向维护模式的切换步骤。

本驱动器为 HB、HD、HE 类型时,在交付本驱动器时为了使本驱动器和马达能够通过来自外部(上位控制器)的通信而动作,"通信模式"已被初始设定。在此状态下本驱动器不会受理 VPH DES 发出的指令,无法执行试运行和调整等操作。请执行向维护模式的切换。

| 模式   | 内容                                     |
|------|----------------------------------------|
|      | (HB 类型时)通过来自 SSCNETIII/H 的指令而使其动作的模式   |
| 通信模式 | (HD 类型时)通过来自 EtherCAT 的指令而使其动作的模式      |
|      | (HE 类型时)通过来自 MECHATROLINK─Ⅲ的指令而使其动作的模式 |
|      | 通过来自 VPH DES 的指令而使得马达动作的模式             |
| 维护模式 | 为了通过速度控制、扭矩控制、(驱动器)内置指令控制等来自驱动器内部的指令   |
|      | 而使得马达动作,需要将模式设定为此模式。                   |

表 2-1 模式的差异

第2章



注意) 维护模式,在切断本驱动器电源时等进行"硬件复位"时会自动返回通信模式。这种情况下需要再 次执行向维护模式的切换。

#### 2-1-5 τ DISC 马达上的参数编辑

这里列出τDISC 马达上的参数编辑步骤。

| 1 | 参数编辑:从驱动器读出                             | 数据                 | 编辑                   | 状态显示              | 解析                |               |               |             |            |               |    |
|---|-----------------------------------------|--------------------|----------------------|-------------------|-------------------|---------------|---------------|-------------|------------|---------------|----|
|   | ①参数作为初期值已被保存在本驱动器中。请                    |                    | العاد مح             |                   |                   |               |               |             |            |               |    |
|   | 在<主工具条>画面上单击 数据编辑                       |                    | 奓敪                   |                   | 4                 |               | ))            |             |            |               |    |
|   | 标签 , 单击 参数 按钮 , 再单击                     | 进行                 | 参数的编辑                | i∘ j              | 打程序               |               |               |             |            |               |    |
|   | 从驱动器读出 按钮。一旦这些数据被读                      |                    | PH Data E            | diting Soft       | ware              |               | •             |             | _          |               | ×  |
|   | 出后,就会在<参数编辑>画面上显示。                      | 一参数                | 如菜单选择                |                   |                   |               |               | _           |            |               |    |
|   |                                         |                    | 新                    | 建                 |                   | ŧ             | 打开            |             | 从驱         | 动器读出          |    |
|   | 此外,还有"新建的情况(单击 [新建]                     |                    |                      |                   |                   |               | _             |             |            |               |    |
|   | 按钮)"、"参照已保存的外部文件创建的情                    |                    |                      |                   |                   | -             | ļĻ            |             |            |               |    |
|   | 况(单击 [打开] 按钮)",但是本手册中不                  | 5 [参数              | 编辑]无题.c0pa0          |                   |                   |               | $\mathbf{V}$  |             |            | - 0           | ×  |
|   | 使用。                                     | 参数设定               | 🗋 新建 🌔               | 打开 冒保存            | 冒 另存为             | <i>∐</i> ‡JEP | 一 单位、电子齿轴<br> | 设定 -        |            | _             |    |
|   |                                         | 驱动器马<br>设定         | 达 增益设定               | 滤波器设定             | 指令设定              | 信号设定          | 通信设定          | 专用&特殊<br>规格 | 全部项目显<br>示 | 最大值           |    |
|   | ②在进行参数编辑的同时,还可以设定机械系                    |                    | -                    |                   | PO                | 000 ~         | Avrila / tr   | 110         | _          | 最小值<br>一 反映时期 |    |
|   | 统的单位,但只限于HA、HC类型。                       | No. 均<br>P000 马j   | <b>1日</b><br>达识别代码   |                   | 1902E1E           |               | 刊,共11日<br>0   | 単位          |            | 〔说明〕          |    |
|   | 请参照2-1-8节。                              | P006 组;<br>P007 组; | 合驱动器額定輸出<br>合驱动器电源电日 | 1                 | 0.800             |               | 0.000         | lew<br>V    |            |               |    |
|   |                                         | P014 马j<br>P060 编i | 达额定速度<br>码器类型        |                   | 300.000<br>C-SEN2 |               | 0.001<br>无效   | rpm         |            |               |    |
|   | 在2-2节中执行的寸动动作相关参数,为                     | P061 施<br>P067 马j  | 夸类马达编码器刷<br>达最大速度    | iC中數              | 3. 20000          | 0             | 0. 000000     | Mppr        |            |               |    |
|   | 指令设定 标签内的[P573: 寸动速度0]~                 | P080 最             | 大扭矩限制值+<br>大扭矩限制值-   |                   | 300.0             |               | 300.0         | 9           |            |               |    |
|   | 「P580. 寸动速度7]。                          | P082 =             | へ血急感的値<br>法最大速度特別で   | )定                | 0.000             |               | 0. 000        | rpm         |            |               |    |
|   |                                         | P083 목)<br>P083 목) | 这电子过电流保护<br>达电子过电流保护 | ·器则工有效值<br>•器时间常数 | 0                 |               | 0             | 8           |            |               |    |
|   |                                         | 比較                 |                      |                   |                   | 写入驱动器         | 从驱动器读         | ±.          | >          | [             | 关闭 |
|   | 请参照使用说明书的"参数"相关章节。                      |                    |                      |                   |                   |               |               |             |            |               |    |
|   | ※ 请确认 9 - 1 - 1 节中 昕 诸 的 宏 全 功能 相 关 参 料 | 行语言                | コリス                  | 己述正               | 确识                | ÷             |               |             |            |               |    |
|   | ※咱确UZ I I P中州述的女主功能相大参数                 | K KX N             | ヒルロ                  |                   | 珊叹                | 足。            |               |             |            |               |    |
|   | ③编辑结束后,单击 写入驱动器 按钮以将参                   | \$数1               | 写入驱                  | 动器。               |                   |               |               |             |            |               |    |
|   |                                         |                    |                      |                   |                   |               |               |             |            |               |    |
| 2 | 本驱动器的再启动                                | VPL                | I Data               | Editing           | Soft              | ware          |               |             |            | ×             | 1  |
|   |                                         |                    | Data                 | Conting           | , 301             | ware          |               |             |            |               |    |
|   | 出现请求再启动本驱动器的画面(根据已变                     |                    |                      |                   |                   |               |               |             |            |               |    |
|   | 更的参数种类也有可能不会出现画面)。若冉                    |                    |                      | 需要再               | 接通电               | 源的参           | 對已被           | 变更。         |            |               |    |
|   | 启动也没有问题,就单击 [ 确定 ] 按钮。本驱                |                    |                      |                   |                   |               |               |             |            |               |    |
|   | 动器就会再启动。                                |                    |                      | 为了反               | 映参数               | 1、是召          | 合需要再          | 启动驱         | 动器?        |               |    |
|   |                                         |                    |                      | 若单击               | '确定''             | ,就会           | 自动地区          | <b>再启动</b>  | 収动器        |               |    |
|   | ※也有可能尤法再启动本继动器。请参照                      |                    |                      |                   |                   |               |               |             |            |               |    |
|   | 1-5-2节。                                 |                    |                      | 若单击               | 取消"               | ,就会           | 停止驱动          | 动器的         | 再启动。       |               |    |
|   |                                         |                    |                      |                   |                   |               |               |             |            |               |    |

确定

取消

第2章

2-1-6 T直线马达上的编码器设定

这里列出 τ 直线马达上的编码器设定步骤。

τ 直线马达的编码器中包括加入了位置信息的incremental类型(通常"INC"类型)、和绝对读取位置信息的absolute类型("ABS"类型)。

对于作为INC类型的"INC直线传感器([P060]中表述为"L-SEN")"和"无标尺传感器([P060]中表述 为"L-LESS")",无需进行以下的"磁极偏移设定"操作。

ABS类型需要进行磁极偏移设定,其中包括如下3种。

- "BiSS"(在马达驱动器选择画面上表述为"BiSS编码器", [P060] 中表述为"L-BiSS")
- "EnDat" (在同一选择画面上表述为"HEIDENHAIN ABS编码器", [P060] 中表述为"EnDat")
- "ENSIS" (在同一选择画面上表述为 "Mitutoyo ABS直线标尺", [P060] 中表述为 "ENSIS")

●编码器为"BiSS""Endat"时的磁极偏移设定

| 1 | <自诊断>画面的显示<br>请在<主工具条>画面上单击 调整功能<br>标签,再单击 自诊断 按钮。出现<自诊断><br>画面。                                                       | 数据编辑 状态显示 解析功能 调整功能 远         自诊断       自整定         执行服动器的自诊断       由整定         政府驱动器的自诊断       本时调整         动能,显示结果。       本时增属         ●       自诊断         ●       自诊断         ●       自诊断         ●       自诊断         ●       日参断         ●       自诊断         ●       日参断         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ● |
|---|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | 磁极偏移设定的执行<br>①请在诊断项目选择中单击"▼",从所显示<br>的一览中选择 [d020:自动磁极检测磁极偏<br>移设定]。<br>②请单击 诊断开始 按钮。开始偏移量的诊断<br>※无法执行"自动磁极检测"时,请参照使用证 | 这断项目选择<br>do20:自动磁极检测磁极偏移设定<br>步诊断开始<br>新。<br>说明书内的"自动磁极检测动作"相关章节排除原因,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| • | 7光4777/白 | ゴタ・几               | $\rightarrow 44 \rightarrow e$             |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|---|----------|--------------------|--------------------------------------------|----------------|----------------------|----------------|-------------------|---------------|----------------------------|--------------|--------------------------|---------------|-----------------------------------------------------|-------------------|------|--------|
| 3 | 1931月21月 | 杉以                 | 正的元成                                       | ı              |                      |                |                   |               | 🖸 自诊                       | 断            |                          |               |                                                     | —                 |      | ×      |
|   | ①磁极      | 偏移                 | 设定正常                                       | 完成             | 时,"诊                 | 断状             | 态" 材              | 运             | - 诊断项                      | 阿目选择         |                          |               |                                                     |                   |      |        |
|   | 中会       | 显示                 | "正常结                                       | 東"。            |                      |                | <u> </u>          | -             | d020                       | :自动磁         | 及检测磁极                    | 偏移设定          |                                                     |                   |      | $\sim$ |
|   | 此时       | , [F               | 2087: 磁机                                   | 及位置            | 置偏移特                 | 别设第            | 定] 這              | 就             |                            |              |                          |               | _                                                   |                   |      |        |
|   | 会被       | 自动                 | 设定(设                                       | 定的             | 确认参照                 | (下一)           | ·项)。              | 5             |                            |              |                          | 诊断结理          | ₹                                                   |                   |      |        |
|   |          |                    |                                            | /              |                      |                |                   |               | - 诊断计                      | ·太           |                          |               |                                                     |                   |      |        |
|   | 请在       | 单击                 | 画面上的                                       | 诊              | 断结束                  | 按钮             | l后,               | 单             | (у <b>ш</b> )г)            | 1005         |                          | 正常结理          | ₹                                                   |                   |      |        |
|   | 击<自      | 自诊的                | 断>画面右                                      | 上的             | "×"。                 |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               | - 诊断内                      | 阿容的设定        | 包/显示 -                   |               |                                                     |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|   | ②出现      | 请求                 | 再启动本                                       | 驱动             | 器的画面                 | ī。若            | 再启                | 动             | 午结束                        | 自诊断面         | 前面的情》                    | 兄下. 驱动5       | <b>竖</b> 会自动                                        | があった              |      |        |
|   | 也没       | 有问                 | 题,就单                                       | 击              | 确定 按                 | 安钮。            | 本驱                | 动             |                            |              | аранлал                  | GT 7 88-936   |                                                     |                   | ·    |        |
|   | 器就       | 会再                 | 启动。                                        |                |                      |                |                   | ١             | /PH Da                     | ta Editi     | ng Softw                 | are           |                                                     |                   |      | ×      |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|   | ※也有      | 可能                 | 无法再启                                       | 动本             | 驱动器。                 | 请参             | 照                 |               |                            | 结束           | 自诊断。                     |               |                                                     |                   |      |        |
|   | 1 - 5    | - 2=               | 节。                                         |                |                      |                |                   |               | <u>_</u>                   | 人 为了         | 向通常运行<br>帝 <b>帝</b> 中 行2 | <b>使式进行切换</b> | 4、驱动器                                               | 將自动地再             | 启动。  |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            | 正白           | : LING <del>320</del>    |               |                                                     |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            | 若单           | 击"确定"驱                   | 动器就会再启        | 动。                                                  |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            | 若単           | 击"取消"就                   | 会停止。          |                                                     |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               |                                                     | <b>-</b> , (      | -    | 1      |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               | 佣定                                                  | '                 | 10月  |        |
|   | <b>F</b> |                    | 11.11.2.                                   |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
| 4 | LP087    | 」的                 | <u>I值的变更</u>                               | 确认             | È                    |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |
|   |          | / <del>) -</del> - | エ日々、三                                      | <del></del>    | 光 十 四                | 4-1日/2         | 1 七日.             | + <i>k</i> /s | ¥ -                        |              | ***                      | а жа          | ж. <u>т.</u> Г                                      | 비고다르타민            | い土 1 | 나나는    |
|   | 返回 何     | く土_<br>方           | 上具余/画                                      | <u></u> 山<br>山 | 甲古 <u> </u>          | 义店 狮<br>杜·志山   | 明料 计              | 小金            | , 甲口<br>左 / <del>矣</del> · | 「   参:       | <u> </u>                 | ਧ。廾⊥└<br>└    | 平古 _                                                | 从驰列希              | Ÿ狭E  | 6 按    |
|   | 坦。休      | 计任                 | [坐犯幼奋<br>[D007] 的                          | 中的<br>估司       | 参 剱 印 彻<br>  油 山 初 邯 | 文 咲 亡<br>日 右 亦 | ),<br>了<br>(<br>百 | "並入17         | 王\穸                        | <i>釵 /</i> 冊 | ↓/回 回 」                  | _ 0           |                                                     |                   |      |        |
|   | 归刑       | μ                  | 1001 []                                    |                | 1112/1/1/17          | 加且又            | 、て。               |               |                            |              |                          |               |                                                     |                   |      |        |
|   |          | <u></u> [₫         | 参数编辑]无题.c0                                 | pa1            |                      |                |                   |               |                            |              |                          |               | -                                                   |                   | ×    |        |
|   |          | 参数                 | 设定 📄 新建                                    | <b>戸</b> 打ヲ    | 开 冒 保存               | 冒 另有           | 药 🎽               | 打印            | 🎯 单位                       | 、电子齿轮        | 设定<br>                   |               |                                                     |                   |      |        |
|   |          | 驱动                 | 器马达 增益                                     | 设定             | 滤波器设定                | 指令             | 設定                | 信号设计          | i ji                       | 信设定          | 专用&特殊                    | 全部项目显         | P087                                                | 磁极位置偏积<br>别设定     | 多特   |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              | 70/11                    | 215           | ■ 最大値<br>最小値                                        | 9999999999<br>0   |      |        |
|   |          |                    |                                            |                |                      |                | P000              | ·             |                            |              |                          | _             | 反映时期                                                | 。<br>刖电源接通时       |      |        |
|   |          | No.                | 项目 市生中四本中                                  |                |                      | · 设            | :定值               |               | 初期值                        |              | 单位<br>1.=                |               | ~                                                   | [说明]              |      |        |
|   |          | P085<br>P086       | 田田田田谷里<br>田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田 | 比率             |                      | 15             | 000               |               | 15                         |              | 96                       |               | )<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 【下的磁极位<br>。       | ^    |        |
|   |          | P086               | 再生电阻负载时                                    | 间常数            |                      | 30             | 0                 |               | 300                        |              | s                        |               | ・BiSS<br>・二相                                        | 编码器<br>磁极传感器      |      |        |
|   |          | P087               | 磁极位置偏移特                                    | 别设定            |                      | 11             | 6517              | -             | 0                          |              | pulse                    |               | ・三相<br>使用B:                                         | 磁极传感器<br>iSS编码器   |      |        |
|   |          | P088               | ABS编码器数据                                   | 使用范围           | 选择                   | 0~             | 2147483           | 3647          | 0~2147                     | 483647       |                          |               | 时,用<br>[d020                                        | 自诊断<br>: 自动磁极检    |      |        |
|   |          | P088               | 100% 用 时 番 溢 出 外<br>检测选择                   | 千吊             |                      | 予              | 以检测               |               | 予以检测                       | Ŋ            |                          |               | 测磁板<br>[d021                                        | ·偏移设定]、<br>:直流励磁磁 | ~    |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          | >             | - 极偏移                                               | 设定]               |      |        |
|   |          | 比较                 | č                                          |                |                      |                | 写入                | 、驱动器          | <i>"</i>                   | 、驱动器读出       | Ľ                        |               |                                                     | ×                 | 闭    |        |
|   |          |                    |                                            |                |                      |                |                   |               |                            |              |                          |               |                                                     |                   |      |        |

●编码器为"ENSIS"时的磁极偏移设定

编码器的设定方法与 BiSS、Endat 不同。详情请参照使用说明书"τ直线伺服马达 选项篇"(资料编号: TI-13511\*),在进行马达试运行前进行设定。

第2章

这里列出 т 直线马达上的参数编辑步骤。

| - |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T | <u>参致编辑</u>                                                                                                      | [6] [参数编辑]无题:c0pa1 -□ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                  | 参数设定 📄 新建 🧁 打开 🚽 保存 🚽 另存为 🛁 打印 🚳 单位、电子齿轮设定 💡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | ①与2-1-5节第1项一样,单击                                                                                                 | 驱动意马达 增益设定 滤波器设定 指令设定 信号设定 通信设定 专用处特殊 全部项目器 P037 结构改善偶称特别设定<br>资定 契格                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 从驱动器读出按钮。一旦这些数据被读                                                                                                | P000 ~ 最小值 0<br>年10月1日 中次42月1日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                  | No.         项目         设定值         初期值         单位         [[0]明]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 出后,                                                                                                              | P055         再生电阻容量         0.000         0.000         kT </th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                  | Pose         再生电阻分数时间常数         300         300         s         ・・日前SS编码器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | ①左/ 会粉 / 44\ 画面上 进行 会粉 / 44 日方                                                                                   | POS7         磁級位置備移特別设定         116517         0         pulse         ・三相磁极传感器           POS0         地域位置備移特別设定         1.0517         0         pulse         使用DISS编码器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | ④仁、参奴编辑/画面上近门参奴编辑。 六有                                                                                            | POS ADS編句語歌劇使用の超速体 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43364) 0*214(43366) 0*214(433664) 0*214(43366) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(433664) 0*214(4366666) 0*214(4366666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | HA、IIC类型还可以设定机械系统的单位。请                                                                                           | [4021: 直示版磁磁 ↓ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4021: □ ] (4 |
|   | 参昭2-1-8节。                                                                                                        | 比较 写入驱动器 从驱动器读出 关闭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 在 2 - 2 节中执行的寸动动作相关参数,为<br>寸动速度 7]。<br>请参照使用说明书的"参数"相关章节。<br>※请确认2 - 1 - 1节中所述的安全功能相关参数<br>③编辑结束后,单击 写入驱动器 按钮以将参 | 指令设定 标签内的 [P573: 寸动速度 0] ~ [P580:<br>设定是否已被正确设定。<br>参数写入驱动器。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 | 本驱动器的再启动                                                                                                         | VPH Data Editing Software X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 出现请求再启动本驱动器的画面(根据已变<br>更的参数种类也有可能不会出现画面)。若再<br>启动也没有问题,就单击 确定 按钮。本驱<br>动器就会再启动。<br>※也有可能无法再启动本驱动器。请参照<br>1-5-2节。 | 斋要再接通电源的参数已被变更。<br>为了反映参数,是否需要再启动驱动器?<br>若单击"确定",就会自动地再启动驱动器。<br>若单击"取消",就会停止驱动器的再启动。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### 2-1-8 单位的设定(只限于 HA、HC 类型)

这里列出单位设定的步骤。可以将马达位置或速度相关单位设定为符合实际机械系统的单位。通过单位 设定,就可像1 pulse 的指令成为 0.001deg 那样调整为机械系统上的指令单位。

| 1 | <单位、电子齿轮设定>画面的显示             |                            | ×                                                  |
|---|------------------------------|----------------------------|----------------------------------------------------|
|   |                              | 存为 🗌 打印 🛞 单位、电子齿轮设计        | ž                                                  |
|   | 在2-1-5节和2-1-7节的参数编辑中若        | ?设定 信号设定 通信设定 <del>发</del> | 集用&特殊 全部项目显 最大值 日本                                 |
|   | 单击画面菜单栏右端的                   |                            | 4.F                                                |
|   | 单位、电子齿轮设定 标签,则会出现<单位、        | 右边的画面                      | 🖸 单位、电子齿轮设定 — 🗆 🗙                                  |
|   | 电子齿轮设定>画面。                   | 表示马达为                      | 1.设定模式                                             |
|   |                              | τDISC 马达                   | <ul> <li>自动设定</li> <li>手动设定</li> </ul>             |
|   | "1. 设定模式"                    | 的情形。                       | ○ 2. 位罟单位洗择(P161)                                  |
|   | 包括"自动设定"和"手动设定"两种模式。         |                            | O deg                                              |
|   |                              |                            | 2. 位罟小教单位洗择(P161)                                  |
|   | ··· 以下为选择了自动设定的情形            |                            | 1 0.1 0.01 0.001                                   |
|   |                              |                            | 0.0001 0.00001 0.000001 0.0000001                  |
|   | "2. 位置单位选择(P161)"            |                            | 4.旋转体位置范围设定                                        |
|   | ~马达为 T DISC马达时~              |                            | ☑ 分度台规格                                            |
|   | 可从"deg""pulse""kpulse        |                            | 若予以勾选,绝对位置将被取整为单圈旋转的数据范围。<br>在使用INDX命令的情况下,务必予以勾选。 |
|   | (=1,000pulse)"进行设定。          |                            |                                                    |
|   | ~马达为 T 直线马达时~                |                            | 设定关闭                                               |
|   | 可从"m""mm""um (微米=0.000001m)" | "inch" "pulse"             | ""kpulse"进行设定。                                     |

"3. 位置小数单位选择(P161)"

可从"1 (只限于整数)"到"0.0000001 (小数点后7位数)"进行设定。

※ "2. 位置单位选择" "3. 位置小数单位选择"的初期值如下所示。

| 马达    | 单位    | 小数单位  |
|-------|-------|-------|
| τDISC | deg   | 0.001 |
| τ 直线  | pulse | 1     |

"4. 旋转体位置范围设定"

这只在马达为 T DISC 马达时才会显示,可设定"分度台规格"。分度台规格中,譬如有关角度显示, 359.999°之后显示 0.000°,而不显示 360.000°。

••• 以下为选择了手动设定的情形

~马达为 T DISC马达时~

在 "2. 位置单位选择 (P161)"中选项增加,可相比 "6. 旋转体位置范围设定"更为详细地进行设定。 增加 "4. 机械移动量设定" "5. 电子齿轮设定"的项目。

~马达为 T 直线马达时~

在"2. 位置单位选择(P161)"中选项增加,也增加"4. 机械移动量设定""5. 电子齿轮设定"的项目。



这里列出试运行(寸动动作)的执行步骤。此时可在<状态显示>画面上确认速度和位置。

| 自治                                                              | 意                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 若在参数初期值的状态下向马达施加负载而使得马达<br>中所述的系统构成图,务必在无负载状态下执行此试运             | 运动作,则恐会有马达失控之虞。请参照 2-1-2 节<br>运行。                                                                                                                                                                                                                                                                                                          |
| 1 参数设定的确认                                                       |                                                                                                                                                                                                                                                                                                                                            |
| 请 備 叭 匚 仕 2 - 1 - 5 帀、2 - 1 - 7 帀 屮 旼 疋 小                       | <b>功</b> 动作所 <b>而</b> 的                                                                                                                                                                                                                                                                                                                    |
| 2 <u>&lt;状态显示&gt;画面的显示及运行状态的确认</u>                              |                                                                                                                                                                                                                                                                                                                                            |
| 请在<主工具条>画面(参照2-1-3节)上,<br>单击 状态显示 标签,再单击<br>状态显示 按钮。出现<状态显示>画面。 | 数据编辑 状态显示 解析<br>状态显示 输入射<br>展示驱动器的内部状 显示输入机                                                                                                                                                                                                                                                                                                |
| 可在此画面上确认马达的动作状态。包括                                              |                                                                                                                                                                                                                                                                                                                                            |
| 异常 用户定制 6个画面。                                                   | 状态         警报         驱动器信息         编码器信息                                                                                                                                                                                                                                                                                                  |
| 在 全部项目 中显示所有的项目,但是用<br>户选择的则为 用户定制 按钮。其余的为按                     | 全部项目     速度&     位置     其他     异常     网络     用户       定制                                                                                                                                                                                                                                                                                   |
| 照名称的内容。                                                         | No.         项目         Data         单位           C001         马达实际动作速度         10.000         deg/sec            C002         可动作的最大速度         3960.000         deg/sec            C004         马达实际动作旋转速度         0         rpm            C005         实际扭矩指令值         0.0         %            C008         马达负载率         0.0         % |
| <b>3</b> <u>&lt;开关箱&gt;画面的显示</u>                                | I → T × 1                                                                                                                                                                                                                                                                                                                                  |
| 请返回<主工具条>画面,单击 远程操作 材<br>再单击 开关箱 按钮。出现<开关箱>画面。                  | 輸出信号状态显示         PN2       PN1       PE2       PE1       SZ       RDY       WNG       ALM         BRK       VCP       PRF       ZRDY       ZZ       ZN       PZ2       PZ1         MTON       OTO       HLDZ       HCP       EMGO       LIM                                                                                                |
| 数据编辑 状态显示 解析功能 调整功能 远程操作<br>开关箱<br>进行驱动器的远程操<br>作。              | OUTS OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1<br>输入信号<br>FOT TL CLR DR SON EMG ARST RST<br>CMDZ RVS GSL2 GSL1 ROT<br>Speed Mode Torque Mode Pulse Mode NC Mode<br>SS1-3                                                                                                                                                                          |
|                                                                 | SPDSEL编号:<br>0 · Set<br>关闭                                                                                                                                                                                                                                                                                                                 |

第2章

| 4 | 运行模式的选择                                                                                                       | Speed Mode   Torque Mode   Pulse Mode   NC Mode                                                                                                                                                                                                                                                                                        |
|---|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 请单击<开关箱>画面下部的4个标签中、右<br>端的 NC Mode 标签。(这里不使用其余的3<br>个标签)。<br>运行模式转变为"本驱动器内置指令"。                               | SS1-8       輸入信号         SEL编号: 0       命令地址: 0         0       ▼         Set <i>RTOG RTOG RTOG XIX ZLS XIX ZLS XIX ZLS XIX ZLS XIX XI</i> |
|   | 此画面左侧的"SS1-8"栏显示出在此动作中位                                                                                       | 使用的SEL编号(初期编号为SEL0)。                                                                                                                                                                                                                                                                                                                   |
| 5 | 向伺服就绪状态过渡                                                                                                     | G 开关箱 - X                                                                                                                                                                                                                                                                                                                              |
|   | 在"输入信号"栏,<br>首先单击①中所述的 SON 按钮,<br>然后单击②中所述 DR 按钮,输入信号。<br>单击后,这些按钮会呈黄色点亮。<br>在"输出信号状态显示"栏中, RDY 指示<br>灯呈绿色点亮。 | 输出信号状态显示       PN2     PN1     PE2     PE1     SZ     RDY     WNG     ALM       BRK     VCP     PRF     ZRDY     ZZ     ZN     PZ2     PZ1       MTON     OTO     HLDZ     HCP     EMGO     LIM       通用输出信号状态显示     OUTS     OUT5     OUT4     OUT3     OUT2     OUT1                                                                 |
|   | ※ SON: 向本驱动器输入用来控制马达的"伺<br>服开"信号。此信号被输入后,马达就会通<br>电,成为受控的状态。                                                  | 输入信号 ② ①<br>输入信号 ② ①<br>FOT TL CLR DR SON EMG ARST RST<br>CMDZ RVS GSL2 GSL1 ROT<br>Speed Mode Toroue Mode Pulse Mode NC Mode                                                                                                                                                                                                          |
|   | ※ DR: 向本驱动器输入用来运行马达的"启动"信号。成为可受理指令(FJOG、RJOG)的状态。                                                             | SS1-8     輸入信号       SEL編号: 0     ①       命令地址: 0        0     ✓       Set                                                                                                                                                                                                                                                             |
|   |                                                                                                               | 关闭                                                                                                                                                                                                                                                                                                                                     |
|   | ※ RDY : 表示已输出做好了控制马达准备的"                                                                                      | 伺服就绪"信号。                                                                                                                                                                                                                                                                                                                               |
|   | ※在单击 SON 按钮的同时马达旋转或者发出<br>以使马达停止。请检查原因。                                                                       | 警报时,再一次单击 SON 按钮,解除 SON 信号,                                                                                                                                                                                                                                                                                                            |

| 6 | <ul> <li><u>寸动动作的执行</u></li> <li>①单击 FJOG 按钮以输入"正方向寸动"信号。按钮呈黄色点亮,马达向1-3节中所述的"正方向"动作。</li> <li>单击 RJOG 按钮以输入"逆方向寸动"信号。</li> <li>按钮呈黄色点亮,马达向其相反的方向("逆如)</li> <li>※FJOG、RJOG 按钮的单击方法</li> </ul>                                           | NC Mode<br>輸入信号<br>IRG ZMK ZLS ZST<br><i>RTCO F.TCO</i> ZCAN<br>关闭<br>方向")动作。请予以确认。                                                                            |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 左击("选择"按钮)<br>持续按<br>→在持续按住按钮期间,马达向着同一方向                                                                                                                                                                                               | 右击("菜单显示"按钮)       1次单击或持续按       动 →马达向着同一方向继续动作,再单击一次马达                                                                                                      |
|   | <ul> <li>作,若停止按马达就会停止。</li> <li>单击的方法根据鼠标的设定而不同。通常,左</li> <li>②请在第2项中显示出的&lt;状态显示&gt;画面上一边表</li> <li>●动作速度(在2-1-5节、2-1-7节中设</li> <li>●动作方向是否正确?</li> <li>●是否产生异常响声或异常振动?</li> <li>●是否有其他异常之处?</li> <li>发现异常时,请停止寸动动作,并检查原因。</li> </ul> | 就会停止。<br>"击为"选择",右击为"菜单显示"。<br>昏速度等项目,一边确认下述事项。<br>"定)是否接近设定值?                                                                                                 |
| 7 | <u>寸动动作的完成</u><br>执行寸动动作,若速度、方向及动作状态没<br>有异常,就解除 FJOG 或 RJOG 的信号以<br>完成寸动动作。<br>而后,在解除 SON DR 的信号使得马达<br>成为非通电状态后,单击 关闭 按钮以关闭<br><开关箱>画面。                                                                                              | 輸入信号<br>FOT TL CLR DR SON EMG ARST RST<br>CMDZ RVS GSL2 GSL1 ROT<br>Speed Mode Torque Mode Pulse Mode NC Mode<br>SSI-8<br>SEL编号: 0<br>命令地址: 0<br>0 v Set<br>美词 |

## 第3章 施加实际负载进行调整

在马达单独的试运行完成后,向马达连接实际的机械系统负载以调整参数。参数编号的详情请参照 7-1 节、7-5节、7-6节。

※HB、HD、HE类型,请在切换到维护模式后进行调整。切换步骤请参照 2-1-4 节。

### <u>▲</u>注意

请在再次确认本驱动器及马达周围没有障碍物,及所连接的机械系统的动作不会与其他机械系统的位置、 动作干涉后开始动作。

建议用户设定紧急停止和超程等安全功能。请在事前确认安全功能确实动作。

再次在图 3-1 中列出本章中执行的步骤的主要流程。



图 3-1 本章中执行的步骤的主要流程

本章中执行调整的系统构成图,相对于第2章的系统构成图(图2-2等)追加了再生电阻、实际负载。 图 3-2 中举例列出马达为 τ DISC 下 HA 类型时的情况。使用 τ 直线马达时,在以下构成图上只是马达形状不同,系统构成基本上都相同。



※1: 马达减速时有可能发生过电压异常,建议用户连接再生电阻。

※2: 建议用户设定紧急停止(EMG)和超程(FOT、ROT)等安全功能。设定请参照2-1-1节。

图 3-2 施加实际负载进行调整时的系统构成图 (例: HA 类型)
## ⚠注意

●马达会动作,请注意所连接的机械系统的动作范围和速度,要离开充分的距离以免靠近设备。

- ●若从不适当的位置或角度开始动作,及指定不适当的动作方向而执行自整定,则在实际运行时恐会有与 理应不会碰撞的制动器或周围构造物碰撞之虞(参照图3-3)。请对于基于马达动作量(参照3-1-4节) 的机械系统的预想动作,以与制动器等离开足够距离的方式,充分注意开始位置、角度和动作方向执行 操作。
- ●即使在自整定完成后,马达也有可能因所连接的机械系统的惯性力而在短时间内继续动作。直至机械系 统完全停止为止,请勿靠近设备。



#### 图 3-3 从不适当的位置开始自整定时与周围构造物碰撞之虞

#### 3-1-1 自整定的动作

"自整定"是指"根据为使马达动作时的机械系统的操作情况,测量负载(机械系统的惯量、粘性摩擦), 自动设定适合它们的增益相关参数的功能"。在连接实际负载后,最初需要执行此操作。在手动输入负载的 惯量时则无需执行此操作。

7-5节中有关于自整定的参数的补充说明,可供参照。

●动作情况

自整定不同于实际运行,执行"正方向加速 → 正方向减速 → 逆方向加速 → 逆方向减速"(再次重复 以上操作。总共2次往返动作)或者执行"正方向(逆方向)加速 → 正方向(逆方向)减速"(再重复执 行3次以上操作。单侧总共4次动作)(参照图 3-4)。



图 3-4 TDISC 马达、T直线马达自整定时的动作情况

速度(旋转速度)的状态大致上如3-1-4节中所述的"马达动作预想"所示成为正弦波(正弦曲线)。 在向着"加速 → 减速"(或"减速 → 加速")过渡时成为"(正、逆方向的)最大速度"。 相对于马达额定速度的最大速度之比为<自整定>画面上的"运行比率"。通过下调运行比率,"马达动作 量"变小,缩小自整定时的机械系统负载的动作范围。



图 3-5 马达速度预想状态和"运行比率"、"马达动作量"

※若希望缩小动作范围而过于下调运行比率,惯量等的测量精度就会变差(画面上会出现确认的信息框)。 通常,将运行比率设为0.3以上以执行自整定。 根据机械系统的特性,在如下情况下无法执行自整定。

●在即使调整运行比率来减小基于自整定的马达动作量的机械系统的预想动作,也还是大于机械系统 的容许动作范围时

→ 因不可避免地会发生碰撞而无法执行自整定。

- ●机械系统上下动作时
  - → 难于正确测量机械系统的惯量。

这种情况下,请计算机械系统负载的惯量,在<参数编辑>画面(参照2-1-5节、2-1-7节)上向[P231] 输入其计算值。

3-1-3 机械系统负载的惯量较大时

机械系统负载的惯量较大(相对于马达的转子惯量为150倍以上)时,为进行自整定而需要特别的设定。 请结合第6章的内容进行调整。

3-1-4 自整定的执行

这里列出执行自整定的步骤。

1 负载的连接、安全功能的确认

①请确认负载已被切实连接到马达上。

②请确认紧急停止和超程等安全功能切实动作。

2 <自整定>画面的显示

数据编辑 状态显示 解析功能 调整功能 远程: ①请在<主工具条>画面上单击 调整功能 实时 伺服调 自诊断 自整定 标签,再单击 自整定 按钮。出现<自整 执行驱动器的自诊断 功能,显示结果。 执行自整定。 定>画面。 🕝 自整定  $\times$ 动作参数接收 ②请单击画面的右端的"详细显示⑤"。详细 ۲ 动作参数设定 画面在右侧打开。 半 電 明 注 整定增益选择 増益编号0 ~ 动作方向选择 往返 运行比率 0.30 0.00~1.00 的动作量和速度的比率。 最大扭矩 100 % 0~300 惯量倍率选择 150倍以下 ~ 惯量大而成为ERROR时,请进行变更 滤波器设定 PB滤波器设定方法选择 手动 v 选择反馈滤波器的设定方法。 FB滤波器次数选择 1次 PB滤波器频率 1000 Hz 0~9999 状态 开始(<u>s</u>) 关闭<mark>(X</mark>)

#### 3 动作方向的选择及运行比率的设定 G 自整定 动作参数接收 动作参数设定 ①请决定"动作方向选择",设定"运行比率"。 整定增益选择 増益编号0 动作方向选择 往返 ~ 0. 30 显示"马达动作预想"的曲线和"马达动作 运行比率 0.00~1. 马达动作量 110] deg 根据惯量倍率,有的情况下全部 量"。 <mark>が作量/50</mark> +Fh化速 150倍以下 08时,请进行变更。 惯量倍率选择 它们的含义和决定方法请参照3-1-1节。 惯重大而成为ERI 自整定结界 透波器设定 ---- kgm<sup>\*</sup>2 刘悝里。自整定未实施的情况下,显示"---"。 ---- Na/red/s 功粘性摩擦。自整定未实施的情况下,显示"---" 惯量 PB滤波器设定方法选择 手动 显示控) 粘性摩擦 法经历儒师被契约设 ②请确认基于"马达动作量"的机械系统的预 PB滤波器次数选择 1次 PER游器频室 1000 Hz 想动作在容许范围内。 状态 开始 (<u>S</u>) 关闭区 ※调整"运行比率"以调整"马达动作量"。 放大图 ※惯量较大时,动作量有可能超过计算值。 马达动作预想 110 deg 马达动作里 动作里为大致标准。根据惯里倍率,有的情况下会超过移动里而动作。 4 自整定的执行 🕝 自整定 $\times$ 动作参数接收 ①请输入"最大扭矩",设定"惯量倍率选择"。 $\odot$ 动作参数设定 米留男社 ②请在"FB滤波器设定方法选择"栏中选择"自 増益编号0 v 整定增益选择 动"。 动作方向选择 往返 v 运行比率 0.30 $0.00 \sim 1.00$ 设定马达的动作量和速度的比率。 ※刚性低的机械时,请选择"手动",并参照 最大扭矩 100 0~300 7-3节以将"FB滤波器频率"变更为1000Hz 惯量倍率选择 150倍以下 v 以上。 惯量大而成为ERROB时,请进行变更。 滤波器设定 ③请确认在预想的动作范围内没有障碍物等。 PB滤波器设定方法选择 自动 v 若没有问题就单击一开始按钮。 选择反馈滤波器的设定方法。 FB滤波器次数选择 1次 FB滤波器频率 1000 Hz 0~9999 状态 关闭(X) 开始(S) ④在实际执行自整定前会出现提请注意的画 面。请再次确认没有障碍物,单击 确定 VPH Data Editing Software $\times$ 按钮。自整定就会开始进行。 开始自整定。 ※本驱动器的数据显示LED上显示"d999"。此 若按下"确定"按钮,不管马达处于停止中还是动作中都会开始自整定。 显示表示"自诊断中",没有问题。 若按下"取消"按钮就会停止执行。 确定 取消

|   |                                                           | 第3章                                                                                                                  |
|---|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 5 | 自整定的完成                                                    |                                                                                                                      |
|   | ①自整定正常完成时,"状态"栏中会显示<br>"END",整定结果则会显示在画面的右下。              |                                                                                                                      |
|   | 为了完成自整定,请单击 关闭 按钮。                                        |                                                                                                                      |
|   | ②出现请求再启动本驱动器的画面。若再启动<br>也没有问题,就单击 确定 按钮。本驱动<br>器就会再启动。    | re###最後世的法律##<br>法得受####################################                                                             |
|   | ※此时曾在本驱动器的LED上显示的"d999"<br>消失。                            | VPH Data Editing Software X                                                                                          |
|   | ※自整定没有正常完成时,状态栏中会显示错<br>误No.。请在参照3 - 1 - 5节排除原因后再次<br>执行。 | <ul> <li>结束自整定。</li> <li>为了向通常运行模式进行切换,驱动器将自动地再启动。是否需要执行?</li> <li>若单击"确定"驱动器就会再启动。</li> <li>若卑击"取消"就会停止。</li> </ul> |
|   |                                                           | 確定 取消                                                                                                                |

自整定没有正常完成时,如图3-6所示会在"状态"栏中显示错误的状态显示(显示的区分参照表3-1)。 错误内容("马达没有动作"等),若将PC的光标指向状态栏,则会在光标右下显示对应错误No.(ERRO R1等)的内容。

请在排除原因后再次执行自整定。

| 🕤 自整定              |            |      |    | -     |      | Х       |
|--------------------|------------|------|----|-------|------|---------|
| 动作参数接收             |            |      |    |       |      |         |
| 动作参数设定             |            |      |    |       |      | $\odot$ |
| 整定增益选择             | 増益编号0      | Ŷ    |    |       |      | 下量      |
| 动作方向选择             | 往返         | Ŷ    |    |       |      | 展批      |
| 运行比率               |            | 0.30 |    | 0.00~ | 1.00 |         |
| 设定马达的动作里和速<br>最大扭矩 | [度的比率。<br> | 100  | 96 | 0~30  | 0    |         |
| 惯里倍率选择             | 150倍以下     | Ŷ    |    |       |      |         |
| 惯里大而成为ERROR时       | ,请进行变更     | •    |    |       |      |         |
| 滤波器设定              |            |      |    |       |      |         |
| PB滤波器设定方法选择        | 手动         | ~    |    |       |      |         |
| 选择反馈滤波器的设定         | 方法。        |      |    |       |      |         |
| FB滤波器次数选择          | 1次         | ~    |    |       |      |         |
| PB滤波器频率            |            | 1000 | Hz | 0~99  | 99   |         |
| ~ 状态               |            |      |    |       |      |         |
| ERROR, 1           |            |      |    |       |      |         |
|                    |            |      |    |       |      |         |
| 开始(S) 马达没有动作 X)    |            |      |    |       |      |         |

图 3-6 自整定时的错误画面例

| 表 3-1 自聚 | 定时的银 | 昔 误一 」 | 览 |
|----------|------|--------|---|
|----------|------|--------|---|

| 状态     | 错误内容                 | 处理                                                                                                                      |
|--------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| ERROR1 | 马达没有动作。              | ●请确认运行比率和最大扭矩栏不是"000(%)",再次执行。<br>●请在[P160:惯量、粘性摩擦范围选择]中增大范围。<br>请在<参数编辑>画面(参照2-1-5节、2-1-7节)上增加<br>可通过[P160]显示的小数点后的位数。 |
| ERROR2 | 速度回路积分时间常数成<br>了范围外。 | 未能测量机械系统的惯量。请参照 3 - 1 - 2 节在 [P231: 惯量] 中输入其计算值。                                                                        |
| ERROR3 | 指令方向与马达的动作方<br>向不一致。 | 请确认负载及机械没有松动等。                                                                                                          |
| (警报名)  | 因警报而被中止。             | 请在确认所显示的警报内容后,在排除原因的基础上解除警报。<br>有关警报的详情,请参照使用说明书。                                                                       |

### 3-2 测试运行的执行

这里列出测试运行的步骤。测试运行的目的在于调整"速度"、"加速时间、减速时间"等参数以确认可 按照实际目标执行连续定位动作。7-6节中也有关于测试运行的补充说明,可供参照。

| 1 | <测试运行>画面的显示                             |                                                    |
|---|-----------------------------------------|----------------------------------------------------|
|   |                                         | ▲ 測试运行 - □ ×                                       |
|   | ①请在<主工具条>画面上单击 调整功能                     | 动作参数接收                                             |
|   | 标签,再单击   测试运行   按钮。出现<测                 | 动作参数设定                                             |
|   | 试运行>画面。                                 | 开始位置指定 无效 🗸                                        |
|   |                                         | 动作方向 往返 ~ 春                                        |
|   | ②在各项目的选择、值的输入结束后,确认机                    | 移动里 0.000 deg 0.000~                               |
|   | 械系统的动作范围是否有障碍物等。若没有                     | 速度 10.000 deg/sec 300000.000                       |
|   | 问题就单击 开始 按钮。                            | 1911.000 S 999.999                                 |
|   |                                         | SEL选择 SEL.0 V                                      |
|   |                                         | 加速时间 500.0 ms 99999.9                              |
|   |                                         | 預022时间 <u>500.0</u> ms 99999.9<br>空中时间1 10.0~ 0.0~ |
|   | 能 调整功能 远程操作                             | USFN100.0<br>☑ 同时设定为PLS SEL 0 S字时间1(P470)          |
|   |                                         | 会社通2 2.0~ 0.0~                                     |
|   | 定 实时 测试运行                               | 3-4 u jiejz 3. 0 jies 1000. 0                      |
|   |                                         |                                                    |
|   | > · · · · · · · · · · · · · · · · · · · | 循环停止                                               |
|   |                                         | 状态                                                 |
|   |                                         |                                                    |
|   |                                         |                                                    |
|   |                                         | 开始( <u>3</u> ) 关闭(3)                               |
|   |                                         |                                                    |
| 2 | 测试运行的执行                                 | VPH Data Editing Software X                        |
|   |                                         |                                                    |
|   | 在实际执行动作前会出现提请注意的画面。                     | ▲ 开始测试运行。                                          |
|   | 请冉次确认没有障碍物,早击 <u> 備定</u> 按              | 若按下"确定"按钮,不管马达处于停止中还是动作中都会开始运行。 若按下"取消"按钮前会停止执行    |
|   | 钮。试运行就会开始进行。                            |                                                    |
|   |                                         |                                                    |
|   |                                         | 确定                                                 |
|   |                                         |                                                    |

| 3 | 测试运行的停止                                                                          |
|---|----------------------------------------------------------------------------------|
|   | 测试运行,只要马达上没有发出警报就不会 RUNNING[0]                                                   |
|   | ▲击 【减速停止】或 【急速停止】按钮以 <b>减速停止 ① 急速停止 ②</b>                                        |
|   | 使马达停止。<br>减速停止时,马达会在<测试运行>画面上显示的减速时间内减速。                                         |
|   | ※选择 急速停止 时,会进行紧急制动。机械系统的惯量较大时,机械系统的惯性力会成为较大的<br>冲击力,恐会有机械系统破损、以及危及操作员之虞,要予以充分注意。 |
|   | ※测试运行中机械系统负载有可能与马达共振。这种情况下,设定"陷波滤波器"以抑制共振。请参照3-5节。                               |

这里列出定位指令时间的调整步骤。可通过缩短加速时间、减速时间来缩短定位时间,但同时动作开始

1

时的冲击和实际扭矩指令值将会增大。恐会有导致马达过负载之虞,要予以注意。 在对马达要求高节拍时,加速时间、减速时间的调整与本节的内容略有不同。请参照第5章的内容。

加速时间、减速时间的调整 G ź, ①在<测试运行>画面上调整"加速时间""减 谏时间"。 Ð ※右图的加速时间和减速时间的500.0ms为一 ž 个例子。需要根据节拍设定更短的时间。 Ŧ ì ②若单击 | 开始 | ,所调整的值就会被反映到 本驱动器中,动作开始。 ※请调整"加速时间""减速时间",以便满足 目标节拍。 ※若在实际扭矩指令值较高的状态下继续动 作,马达就会因"过负载异常"的警报出现 而紧急停止。 对于实际扭矩指令值和因此导致的马达过 热,要一边看着<示波器>画面一边注意以下 τ í 几点。 ●避免实际扭矩指令值超过马达额定扭矩 值的7~8成。 ●避免<示波器>画面右上的"C012:马达热

跳脱率"上升至100%(要维持在70%以 下)。

(<示波器>画面的启动请参照2-1-3节第5 项)。

开始(S)



| 测试运行                | _                        | ×       |
|---------------------|--------------------------|---------|
| 的作参数接收              |                          |         |
| 动作参数设定              |                          | $\odot$ |
| 开始位置指定 无效 🔹 🔻       |                          | 核       |
| 动作方向   往返   ~       |                          | 郡       |
| 多动量 0.000 deg       | 0.000~<br>2147483.64     | 7       |
| 束度 10.000 deg       | 0.000~<br>/sec300000.000 |         |
| 亭止时间 <u>1.000</u> ₅ | 0.000~<br>999.999        |         |
| SEL选择 SEL. 0 V      |                          |         |
| 加速时间 500.0 ms       | 0.0~                     | 1       |
| 減速时间 500.0ms        | 0.0~                     |         |
| S字时间1 10.0ms        | 0.0~                     |         |
| ☑ 同时设定为PLS SEL O S字 | z时间1 (P470)              |         |
| S字时间2 3.0ms         | 0.0~<br>1000.0           |         |
| 停止设定                |                          | _       |
| JSB通信切断时马达停止        | OFF                      |         |
| 盾环停止                | OFF                      |         |
| 状态                  |                          |         |
|                     |                          |         |
|                     |                          |         |
| 开始(S)               | 关闭(X)                    |         |



若延长 S 字时间 1 的时间,则定位指令时间或多或少会延长,但是实际的动作会变得平顺,结果有可能 缩短总定位时间。

在要求马达高节拍动作时,及机械系统负载的惯量较大时,S字时间1的调整与本节的内容略有不同。请 分别参照第5章、第6章的内容。

7-7节中也有关于S字时间所发挥作用的补充说明,可供参照。

| 1 | <u>S字时间1的调整</u>                     | G 测试运行 - · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                            |
|---|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ①在<测试运行>画面调整"S字时间1"。                | 动作参数接收                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | ※右图的S字时间1的10.0ms为一个例子。              | 动作参数设定 (>)<br>开始位置指定 无效 · 2                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | ②若单击 开始 ,所调整的值就会被反映到<br>本驱动器中,动作开始。 | 动作方向 往返 ~ 構<br>移动量 0.000 <sup>deg</sup> 0.000~<br>2147483.647<br>速度 10.000 <sup>deg/sec</sup> 300000.000<br>値はPati回 1.000 <sup>a</sup> 0.000~                                                                                                                                                                                                                                                                                           |
|   | ※画面内也有"S 字时间 2", 可对其进行调整。           | SEL选择     SEL.0     ●       加速时间     500.0 ms     99999.9       減速时间     500.0 ms     99999.9       減速时间     500.0 ms     99999.9       S字时间1     10.0 ms     0.0~       1000.0     ms     1000.0       S字时间1     10.0 ms     1000.0       Imit Diagram     Signal     0.0~       1000.0     Imit Diagram     0.0~       1000.0     Imit Diagram     0.0~       1000.0     Imit Diagram     0.0~       1000.0     Imit Diagram     0.0~ |
|   |                                     | 停止设定<br>USB通信切断时马达停止 OFF ■<br>循环停止 OFP ■<br>状态<br>开始(S) 关闭(X)                                                                                                                                                                                                                                                                                                                                                                           |



这里列出抑制共振的步骤。在实施自整定后或提升增益后,机械系统负载与马达有可能共振。这种情况 下,设定"陷波滤波器"以抑制共振。

出现下述现象时,有可能是"共振"引起的。

●开始出现类似金属撞击声的响声(铮铮声)。

●开始出现机械系统负载的振动或高频振动。

所谓"陷波滤波器",是指"对于在中心频率和带宽内设定的带宽进行滤波处理来抑制共振的功能"。此滤 波器使得带宽范围内的信号衰减,而使得带宽范围外的信号不予衰减就通过。



#### 3 陷波滤波器的设定

①在画面上,光标会自动指向共振最强的频率的峰值处(下图中的@),频率和实际扭矩指令值的峰值在表中示出(B)。若在此状态下单击 设定 按钮,表中的频率就会被自动输入到陷波滤波器的"中心频率"栏中,"陷波滤波器带宽率"(©。已输入参考值)会被自动输入到"带宽率"栏中(D)。

②进行数次解析,按强烈共振的频率顺序设定"陷波滤波器"。

③若将 PC 的游标指向假定为共振点的峰值处予以单击,就可以手动方式对峰值频率设定陷波滤波器。 在光标没有准确地对准于所需的峰值时,单击 "◀" "▶" 按钮以使得光标细微地移动。当光标对准时, 表中就会显示"扭矩""频率"值,可设定该陷波滤波器。



<频谱>画面上的说明、注意点

- "深度"为要使其衰减的量。值保持"0"(dB)不变也无妨。
- "陷波滤波器下限频率" "陷波滤波器带宽率" 分别作为初期值已输入 "500Hz" "20%"。这些是参考值, 可任意变更。
- ●在设定多个滤波器时,请在先设定的滤波器栏外设定。若不慎在先设定的滤波器栏内单击 设定,则会 被盖写,要予以注意。这种情况下请再次执行解析,作为新的滤波器来设定。
- ●先前的滤波器的设定已被保存起来。即使事后变更带宽率,也会以变更前的比率保持被设定的状态。

## ⚠注意

即使未满作为下限频率被输入的500Hz,也可设定滤波器,但若设定多个滤波器,或者增大带宽率而设定, 响应性有可能变差而出现大幅振动。 这里列出自整定水平调整的步骤。若以"马达的位置偏差波形不产生超越量(位置偏差波形的逸出)而 收敛"的方式进行调整,马达的响应性则会进一步提高。

机械系统负载的惯量较大时,自整定水平调整与本节的内容略有不同。请参照第6章的内容。

| 1 | 测试运行的执行                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 本调整在"3-2 测试运行"的执行中进行。                                                                                                                                        | 请执行"测试运行"。                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 | <实时伺服调整>画面的显示及水平调整                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                              |
|   | ①<请在<主工具条>画面上单击 调整功能 标签,再单击 实时伺服调整 按钮。出现 <实时伺服调整>画面。                                                                                                         | 解析功能     调整功能     远程操作       自整定     实时     引       行自整定。     只助地调整度 (位置)     进行列                                                                                                                                                                                                                                                                                                            |
|   | ②请单击 ATLv 标签,调整"自整定水平调<br>整"的值。                                                                                                                              | ▲ 实时伺服调整 - ○ × 调整增益选择 增益编号0 · 现在的增益编号 0                                                                                                                                                                                                                                                                                                                                                      |
|   | <ul> <li>※在值的调整中,</li> <li>●选择 "x1",单击 "▲" "▼" 按钮 → 值 每次会上下1。</li> <li>●选择 "x10",单击 "▲" "▼" 按钮 → 值 每次会上下10。</li> <li>③在 "FB滤波器设定方法选择" 栏中选择 "自 动"。</li> </ul> | ATLv       Step1       Step2       Step3       Step4         自整定水平调整       25       25         P214 : 速度回路比例增益       25         P215 : 速度回路投分时间常数       20.0 ms         P225 : 位置回路增益       20.0 s <sup>2</sup> -1         P231 : 惯量       0.00000 kgm <sup>2</sup> 2         P232 : 粘性摩擦       0.00000 kgm <sup>2</sup> 2         P342 : FBเ痰成器次数       1次         P242 : FBl痰成器次数       1次 |
|   | <sup>77</sup> 。<br>若改变"自整定水平调整"的值,各参数的<br>值也会自动改变。无法单独输入。                                                                                                    | P342 : Fb滤波器测率     1000 Hz       PB滤波器设定方法选择     自动       频谱     更新 关闭                                                                                                                                                                                                                                                                                                                       |

3 请一边看着<示波器>画面,一边单击"▲""▼"按钮以调整自整定水平调整"的值。单击"▲"按钮 响应性会提高,单击"▼"按钮则会下降。如下图所示可缩短定位时间。(<示波器>画面的启动请参照 2-1-3节第5项)。



在"调整不顺利而希望恢复参数值"时, 请按画面右下的"返回"按钮。

在最后按 更新 按钮时或在开始调整前保存 在本驱动器中的参数值会被读入,调整中的数据 即被擦除。

| 5 实时伺服;    | 周整            |       |        | -                |        |   |
|------------|---------------|-------|--------|------------------|--------|---|
| 整増益选择      | 增益编号0         |       | ~      | 现在的增益编·          | 5      | _ |
| ATLv Step  | 1 Step2 Step3 | Step4 |        |                  |        |   |
|            |               |       |        |                  | ● x1 ● | ) |
| 自整定水平调     | 整             |       | 25     | 5                | ▼      |   |
| 214 : 速度回  | 四路比例増益        |       | 25     | 5                |        |   |
| 215 : 速度回  | 回路积分时间常数      |       | 20. (  | ) ms             |        |   |
| 225 : 位置回  | 四路増益          |       | 20. (  | ) s^-1           |        |   |
| 231 : 惯量   |               |       | 0.0000 | kgm <sup>2</sup> |        |   |
| 232 : 粘性國  | <b>智</b> 察    |       | 0.0000 | Nm/(rad/s)       |        |   |
| 342 : FB浪测 | 皮器次数          |       | 1次     |                  |        |   |
| 342 : FB滤泳 | 皮器频率          |       | 1000   | Hz               |        |   |
|            |               |       |        |                  |        |   |
|            |               |       |        |                  |        |   |
| 8滤波器设定)    | 方法选择          |       | 自动     |                  |        | - |
| 频谱         |               |       |        |                  | 更新     |   |
|            |               |       |        | T                |        |   |
|            |               |       |        | - Fi             | 反回按    | 钅 |
|            |               |       |        |                  |        | _ |

#### 希望进一步提升马达的响应性时

至此调整基本完成,在希望进一步提高马达的响应性,缩短定位时间等时,进行追加调整。请参照后续的第4章。

以上调整是基于本驱动器内置指令的调整。在从上位控制器对本驱动器发出脉冲串指令和网络指令等以 使得马达动作时,则需要对上位控制器设定通过以上调整而在驱动器中内置的指令参数(使用说明书中称 其为"内置指令参数")。

请对上位控制器设定位置指令动作。

# 第4章 实时伺服调整

第3章中已进行自整定水平调整。希望在此基础上进一步缩短定位时间,或抑制马达的动作声和振动时, 进行实时伺服调整。

#### 4-1 实时伺服调整

这里列出实时伺服调整的步骤。通过此功能,在进行自整定水平调整时,可更加细致地调整增益相关的 参数。

| 1 | 测试运行的执行                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 本调整在执行"3-2 测试运行"的过程中i                                                                                                                                                                                                                                                                                                             | 进行。请执行"测试运行"。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 | <ul> <li>&lt;<u>(实时伺服调整&gt;画面的显示</u></li> <li>①&lt;请在&lt;主工具条&gt;画面上单击 调整功能 标签,再单击 实时伺服调整 按钮。出现&lt; 实时伺服调整&gt;画面。</li> <li>※在&lt;实时伺服调整&gt;画面上,调整相关的参数 已被归纳为Step1~Step4(画面构成请参照 节末内容)。</li> <li>②若对 与低速增益(Step3)联动 复选框予 以勾选, <step1>画面(通常增益)上经过 调整的值就会被复制到<step3>画面(低速 增益)上。 若变更通常增益下的值,低速增益下的值也 会被变更。</step3></step1></li> </ul> | 解析功能       调整功能       远程操作         自整定       实时<br>伺服调整       第         行自整定。       究时地隔整速度/位置       进行测         了自整定。       班地隔整速度/位置       进行测         了自整定。       班行测       2         了自整定。       班行测       3         可能增益。       班行测       2         「副整增益法择       增益编号0       1         ATLv       Step1       Step2       Step4         」 与低速增益(Step3)联动       9214 : 速度回路比划增益       9215 : 速度回路比划增益         P215 : 速度回路比划增益分配率       9216 : 速度回路比划增益       9216 : 速度回路比划增益分配率         P225 : 位置回路增益       9227 : 位置回路微分时间常数       9229 : 速度前溃率         P220 : 速度前溃率波器时间常数       9230 : 速度前溃率波器时间常数 | - ○ ×<br>现在的增益编号 0<br>◎ x1 ○ x10<br>25 ▼ ▲<br>20.0 ms ▼ ▲<br>0 us ▼ ▲<br>20.0 s <sup>2</sup> -1 ▼ ▲<br>0 us ▼ ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                                                                                                                                   | FB透波器设定方法选择<br>频谱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 手动     、       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●     ●       ●< |

| 3 | 增益相关参数的调整                                          | G 实时伺服调整 - □ ×                                            |
|---|----------------------------------------------------|-----------------------------------------------------------|
|   |                                                    | 调整增益选择 增益编号0                                              |
|   | ①请调整各参数的值。                                         |                                                           |
|   |                                                    | AILW Step1 Step2 Step3 Step4                              |
|   | ※在值的调整中,                                           |                                                           |
|   | ●基本的调整方法                                           | P215:速度回路积分时间常数     20.0 ms                               |
|   | 选择 "x1",单击 "▲" "▼" 按钮 → 值                          | P216:速度回路微分时间常数 0 us                                      |
|   | 每次会上下1。                                            | P217:速度回路比例增益分配率 0.0%                                     |
|   | ●选择 "x10", 单击 "▲" "▼" 按钮 → 值                       | P225:位置回路增益 20.0 s <sup>2</sup> -1 ▼ ▲                    |
|   | 每次会上下10。                                           | P227:10立回泊(成/2时) 同帛氨(     0 us       P229:读信前法案     80.0% |
|   |                                                    | P230:速度前溃滤波器时间常数 0.2 ms ▼ ▲                               |
|   | ※下面为主要的调整参数。                                       |                                                           |
|   | (Step1]等为所显示的画面)                                   |                                                           |
|   | 其中,参数名有下划线的,在4-1-1节至                               | PB透波器设定方法选择 <sub>千元4</sub>                                |
|   | 4-1-4节中列出调整的情况。                                    |                                                           |
|   |                                                    | <u>频</u> 谱 更新 关闭                                          |
|   | ●P214: 速度回路比例增益 ··· Step1                          |                                                           |
|   | 若予以提升,响应性就会提高,并可缩短员                                | 2位时间。                                                     |
|   | 若提升过量,就会产生振动或超程(位置低                                | <u>,</u> 差波形的溢出)。                                         |
|   | ●P215: 速度回路积分时间常数 ··· Step1                        |                                                           |
|   | 若予以下调,响应性就会提高,并可缩短员                                | <b>定位时间。</b>                                              |
|   | 若下调过量,就会产生振动或超程。                                   |                                                           |
|   | ●P217: 速度回路比例增益分配率 ··· Ste                         | p1                                                        |
|   | 若予以提升,响应性就会下降,并可抑制起                                | 2程。                                                       |
|   | 若提升过量,定位时间就会延长。这种情况                                | 己下若予以下調,定位时间就會缩短。                                         |
|   | 调整的情况请参照4-1-1节。                                    |                                                           |
|   | ●P225: <u>位置回路増益</u> ・・・ Step1                     |                                                           |
|   | 若予以提升,响应性就会提高,并可缩短员                                | <b>定位时间。</b>                                              |
|   | 若提升过量,就会产生振动或超程。                                   |                                                           |
|   | 调整的情况请参照4-1-2节。                                    |                                                           |
|   | ●P229: <u>速度前馈率</u> · · · Step1                    |                                                           |
|   | 若予以提升,响应性就会提高,并可缩短员                                | 2位时间。                                                     |
|   | 若提升过量,就会产生超程。                                      |                                                           |
|   | 以使位置偏差的波形与速度反馈的波形朝南                                | 可相同,具有某种程度的偏差(速度方向的滞后)移动                                  |
|   | 的方式进行调整。                                           |                                                           |
|   | 调整的情况请参照4-1-3节。                                    |                                                           |
|   | ●P233: <u>惯量前馈率</u> · · · Step4                    |                                                           |
|   | 若予以提升,响应性就会提高,并可缩短员                                | <b>定位时间</b> 。                                             |
|   | 若提升过量,就会产生超程。                                      |                                                           |
|   | 调整的情况请参照4-1-4节。                                    |                                                           |
|   | ③迅宁的估计户后 出土 王矿 协加 片海                               |                                                           |
|   | ② 饭 定 的 值 伏 定 后 , 平 击 [ 史 新 ] 按 钮 , 伊 侍            | 手动 v                                                      |
|   | 参数尺映到本驱动益中。 <u>右个于更新,经过</u><br>》思教始教相前天人神后时刻去距去思力无 |                                                           |
|   | <u> </u>                                           | 「「「」「「」」「「」」「「」」「「」」「「」」「」」「」」「」」「」」「」」                   |
|   | 但大。                                                |                                                           |
|   | ③在与机械系统负载之间产生土振时。 语关昭                              | 返回按钮                                                      |
|   | 3-5节以设定路波滤波器。                                      |                                                           |
|   | ※在调整不顺利,希望恢复参数值时,请按其力                              | 〒边的"返回"按钮(参照3-7节)。                                        |
|   |                                                    |                                                           |

●实时伺服调整的画面 按增益的种类区分画面。

| Step1: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 通常增益相关                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step2: 通常增益                                                                                                                                                                                                  | 和低速增益的切换条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 了 实时伺服调整                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | – 🗆 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ☑ 实时伺服调整                                                                                                                                                                                                     | – 🗆 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 调整增益选择 增益编号0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | → 现在的增益编号 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 调整增益选择 增益编号0                                                                                                                                                                                                 | ~ 现在的增益编号 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ATLv Step1 Step2 Step3 Step4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATLv Step1 Step2 Step3 Step4                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ 与低速增益(Step3)联动                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ● x1 ○ x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              | ● x1 ○ x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P214 : 速度回路比例增益                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P210 : 低速增益切换速度                                                                                                                                                                                              | 1.000 rpm 🔨 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P215 : 速度回路积分时间常数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P211 : 低速增益切换偏差脉冲                                                                                                                                                                                            | 10 FB res 🔽 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P216 : 速度回路微分时间常数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 us 🗡 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              | 5.0 ms 🔻 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P217 : 速度回路比例增益分配率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □2010 . 低速→通常增益切换过渡                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P225 : 位置回路増益                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.0 s^-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 「212 悲波器时间常数                                                                                                                                                                                                 | 0.0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P227 : 位置回路微分时间常数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 us 🔨 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P212 : 低速增益切换规格1选择                                                                                                                                                                                           | 速度和偏差 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P229 : 速度前馈率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>10110 . 近に末山のシチナロ+2 40 + 2 02サ + 2</b>                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P230 : 速度前馈滤波器时间常数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                              | 无切换                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P213 : 低速增益切换处地时间                                                                                                                                                                                            | 10.0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P213 : 低壓增益切換后保持时间                                                                                                                                                                                           | 0.0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 手动                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PB滤波器设定方法选择                                                                                                                                                                                                  | 手zh ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              | 3-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 频谱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 「更新」「美闭」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 频谱                                                                                                                                                                                                           | 「更新」 关闭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Step3:低                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 速增益相关                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step4:                                                                                                                                                                                                       | 前馈相关                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Step3 : 低<br>☞ 实时伺服调整                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 速增益相关<br>- □ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step4:<br>医实时伺服调整                                                                                                                                                                                            | 前馈相关<br>- □ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step3 : 低<br>⑤ 实时伺服调整<br>调整增益选择 增益编号0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 速增益相关<br>×<br><sup>、 现在的增益编号</sup> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Step4           5           实时伺服调整           调整增益选择                                                                                                                                                          | 前馈相关<br>- □ ×<br><sub>现在的增益编号</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Step3:低<br>S 实时伺服调整<br>调整增益选择 增益编号0<br>ATLv Step1 Step2 Step3 Step4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 速增益相关<br>— □ ×<br><sub>现在的增益编号</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step4:<br>중 实时伺服调整<br>调整增益选择 增益编号0<br>ATLv Step1 Step2 Step3 Step4                                                                                                                                           | 前馈相关<br>- □ ×<br><sup>→</sup> <sup>现在的增益编号</sup> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Step3:低<br>实时伺服调整<br>调整增益选择 增益编号0<br>ATLv Step1 Step2 Step3 Step4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 速增益相关<br>- □ ×<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Step4:<br>Step4:<br>调整增益选择 增益编号0<br>ATLv Step1 Step2 Step3 Step4                                                                                                                                             | 前馈相关<br>- □ ×<br>• 现在的增益编号 0<br>• x1 0 x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Step3:低         「实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P219:速度回路比例增益/低速增益                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 速增益相关<br>- · ×<br>· <sup>·</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step4:         医实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P233:       情量前德案                                                                     | 前馈相关<br>- · ×<br>· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Step3:低         ⑤ 实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P219:速度回路比例增益/低速增益         P220:速度回路积分时间常数/低速增益                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 速增益相关<br>_ □ ×<br>_ □ x1<br>0<br>x1 0 x10<br>25<br>20.0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Step4:         國整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P233:       惯量前溃率         P233:       粘性摩擦前溃率                                                         | 前馈相关<br>- · ×<br>· 现在的增益编号 0<br>· x1 · x10<br>· 0.0 % · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step3:低         G 实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P219: 速度回路比例增益/低速增益         P220: 速度回路投分时间常数/低速增益         P221: 速度回路微分时间常数/低速增益                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 速增益相关<br>- · ×<br>· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step4:         四整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P233:       惯量前溃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃虑波器时间常数                         | 前馈相关<br>- ○ ×<br>→ 现在的增益编号 0<br>0<br>0.0 % ▼ ▲<br>0.0 % ▼ ▲<br>0.1 ms ▼ ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step3:低           • 实时伺服调整           调整增益选择           增益编号0           ATLv         Step1           Step2         Step3           P219:         速度回路比例增益/低速增益           P220:         速度回路比例增益/低速增益           P221:         速度回路微分时间常数/低速增益           P221:         速度回路微分时间常数/低速增益                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 速增益相关<br>- · ×<br>→ 现在的增益编号 0<br>· · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step4:         「● 实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P233:       情量前濃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃虑波器时间常数       | 前馈相关<br>- ○ ×<br>现在的增益编号 0<br>0 x1 0 x10<br>0.0 %<br>0.0 %<br>0.1 ms<br>▼ ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Step3:低         3         3         3         3         3         3         3         3         3         3         3         4         4         4         4         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                 | 速增益相关<br>— □ ×<br>— □ ×<br>— 现在的增益编号 0<br>0 x1 ○ x10<br>20.0 ms<br>0 us<br>0 us<br>0 us<br>0 us<br>0 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step4:         「「 实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P233:       情量前濃率         P233:       粘性摩擦前濃率         P234:       扭矩前溃虑波器时间常数       | 前馈相关<br>- □ ×<br>- □ ×<br>- □ ×<br>- □ ×<br>- □ ×<br>- □ · · ·<br>- □ · · · · · · · · · · · · ·<br>- □ · · · · · · · · · · · · · · · · · · |
| Step3:低                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 速增益相关<br>- · · ×<br>· 现在的增益编号 0<br>0 x1 · x10<br>20.0 ms · · · ·<br>0 us · · · ·<br>20.0 % · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Step4:         调整增益选择       增益编号0         ATLv       Step1       Step2       Step4         P233:       情量前溃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃滤波器时间常数                                     | 前馈相关<br>- □ ×<br>现在的增益编号 □ 0<br>0.0 % ▼ ▲<br>0.0 % ▼ ▲<br>0.1 ms ▼ ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Step3:低         3. 实时伺服调整         调整增益选择       增益编号0         ATLv Step1 Step2 Step3 Step4         P219:速度回路比例增益/低速增益         P220:速度回路积分时间常数/低速增益         P221:速度回路税分时间常数/低速增益         P222:速度回路比例增益分配率/低速增益         P222:並度回路增益/低速增益         P226:位置回路增益/低速增益         P227:位置回路增益/低速增益         P227:位置回路微分时间常数/低速增益         P225:停止中速波器微分系数                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 速增益相关<br>→ 现在的增益编号 0<br>◎ x1 ○ x10<br>20.0 ms ▼ ▲<br>0 us ▼ ▲<br>20.0 s <sup>-1</sup> 1 ▼ ▲<br>0 us ▼ ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step4:         國整增益选择       增益编号0         ATLv       Step1       Step2       Step3       Step4         P233:       信量前溃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃虑波器时间常数                         | 前馈相关<br>- □ ×<br>· 现在的增益编号 0<br>· · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Step3:低         38         湖臺增益选择         增益编号0         ATLv       Step1         ATLv       Step1         文書       Step2         Step1       Step2         Y       Step1         Y       Step2         Y       Step3         Y       Step3         Y       Step4         Y       Step3         Y       Step3         Y       Step4         Y       Step3         Y       Step4         Y       Step4         Y       Step3         Y       Step4         Y       Step4         Y       Step4         Y       Step4         Y       Step4         Y       Step3         Y       Step4         Y       St | 速增益相关<br>X<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step4:         调整增益选择       增益编号0         ATLv Step1 Step2 Step3 Step4         P233 : 惯里前溃率         P233 : 粘性摩擦前溃率         P234 : 扭矩前溃滤波器时间常数                                                                | 前馈相关<br>- ○ ×<br>→ 现在的增益编号 0<br>0 x1 ○ x10<br>0.0 %<br>0.0 %<br>▼ ▲<br>0.1 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step3:低            •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 速增益相关<br>现在的增益编号 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Step4:<br>调整增益选择 增益编号0<br>ATLv Step1 Step2 Step3 Step4<br>P233 : 惯量前溃挛<br>P234 : 扭矩前溃虑波器时间常数                                                                                                                 | 前馈相关                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Step3:低         3         929         1929         1929         1929         1929         1920         1920         1920         1921         1921         1921         1921         1921         1921         1921         1921         110         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         1111         1111                                                                                                                                        | j速增益相关<br>—   ×<br>—   ×<br>—   现在的增益编号   0<br>① x1 ○ x10<br>② x1 ○ x10<br>② x1 ○ x10<br>② x1 ○ x10<br>② x1 ○ x10<br>③ us<br>① us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Step4:         「● 实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2         P233:       情量前濃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃滤波器时间常数                               | 前馈相关<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step3:低            ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 速增益相关<br>→ 现在的增益编号 0<br>0 x1 0 x10<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Step4:         调整增益选择       增益编号0         ATLv       Step1       Step2       Step4         P233:       增量前溃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃虑波器时间常数         P254:       田矩前溃虑波器时间常数     | 前馈相关<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step3:低         3         3         3         3         3         3         3         3         3         3         3         4         3         4         4         4         4         4         4         4         5         5         5         6         5         6         5         6         10         11         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <tr td=""></tr>                                                                                                                                                                                                 | <ul> <li>速增益相关</li> <li>- · ×</li> <li>· 现在的增益编号 0</li> <li>0 x1 ○ x10</li> <li>225</li> <li>0 us</li> <li>1 0 us</li> <li< th=""><th>Step4:         调整增益选择       增益编号0         ATLv Step1 Step2 Step3 Step4         P233 : 惯量前溃率         P233 : 粘性摩擦前溃率         P234 : 扭矩前溃滤波器时间常数         PEB滤波器设定方法选择</th><th>前馈相关<br/>-</th></li<></ul> | Step4:         调整增益选择       增益编号0         ATLv Step1 Step2 Step3 Step4         P233 : 惯量前溃率         P233 : 粘性摩擦前溃率         P234 : 扭矩前溃滤波器时间常数         PEB滤波器设定方法选择                                           | 前馈相关<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Step3:低         3         3         3         3         3         3         4         4         4         4         5         5         5         4         4         4         4         4         4         5         5         5         6         5         7         16         5         17         17         16         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17                                                                                                                                                                                                               | ·       ·       ×         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Step4:         「● 实时伺服调整         调整增益选择       增益编号0         ATLv       Step1       Step2         P233:       情量前濃率         P233:       粘性摩擦前溃率         P234:       扭矩前溃虑波器时间常数         PEB應波器设定方法选择       频谱 | 前馈相关<br>- ○ ×<br>· 现在的增益编号 0<br>0 x1 0 x10<br>0.0 %<br>0.0 %<br>0.1 ms<br>▼ ▲<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                               |

●这里列出提升速度回路比例增益分配率的值时缩短了时间的示例。



●系过于提升速度回路比例增益分配率而产生超程(溢出)的波形。



●这里列出提升位置回路增益时缩短了时间的示例。



●这里列出提升速度前馈率时缩短了时间的示例。



●系过于提升速度前馈率而产生超程(溢出)的波形。



●这里列出提升惯量前馈率时缩短了时间的示例。



●系过于提升惯量前馈率而产生超程(溢出)的波形。



#### 4-2-1 马达动作声的抑制

通过调整"FB(反馈)滤波器频率""速度回路微分时间常数",可抑制马达动作时的响声。这里列出调整 这些参数的步骤。

以下情况下,FB 滤波器的调整与本节的内容稍许不同。请参照相应的章节。

| 要求高节拍时     |  |
|------------|--|
| 与负载的惯量比较大时 |  |
| 负载的刚性较低时   |  |

5-3 马达振动的抑制 6-3 FB 滤波器频率的设定

7-3 连接刚性低的机械时的参数变更

| 1 | "FB 滤波器频率"的调整                 | ☑ 实时伺服调整 - □ ×                                           |
|---|-------------------------------|----------------------------------------------------------|
|   |                               | 调整增益选择 增益编号0                                             |
|   | ①甲击<实时伺服调整>画面上的 ATLv 标        | ATLv Step1 Step2 Step3 Step4                             |
|   | 金, 在"FB 滤波器反正力法远洋"中远洋"于<br>动" | • x1 • x10                                               |
|   | 約。<br>(通过选择"手动"就可输λ下状[P342])  | 自整定水平调整 25 ▼ ▲                                           |
|   |                               | P214:速度回路比例增益 25                                         |
|   | ②使得"P342:FB 滤波器频率"的值比现在的      | P225:位置回路增益         20.0 s <sup>-</sup> 1                |
|   | 值(右图示例为1000Hz)减小。由此可抑制        | P231:惯量 0.0000 kgm <sup>2</sup> 2                        |
|   | 马达的动作声。                       | P232: 桁性館梁 0.0000 Nm/(rad/s)                             |
|   |                               | P342 : FB速波器频案 1000 Hz                                   |
|   | ※若下调过量,马达的响应性就会下降(参照          |                                                          |
|   | 节末的波形示例),并有可能在动作时及停           |                                                          |
|   | 止时产生振动。                       | FB:應波器设定方法选择 手动 v                                        |
|   |                               |                                                          |
|   |                               |                                                          |
| 2 | "速度回路微分时间常数"的调整               |                                                          |
|   |                               | 调整增益选择 增益编号0 项在的增益编号 0                                   |
|   | ①単击〈实时伺服调整〉画面上的 Step1 标       | ATLy Step1 Step2 Step3 Step4                             |
|   | 签。                            | □ 与低速增益(Step3)联动                                         |
|   | ⑦收"D916.                      | P214 : 速度回路比例增益 25 🔹 🔹                                   |
|   | 为备值(通堂设为"-10"~"-100"左         | P215:速度回路积分时间常数 20.0 ms ▼ ▲                              |
|   | 方)。由此可抑制马达的动作声。               | P216:速度回路微分时间常数     0 us       P217:速度回路比例偿益分配容     0.0% |
|   |                               | P225: 位置回路增益 20.0 s <sup>-1</sup> 【 ▲                    |
|   | ※若过于下调值(负值大),就会产生振动。          | P227:位置回路微分时间常数 0 us                                     |
|   |                               | P229:速度前馈率 80.0% ▼ ▲ P230:速度前馈率 0.2 mm                   |
|   |                               |                                                          |
|   |                               |                                                          |
|   |                               | PB滤波器设定方法选择                                              |
|   |                               |                                                          |
|   |                               | 奥纳 天闭                                                    |
| 3 | 设定的值决定后,单击 更新 按钮,使得           |                                                          |
|   | 参数反映到本驱动器中。                   | 手动                                                       |
|   | 若不予更新,经过调整的数据就不会被反映           |                                                          |
|   | <u>到本驱动器中而消失</u> 。            |                                                          |

●下图表示过于下调 FB 滤波器频率时的波形。



#### 4-2-2 抑制马达停止时、停止中产生的振动

在马达停止时(停止的瞬间)产生不可忽略的大振动时,调整"速度回路微分时间常数/低速增益"以抑 制停止时产生的振动。在马达停止中(一直停止期间)也仍然产生那样的大振动时,调整"停止中滤波器 时间常数和微分系数"以抑制产生的振动。

#### ●抑制马达停止时产生的振动

| 1 | 速度回路微分时间常数/低速增益的调整      | 🖸 实时伺服调整                | – 🗆 X       | ٦ |
|---|-------------------------|-------------------------|-------------|---|
|   | ①选择<实时伺服调整>画面上的 Step3 的 | 调整增益选择 增益编号0            | ∨ 现在的增益编号 0 | 0 |
|   | 标签。                     |                         | ● x1 ○ x10  | ) |
|   | ⑦调整"P221. 速度同路微分时间堂数/任速 | P219 : 速度回路比例增益/低速增益    | 25          | ] |
|   | 尚去"的店                   | P220 : 速度回路积分时间常数/低速增益  | 20.0 ms 🔍 🔺 | L |
|   | <b>增</b> 血 п111。        | P221 : 速度回路微分时间常数/低速增益  | 0 us 🔨 🔺    | J |
|   |                         | P222 : 速度回路比例增益分配率/低速增益 | 0.0 %       | Γ |
|   |                         | P226 : 位置回路増益/低速増益      | 20.0 s^-1   |   |
|   |                         | P227 : 位置回路微分时间常数/低速増益  | 0 us 🗸      |   |
|   |                         | P235 : 停止中滤波器微分系数       | 1.0         |   |
|   |                         | P235 : 停止中滤波器时间常数       | 0.2 ms      |   |
|   |                         |                         |             |   |
|   |                         | PB滤波器设定方法选择             | 手动          |   |
|   |                         | 频谱                      | ● 更新 关闭     | ] |

**2** 一边看着<示波器>画面上显示的状态,一边找出"适当值"(<示波器>画面的启动请参照 2 - 1 - 3 节 第 5 项)。



设定的值(适当值)决定后,单击 更新
 按钮,使得参数反映到本驱动器中。
 若不予更新,经过调整的数据就不会被反映
 到本驱动器中而消失。

手动

✓
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
<

#### ●抑制马达停止中产生的振动

| 1 | 停止中滤波器时间常数和微分系数的调整                  | 🖸 实时伺服调整                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | – 🗆 X      |
|---|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   | ①在 Sten3 标 <b>次调整</b> "P235. 停止中滤波哭 | 调整增益选择 增益编号0 ジ 现在的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 增益编号 0     |
|   | 时间常数"以抑制振动。                         | ATLv Step1 Step2 Step3 Step4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|   |                                     | P219 : 速度回路比例增益/低速增益 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • x1 · x10 |
|   | 将虽然留卜少量振动,但振动最得到抑制的<br>此太值设为"话当值"   | P220: 速度回路积分时间常数/低速增益         20.0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ▼ ▲        |
|   | <u> </u>                            | P221:         速度回路微分时间常数/低速增益         0         us           P222:         速度回路比例增益分配率/低速增益         0.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|   | ②通过"P235:停止中滤波器微分系数"进行              | P226: 位置回路增益/低速增益 20.0 s <sup>-</sup> -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|   | 微调整。将振动最得到抑制的状态值设为<br>"话当店"         | P225:         位出目時間が月3月時未熟/         回話         0         13           P235:         停止中滤波器微分系数         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 | V A        |
|   |                                     | P235 : 停止中滤波器时间常数 0.2 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|   |                                     | PB滤波器设定方法选择     手动                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŷ          |
|   |                                     | 频谱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 町 更新 关闭    |
|   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |



# 第5章 高节拍时的调整

在对马达要求高节拍时,基于第3章及第4章的调整中有可能无法满足目标节拍。这种情况下就需要追 加进行本章的调整。

本章中的调整事例) 高响应马达: HD140-160-LS 最大速度=6 [rps] 转子惯量=0.0029 [kg·m<sup>2</sup>] 机械系统负载惯量=0.0023 [kg·m<sup>2</sup>]

#### 5-1 加速时间、减速时间和S字时间1,2的设定

本例中通过在 3-2 节的测试运行时设定的"①加速时间、减速时间的缩短"和"②将 S 字时间 1、 2 设 定为加速时间、减速时间的一半左右"来缩短定位时间。

由于加速时间、减速时间的缩短,实际扭矩指令值的峰值将会增大,因而要注意避免相对于马达成为过负载(参照3-3节)。



### 5-2 扭矩前馈滤波器时间常数的调整

通过提升扭矩前馈滤波器时间常数的值,有可能缩短定位时间。若过于提升数值,就会产生超程(溢出), 要予以注意。

#### 1 扭矩前馈滤波器时间常数的调整

①请在<主工具条>画面上单击 调整功能 标签,再单击 实时伺服调整 按钮。出现< 实时伺服调整>画面。单击 Step4 的标 签。

| ATLv Step1 Step2 Step3 Step4 |        |            |
|------------------------------|--------|------------|
|                              |        | ● x1 ○ x10 |
| P233 : 惯量前馈率                 | 0.0 %  | ▼ ▲        |
| P233 : 粘性摩擦前馈率               | 0.0 %  | ▼▲         |
| P234 : 扭矩前馈滤波器时间常数           | 0.1 ms | ▼ ▲        |

②一边看着波形,一边渐渐地稍许提升"扭矩前馈滤波器时间常数"的值。



※若过于提升数值,就会产生超程,要予以注意。

第5章

#### 5-3 马达振动的抑制

通过调整"P342:FB(反馈)滤波器频率"及其次数([P342:FB 滤波器次数]),有可能抑制马达的振动。 这里列出调整的参考值。

| 1 | "                       |                              |                         |
|---|-------------------------|------------------------------|-------------------------|
| - | <u>入时间旅闲正 画面印显示</u>     | ☑ 实时伺服调整                     | – 🗆 ×                   |
|   |                         | 调整增益选择 增益编号0                 | > 现在的增益编号 0             |
|   | ① 〈请仕〈王丄具条〉画面上甲击 [调整功能] |                              |                         |
|   | 标签,再单击 实时伺服调整 按钮。       | ATLv Step1 Step2 Step3 Step4 |                         |
|   | 山和/立时伺服调敕/画面            |                              | ● x1 ● x10              |
|   | 田境\关时问旅师昰/画田。           | 自整定水平调整                      | 25                      |
|   |                         | P214 : 速度回路比例增益              | 25                      |
|   | ②选择 ATLv 标签。            | P215 : 速度回路积分时间常数            | 20.0 ms                 |
|   |                         | P225 : 位置回路増益                | 20.0 s^-1               |
|   |                         | P231 : 惯里                    | 0.0000 kgm <sup>2</sup> |
|   |                         | P232 : 粘性摩擦                  | 0.0000 Nm/(rad/s)       |
|   |                         | P342 : PB滤波器次数 :             | 1次 ~                    |
|   |                         | P342 : FB滤波器频率               | 1000 Hz                 |
|   |                         |                              |                         |
|   |                         |                              |                         |
|   |                         | PB滤波器设定方法选择                  | 手动 、                    |
|   |                         | 频谱                           | 更新 关闭                   |

#### 

通过只对其中一方、或者两方(顺序任意)进行调整,有可能抑制马达的振动。

● [P342: FB 滤波器次数] 的调整 通常,次数已被设定为"1次"。请尝试选择"2次",确认振动(实际扭矩指令值与位置偏差的波 形)是否收敛。

● [P342: FB 滤波器频率] 的调整 作为初期值已输入 "1000"。对此请尝试输入 "1500" ~ "2000" 之间的任意值(通常的 1.5~2 倍),确认振动是否收敛。

※一边看着实际扭矩指令值与位置偏差的波形一边进行调整,请单击2-1-3节第5项中的 解析功能 标签,一边显示<示波器>画面一边进行调整。


在所连接的机械系统负载的转子惯量比(=负载惯量相对于马达惯量(转子惯量)的比率)较大(如150 倍以上)时,下述调整与通常不同。

第3章: 自整定、自整定水平调整、定位时间的缩短 第4章: 为抑制马达动作声的调整

●有可能难以执行自整定,因而需要下调"运行比率"。

●进行自整定水平调整和实时伺服调整,再调整S字时间1以缩短定位时间。

●自整定的结果,设定的各增益成为比通常大的值,马达的动作声增大。调整 FB 滤波器频率以抑制动作声。

# 6-1 自整定的设定

| 1 | <ul> <li>自整定的执行</li> <li>①请按照 3 - 1 - 4 节所述的步骤,显示&lt;自整定&gt;画面,设定对应转子惯量比的"惯量倍率选择"。</li> <li>②请确认在预想的动作范围内没有障碍物等。若没有问题就单击 开始 按钮。</li> <li>※与3 - 1 - 4 节一样,会出现提请注意的画面,自整定正常完成时,状态中会显示"END",整定结果则会显示在画面的右下。</li> <li>③为了完成自整定,请单击 关闭。</li> </ul> | 数据编辑 状态显示 解析功能 调整功能 远         自诊断       自整定         执行驱动器的自诊断       执行自整定。         功能,显示结果。       文田<br>同路增益。         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         ()       ()         () |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | ※与3-1-4节一样,会出现请求再启动本驱动者                                                                                                                                                                                                                       | 器的画面。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

× 动作参数接收 请下调<自整定>画面内的"运行比率"(初  $\odot$ 期值=0.30)的值,并再次执行自整定。 动作参数设定 法国田注 整定增益选择 増益编号0 ¥ 动作方向选择 往返 ~ 运行比率 0.30 0.00~1.00 设定马达的动作里和速度的比率。

第6章

#### 6-2-1 自整定水平调整

| 1 | 自整定水平调整的执行                                                             | ☑ 实时伺服调整                                                       | - 🗆 X                                                     |
|---|------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|
|   | 按照3-6的步骤,执行自整定水平调整。                                                    | 调整增益选择 增益编号0                                                   | → 现在的增益编号0                                                |
|   | 这里列出在尝试将"自整定水平调整"的<br>值改变为"300""750""1500""3000"                       | http://stepi stepi stepi stepi                                 | <ul> <li>⊙ x1 ○ x10</li> <li>25</li> <li>25</li> </ul>    |
|   | "5400"时的<示波器>画面。按照顺序响<br>应性提高,并向着定位时间短的波形变化。                           | P215 : 速度回路积分时间常数<br>P225 : 位置回路增益<br>P231 : 惯量<br>P232 : 粘性摩擦 | 20.0 ms<br>20.0 s^-1<br>0.0000 kgm^2<br>0.0000 Nm/(rad/s) |
|   | ※本章中的调整事例)                                                             | P342 : PB滤波器次数                                                 | 1次 ~                                                      |
|   | 使用马达: DD160-146-LS<br>最大速度=4 [rps]<br>转子惯量=0.0074 [kg·m <sup>2</sup> ] | P342 : FB滤波器频率                                                 | 1000 Hz                                                   |
|   | 机械系统负载惯量=11.7 [kg·m²]<br>:转子惯量比=11.7/0.0074=1,581 倍                    | PB:悲波器设定方法选择<br>频谱                                             | 手动     >       重新     关闭                                  |
|   |                                                                        |                                                                |                                                           |

※"自整定水平调整"的值会根据转子惯量比而不同。请一边确认<示波器>画面,一边进行调整,以使 定位完成时间满足目标节拍。





第6章



6-2-2 实时伺服调整

在自整定水平调整中无法满足目标节拍时,请进行第4章的实时伺服调整。有可能进一步缩短定位时间。

| 1 | FB 滤波器次数、频率的设定                                                                                                                                                       |                                 | 🖸 实时伺服调整                                                                                                                         | -                                                                                                   | X     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
|   | ①按照4-1节的步骤,显示<实时<br>画面,单击 ATLv 标签。                                                                                                                                   | 伺服调整>                           | 调整增益选择 增益编号0<br>ATLv Step1 Step2 Step3                                                                                           | → 現在的増溢编<br>Step4                                                                                   | 문     |
|   | <ul> <li>②作为参考值,按下表所示方式语</li> <li>"P342:FB滤波器次数"的选择</li> <li>"P342:FB滤波器频率"的值。</li> <li>※表中所示仅为参考值,有时需要</li> <li>根据马达发出的动作声的大小和</li> <li>但是,请勿设定未满100Hz的值</li> </ul> | 设定<br>译和<br>要在设定后<br>肖许调低。<br>。 | 自整定水平调整<br>P214 : 速度回路比例增益<br>P215 : 速度回路积分时间常数<br>P225 : 位置回路增益<br>P231 : 惯里<br>P232 : 粘性摩擦<br>P342 : FB透波器次数<br>P342 : FB透波器频率 | 25<br>25<br>20.0 ms<br>20.0 s ~ -1<br>0.0000 kgm <sup>2</sup><br>0.0000 Nm/(rad/s)<br>1次<br>1000 Hz | v     |
|   |                                                                                                                                                                      |                                 | PB滤波器设定方法选择                                                                                                                      | 手动                                                                                                  | ~     |
|   |                                                                                                                                                                      |                                 | 频谱                                                                                                                               | ×                                                                                                   | 更新 关闭 |
|   |                                                                                                                                                                      |                                 |                                                                                                                                  |                                                                                                     |       |
|   | 转子惯量比                                                                                                                                                                | P342: FB                        | 滤波器次数选择                                                                                                                          | P342: FB 滤波器频                                                                                       | 河率    |
|   | 300倍以上~未满500倍                                                                                                                                                        |                                 | 2次                                                                                                                               | 330 [Hz]                                                                                            |       |
|   | 500倍以上~未满1000倍                                                                                                                                                       |                                 | 2次                                                                                                                               | 200 [Hz]                                                                                            |       |
|   | 1000倍以上                                                                                                                                                              |                                 | 2次                                                                                                                               | 100 [Hz]                                                                                            |       |

若作为参考值将 S 字时间 1 设定为加速时间、减速时间的 1~2 成左右,则有可能在加速开始时、减速完成时机械系统负载中产生的冲击得到缓解。



# 第7章 资料

# 7-1 相关参数一览

0

2

3

P301 P212

P242

P272

P302

下面列出与试运行及调整相关的参数。也请用户结合参照使用说明书。

|   | 参数编号 | 参数名称                 | 初期值       | 单位                |
|---|------|----------------------|-----------|-------------------|
| ľ | P066 | 编码器输入方向切换            | 0         |                   |
|   |      |                      |           | ·                 |
| ſ | 参数编号 | 参数名称                 | 初期值       | 单位                |
| ľ | D007 | 磁扭位置伯孜姓则仍合           | 0         | FB pulse          |
|   | P087 | 做                    | 0         | (=feedback pulse) |
| - |      |                      |           |                   |
|   | 参数编号 | 参数名称                 | 初期值       | 单位                |
|   | P160 | 惯量、粘性摩擦范围选择          | 4         |                   |
|   |      |                      |           |                   |
|   | 参数编号 | 参数名称                 | 初期值       | 单位                |
|   | P161 | 动作方向选择               | 0         |                   |
|   | P161 | 位置单位选择               | 1         | deg               |
| Ī | P161 | 位置小数单位选择             | 3         |                   |
| - |      |                      |           |                   |
|   | 参数编号 | 参数名称                 | 初期值       | 单位                |
|   | D176 | 位置伯差过十处测时冲导十步        | 1 000 000 | FB pulse          |
|   | P170 | 位且佣左过入位则脉冲取入值        | 1,000,000 | (=feedback pulse) |
|   |      |                      |           |                   |
|   | 参数编号 | 参数名称                 | 初期值       | 单位                |
|   | P179 | S 字时间 2              | 3.0       | ms                |
| - |      |                      |           |                   |
|   | 参数编号 | 参数名称                 | 初期值       | 单位                |
|   | D900 | 增益切换用                | 0.0       | ma                |
|   | P200 | 速度检测滤波器时间常数          | 0.0       | liis              |
|   | P200 | 增益切换用                | 0.0       | ms                |
|   | 1200 | 位置偏差检测滤波器时间常数        | 0.0       | ins               |
|   |      |                      |           |                   |
| ÷ | 参数编号 | 参数名称                 | 初期值       | 单位                |
|   | P210 |                      |           |                   |
|   | P240 | 低速增益切换速度             | 1,000     | rom               |
|   | P270 |                      |           | - P.m             |
|   | P300 |                      |           |                   |
|   | P211 | -                    |           |                   |
|   | P241 | 低速增益切换偏差脉冲           | 10        | FB pulse          |
|   | P271 | [K处有血 01入 [m 王 ] [M] |           | (=teedback pulse) |

5.0

ms

通常→低速增益切换

过渡滤波器时间常数

| 增益编号 | 参数编号 | 参数名称                                      | 初期值  | 单位      |
|------|------|-------------------------------------------|------|---------|
| 0    | P212 |                                           |      |         |
| 1    | P242 | 低速→通常增益切换                                 | 0.0  |         |
| 2    | P272 | 过渡滤波器时间常数                                 | 0.0  | ms      |
| 3    | P302 | -                                         |      |         |
| 0    | P212 |                                           |      |         |
| 1    | P242 |                                           | 0    |         |
| 2    | P272 | 低迷增益切拱规格 1 选择                             | 0    |         |
| 3    | P302 | -                                         |      |         |
| 0    | P212 |                                           |      |         |
| 1    | P242 |                                           |      |         |
| 2    | P272 | 低速增益切换规格 2 选择                             | 0    |         |
| 3    | P302 |                                           |      |         |
| 0    | P213 |                                           |      |         |
| 1    | P243 |                                           | 10.0 |         |
| 2    | P273 | 低 速 增 益 切 换 延 迟 时 间                       | 10.0 | ms      |
| 3    | P303 |                                           |      |         |
| 0    | P213 |                                           |      |         |
| 1    | P243 |                                           |      |         |
| 2    | P273 | 低速增益切换后保持时间                               | 0.0  | ms      |
| 3    | P303 |                                           |      |         |
| 0    | P214 |                                           |      |         |
| 1    | P244 | 速度回路比例增益                                  |      |         |
| 2    | P274 |                                           | 25   |         |
| 3    | P304 |                                           |      |         |
| 0    | P215 |                                           |      |         |
| 1    | P245 |                                           | 20.0 |         |
| 2    | P275 | 速度回路积分时间常数                                |      | ms      |
| 3    | P305 |                                           |      |         |
| 0    | P216 |                                           |      |         |
| 1    | P246 |                                           |      |         |
| 2    | P276 | 速度回路微分时间常数                                | 0    | μs      |
| 3    | P306 |                                           |      |         |
| 0    | P217 |                                           |      |         |
| 1    | P247 |                                           |      | <i></i> |
| 2    | P277 | ■                                         | 0.0  | %       |
| 3    | P307 | 1                                         |      |         |
| 0    | P218 |                                           |      |         |
| 1    | P248 |                                           | 0.0  | 0/      |
| 2    | P278 | 迷                                         | 0.0  | %       |
| 3    | P308 | 1                                         |      |         |
| 0    | P219 |                                           |      |         |
| 1    | P249 | 低油油库同收比烟罐光                                | 05   |         |
| 2    | P279 | [[[[[[[[[[]]][[[[]]]]]]]][[[[]]]]][[[]]]] | 29   |         |
| 3    | P309 | 7                                         |      |         |
| 0    | P220 |                                           |      |         |
| 1    | P250 | (1) 法法庭回收和八旦纪光型                           | 00.0 |         |
| 2    | P280 | 低迷迷度凹路积分时间吊颈                              | 20.0 | ms      |
| 3    | P310 | 1                                         |      |         |

| 增益编号 | 参数编号 | 参数名称                                   | 初期值  | 单位 |
|------|------|----------------------------------------|------|----|
| 0    | P221 |                                        |      |    |
| 1    | P251 |                                        |      |    |
| 2    | P281 | 低速速度回路微分时间常数                           | 0    | μs |
| 3    | P311 |                                        |      |    |
| 0    | P222 |                                        |      |    |
| 1    | P252 |                                        |      |    |
| 2    | P282 | 低速速度回路比例增益分配率                          | 0.0  | %  |
| 3    | P312 |                                        |      |    |
| 0    | P223 |                                        |      |    |
| 1    | P253 |                                        |      |    |
| 2    | P283 | 低速速度回路微分增益分配率                          | 0.0  | %  |
| 3    | P313 |                                        |      |    |
| 0    | P224 |                                        |      |    |
| 1    | P254 |                                        | 0    | 0/ |
| 2    | P284 | 速度凹路积分扭矩限制值                            | 0    | %  |
| 3    | P314 |                                        |      |    |
| 0    | P225 |                                        |      |    |
| 1    | P255 |                                        |      | -1 |
| 2    | P285 | - 位直回路增益                               | 20.0 | S  |
| 3    | P315 |                                        |      |    |
| 0    | P226 |                                        |      |    |
| 1    | P256 |                                        | 20.0 | -1 |
| 2    | P286 | 低速位置回路增益                               |      | S  |
| 3    | P316 |                                        |      |    |
| 0    | P227 |                                        |      |    |
| 1    | P257 | -<br>                                  | 0    |    |
| 2    | P287 | 1                                      | 0    | μs |
| 3    | P317 |                                        |      |    |
| 0    | P227 |                                        |      |    |
| 1    | P257 | 低速位罢园收澧八时间营粉                           | 0    |    |
| 2    | P287 | 低迷位直凹路倾力的间带致                           | 0    | μS |
| 3    | P317 |                                        |      |    |
| 0    | P228 |                                        |      |    |
| 1    | P258 | (新図)                                   |      |    |
| 2    | P288 |                                        |      |    |
| 3    | P318 |                                        |      |    |
| 0    | P228 |                                        |      |    |
| 1    | P258 | 位置指令延迟时间                               | 0.0  | mc |
| 2    | P288 | 四山山、大田山                                | 0.0  | шэ |
| 3    | P318 |                                        |      |    |
| 0    | P229 |                                        |      |    |
| 1    | P259 | <br>读度前/                               | 80.0 | %  |
| 2    | P289 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 80.0 | /0 |
| 3    | P319 |                                        |      |    |
| 0    | P229 |                                        |      |    |
| 1    | P259 | 读度前偿 移位索                               | 0.0  | %  |
| 2    | P289 | 心区的风 沙巴平                               | 0.0  | /0 |
| 3    | P319 |                                        |      |    |

| 增益编号 | 参数编号 | 参数名称                                    | 初期值 | 单位                       |
|------|------|-----------------------------------------|-----|--------------------------|
| 0    | P230 |                                         |     |                          |
| 1    | P260 |                                         | 0.0 |                          |
| 2    | P290 | - · · · · · · · · · · · · · · · · · · · | 0.2 | ms                       |
| 3    | P320 |                                         |     |                          |
| 0    | P231 |                                         |     | 1 2                      |
| 1    | P261 |                                         |     | kg•m <sup>*</sup>        |
| 2    | P291 | -                                       | 0   | (氾固可仕 [P160]<br>由いウン*    |
| 3    | P321 |                                         |     | 甲以正)                     |
| 0    | P232 |                                         |     |                          |
| 1    | P262 |                                         | 0   | (N・m)/s (Nm/rad・s)       |
| 2    | P292 | 枯性摩擦                                    | 0   | (氾固可仕 [P160]<br>由:n:c) * |
| 3    | P322 |                                         |     | 甲以足)                     |
| 0    | P233 |                                         |     |                          |
| 1    | P263 |                                         | 0.0 | 0/                       |
| 2    | P293 | - 仮里則饭卒                                 | 0.0 | %                        |
| 3    | P323 |                                         |     |                          |
| 0    | P233 |                                         |     |                          |
| 1    | P263 | 粘性摩擦前馈率                                 | 0.0 | 0/                       |
| 2    | P293 |                                         |     | %                        |
| 3    | P323 |                                         |     |                          |
| 0    | P234 |                                         |     |                          |
| 1    | P264 |                                         | 0.1 |                          |
| 2    | P294 | —————————————————————————————————————   |     | ms                       |
| 3    | P324 |                                         |     |                          |
| 0    | P235 |                                         |     |                          |
| 1    | P265 | 信止由滤油限油八至粉                              | 1.0 |                          |
| 2    | P295 | 一 停止中滤波奋阀方杀数                            |     |                          |
| 3    | P325 |                                         |     |                          |
| 0    | P235 |                                         |     |                          |
| 1    | P265 | 信止由滤波器时间常数                              | 0.2 | ma                       |
| 2    | P295 | 停止中心波奋时间带致                              | 0.2 | IIIS                     |
| 3    | P325 |                                         |     |                          |
| 0    | P236 |                                         |     |                          |
| 1    | P266 |                                         | 0   | Ha                       |
| 2    | P296 |                                         | 0   | 11Z                      |
| 3    | P326 |                                         |     |                          |
| 0    | P236 |                                         |     |                          |
| 1    | P266 | 临油油冲哭带声家                                | 0   | 0/.                      |
| 2    | P296 | 四以又1/20以入前 [7] 见于                       | 0   | /0                       |
| 3    | P326 |                                         |     |                          |
| 0    | P236 |                                         |     |                          |
| 1    | P266 | 临油油架运商                                  | 0   | -dR                      |
| 2    | P296 | 1日以12位以前不过                              | 0   | uD                       |
| 3    | P326 |                                         |     |                          |

※这些单位系其马达为τDISC马达时。

|     | 参数编号           | 参数名称                      | 初期值          | 单位       |
|-----|----------------|---------------------------|--------------|----------|
|     | P331           | 陷波滤波器中心频率1                | 0            | Hz       |
|     | P331           | 陷波滤波器带宽率1                 | 0            | %        |
|     | P331           | 陷波滤波器深度1                  | 0            | -dB      |
|     | P332           | 陷波滤波器中心频率 2               | 0            | Hz       |
|     | P332           | 陷波滤波器带宽率 2                | 0            | %        |
|     | P332           | 陷波滤波器深度 2                 | 0            | -dB      |
|     | P333           | 陷波滤波器中心频率 3               | 0            | Hz       |
|     | P333           | 陷波滤波器带宽率 3                | 0            | %        |
|     | P333           | 陷波滤波器深度 3                 | 0            | -dB      |
|     | P334           | 陷波滤波器中心频率 4               | 0            | Hz       |
|     | P334           | 临波滤波器带宽率 4                | 0            | %        |
|     | P334           | 路波滤波器深度 4                 | 0            | -dB      |
|     |                |                           | -            |          |
|     | 参数编号           | <u> </u>                  | 初期信          | 单位       |
|     | 多效病 J<br>D3/19 |                           | 0            | <u> </u> |
|     | D242           | 反映滤波器频率                   | 1000         | На       |
|     | 1 042          | 及顷巡び番频平                   | 1000         | 112      |
|     | 会粉炉口           | 会 粉 勾 秒                   | <u>対</u> 期/古 | 举合       |
|     | <u> </u>       | <u> </u>                  | <u> </u>     | <u> </u> |
|     | P380           | 做极检测扭矩限制值                 | 200          | %        |
|     | P381           | 做收位测理金 I                  | 80           |          |
|     | P382           | 做                         | 200.0        | -1<br>-1 |
|     | P383           | 做收位测增量 2<br>磁报 校测 全 走 志 国 | 20           | S        |
|     | P384           | 燃放位测元风氾围                  | 5.0          | aeg      |
|     | P385           | 磁极位测滤波 番 次 级 远 择          | 0            |          |
|     | P385           | 做收位测滤波                    | 2000         | HZ       |
|     | P 380          | 停滞别扭起<br>位遮期扣短促挂时间        | 0            | %        |
|     | P 380          | 一                         | 0.00         | S OV     |
|     | P 387          | 磁极位测加程度小值                 | 0            | %        |
|     | F 307          | 磁放应测扭起表颅杆式起拜              | 0            |          |
|     | ムツルウロ          |                           |              |          |
|     | 参数编号           | 参数名称                      | 初期值          | - 甲位     |
|     | P470           | PLS SEL0 S 字时间 1          | 10.0         | ms       |
|     | -              |                           | -            |          |
| SEL | 参数编号           | 参数名称                      | 初期值          | 单位       |
| 0   | P517           |                           |              |          |
| 1   | P524           |                           |              |          |
| 2   | P531           |                           |              |          |
| 3   | P538           | 完位完成信号选择                  | 0            |          |
| 4   | P545           | 无世光风旧了远叶                  | 0            |          |
| 5   | P552           |                           |              |          |
| 6   | P559           |                           |              |          |
| 7   | P566           |                           |              |          |
| 0   | P517           |                           |              |          |
| 1   | P524           |                           |              |          |
| 2   | P531           |                           |              |          |
| 3   | P538           |                           | 0            |          |
| 4   | P545           | 「日」皿「別町「フ」火山「干            | U            |          |
| 5   | P552           |                           |              |          |
| 6   | P559           |                           |              |          |

P566

| SEL | 参数编号 | 参数名称        | 初期值   | 单位            |
|-----|------|-------------|-------|---------------|
| 0   | P517 |             |       |               |
| 1   | P524 |             |       |               |
| 2   | P531 |             |       |               |
| 3   | P538 | 超程规格选择      | 0     |               |
| 4   | P545 |             | 0     |               |
| 5   | P552 |             |       |               |
| 6   | P559 |             |       |               |
| 7   | P566 |             |       |               |
| 0   | P518 |             |       |               |
| 1   | P525 |             |       |               |
| 2   | P532 |             |       |               |
| 3   | P539 | 加油其准油府      | 0     | (基于 [P161] 的设 |
| 4   | P546 | 加迷茎推迷皮      | 0     | 定)/s          |
| 5   | P553 |             |       |               |
| 6   | P560 |             |       |               |
| 7   | P567 |             |       |               |
| 0   | P519 |             |       |               |
| 1   | P526 | 减速基准速度      |       |               |
| 2   | P533 |             | 0     |               |
| 3   | P540 |             |       | (基于 [P161] 的设 |
| 4   | P547 |             |       | 定)/s          |
| 5   | P554 |             |       |               |
| 6   | P561 |             |       |               |
| 7   | P568 |             |       |               |
| 0   | P520 |             |       |               |
| 1   | P527 |             | 500.0 |               |
| 2   | P534 |             |       |               |
| 3   | P541 | 加速时间        |       | ms            |
| 4   | P548 |             |       |               |
| 5   | P555 |             |       |               |
| 6   | P562 |             |       |               |
| 7   | P569 |             |       |               |
| 0   | P521 |             |       |               |
| 1   | P528 |             |       |               |
| 2   | P535 |             |       |               |
| 3   | P542 | 减速时间        | 500.0 | ms            |
| 4   | P549 |             |       |               |
| 5   | P556 |             |       |               |
| 6   | P563 |             |       |               |
| 7   | P570 |             |       |               |
| 0   | P522 |             |       |               |
|     | P529 |             |       |               |
| 2   | P536 |             |       |               |
| 3   | P543 | S 字时间 1     | 10.0  | ms            |
| 4   | P550 | · · · · · - | _     |               |
| 5   | P557 |             |       |               |
| 6   | P564 |             |       |               |
| 7   | P571 |             |       |               |

| SEL | 参数编号 | 参数名称    | 初期值   | 单位 |
|-----|------|---------|-------|----|
| 0   | P523 |         |       |    |
| 1   | P530 |         |       |    |
| 2   | P537 |         |       |    |
| 3   | P544 | 机炉用出店   | 200_0 | 0/ |
| 4   | P551 | 加水已和加水市 | 300.0 | 70 |
| 5   | P558 |         |       |    |
| 6   | P565 |         |       |    |
| 7   | P572 |         |       |    |

| 参数编号 | 参数名称   | 初期值     | 单位            |
|------|--------|---------|---------------|
| P573 | 寸动速度 0 |         |               |
| P574 | 寸动速度1  |         |               |
| P575 | 寸动速度2  |         |               |
| P576 | 寸动速度 3 | 10000 * | (基于 [P161] 的设 |
| P577 | 寸动速度 4 | 10000   | 定)/s          |
| P578 | 寸动速度 5 |         |               |
| P579 | 寸动速度 6 |         |               |
| P580 | 寸动速度 7 |         |               |

※此初期值系马达为τDISC马达时。

| 参数编号 | 参数名称      | 初期值  | 单位 |
|------|-----------|------|----|
| P601 | 自整定动作方向   | 0    |    |
| P601 | 自整定测试运行比率 | 0.30 | -  |
| P601 | 自整定最大扭矩   | 100  | %  |
| P601 | 自整定惯量倍率选择 | 0    |    |

| 参数编号 | 参数名称        | 初期值   | 单位 |
|------|-------------|-------|----|
| P604 | 测试运行 开始位置指定 | 0     |    |
| P604 | 测试运行动作方向    | 0     |    |
| P604 | 测试运行 SEL 选择 | 0     |    |
| P604 | 测试运行停止时间    | 1.000 | S  |

| 参数编号 | 参数名称         | 初期值 | 单位           |
|------|--------------|-----|--------------|
| P605 | 测试运行开始位置     | 0   | 其工[D161]的识空  |
| P606 | 测试运行定位量      | 0   | 坐」[[101] 时以足 |
| P607 | 测试运行定位速度     | 0   | (基于[P161]的设  |
| P608 | 测试运行开始位置移动速度 | 0   | 定)/s         |

# 下述 2 个参数群只限于 HB、HD、HE 类型使用

| NET SEL | 参数编号 | 参数名称              | 初期值 | 单位 |
|---------|------|-------------------|-----|----|
| 0       | P820 |                   |     |    |
| 1       | P830 |                   |     |    |
| 2       | P840 |                   |     |    |
| 3       | P850 | 描光绾早选场            | 0   |    |
| 4       | P860 | · 恒· 皿· 狮 与 处 1 丰 | 0   |    |
| 5       | P870 |                   |     |    |
| 6       | P880 |                   |     |    |
| 7       | P890 |                   |     |    |

| NET SEL | 参数编号 | 参数名称        | 初期值 | 单位   |
|---------|------|-------------|-----|------|
| 0       | P823 |             |     |      |
| 1       | P833 |             |     |      |
| 2       | P843 |             |     |      |
| 3       | P853 | S 今时间 1     | 10  | ma   |
| 4       | P863 | 2 1-11 II I | 10  | IIIS |
| 5       | P873 |             |     |      |
| 6       | P883 |             |     |      |
| 7       | P893 |             |     |      |





※本图的参数编号假设增益编号 0、SEL0 而予以描述。

在连接刚性低(下称"低刚性")的机械而运行时,在进行 2-2 节的试运行前需要变更参数。尚未变更 时,有可能因机械上产生的振动、摇晃而频繁引发警报,或导致包括马达在内的整个机构大幅度摇晃。

7-3-1 所谓低刚性的机械

以下所示的机械可以说是"刚性低"的机械。

- ●马达与负载(机械)间、或负载与负载间有轴的
- ●马达与负载间有联轴器的
- ●负载的形状为格子状的
- ●马达的设置台脆弱的

#### 7-3-2 低刚性时的变更

请从初期值变更以下参数。

[位置偏差过大检测脉冲最大值]

有可能在调整中产生位置偏差过大的警报。请将以下计算值作为参考值以进行变更。

| 参数编号 | 参数名称          | 设定值   | 单位                            |
|------|---------------|-------|-------------------------------|
| P176 | 位置偏差过大检测脉冲最大值 | 下述计算值 | FB pulse<br>(=feedback pulse) |

计算值=(编码器脉冲数 [P061] ×马达额定速度 [P014] ×1.2)/位置回路增益 ※位置回路增益([P225] 等)尚未决定时假设为"5"。

例)编码器脉冲数=3,200,000 ppr,额定转速=4 rps,位置回路增益=5
 计算值=(3,200,000 ppr×4 rps×1.2)/5=3,072,000 FB pulse

[速度前馈率]

| 增益编号 | 参数编号 | 参数名称  | 设定值 | 单位 |
|------|------|-------|-----|----|
| 0 *  | P229 | 速度前馈率 | 0   | %  |

※其他增益编号的参数编号请参照7-1节。

[反馈滤波器次数选择、反馈滤波器频率: P342]

| 参数编号 | 参数名称                                | 设定值          | 单位 |
|------|-------------------------------------|--------------|----|
|      | 反馈滤波器次数选择                           | 0            |    |
| P342 | 反馈滤波器频率<br>(FB 滤波器频率) <sup>*1</sup> | 参考值为1000以上*2 | Hz |

※1:参数名称"栏中的()内的名称为 VPH DES 的画面内的项目。

※2:即使经过增益调整也无法抑制振动时,请将值增大。

| SEL      | 参数编号 | 参数名称    | 设定值         | 单位 |
|----------|------|---------|-------------|----|
| $0^{*1}$ | P522 | S 字时间 1 | 参考值为100以上*2 | ms |

※1: 其他 SEL 编号的参数编号请参照 7-1 节。

※2: 即使经过增益调整也无法抑制振动时,请将值增大。

安装有磁性编码器的 FD-s 系列为大惯量负载时,速度回路增益将会增大,因而扭矩波形的变动及动作声会增大。要减小扭矩变动和动作声时,请将以下设定值作为大致标准来调整 FB 滤波器。

| 转子惯量比             | P342: FB 滤波器次数选择 | P342: FB 滤波器频率 |
|-------------------|------------------|----------------|
| 0倍以上~未满10倍        | 2次               | 1000 [Hz]      |
| 10 倍以上~未满 300 倍   | 2 次              | 500 [Hz]       |
| 300 倍以上~未满 500 倍  | 2 次              | 330 [Hz]       |
| 500 倍以上~未满 1000 倍 | 2次               | 200 [Hz]       |
| 1000 倍以上          | 2 次              | 100 [Hz]       |

通过以下参数设定马达的动作方向及动作速度。

| 参数编号 | 参数名称 *1                                 | 初期值         | 设定范围                                           | 单位 |
|------|-----------------------------------------|-------------|------------------------------------------------|----|
|      | 自整定<br>动作方向 <sup>**2</sup><br>(动作方向选择)  | 往返          | 往返:0<br>十方向:1<br>一方向:2                         |    |
| D601 | 自整定<br>测试运行比率 <sup>**3</sup><br>(运行比率)  | 0. 30       | 0.01~1.00                                      |    |
| 1001 | 自整定<br>最大扭矩 <sup>**4</sup><br>(最大扭矩)    | 100         | 0~300                                          | %  |
|      | 自整定<br>惯量倍率选择 <sup>*5</sup><br>(惯量倍率选择) | 150 倍<br>以下 | 150 倍以下: 0<br>150 倍以上 300 倍以下: 1<br>300 倍以上: 2 |    |

※1:"参数名称"栏中的()内的名称为<自整定>画面内的项目。

※2: 对于"自整定动作方向",选择"往返" → 马达在最初向着正方向动作后向着逆方向动作,再一次 进行相同的动作而往返2次。

选择"+方向" → 向着正方向动作 4 次。

选择"一方向" → 向着逆方向动作 4 次。

1 次动作的移动量,根据"运行比率"在<自整定>画面内预想,总体的动作量将被作为"马达动作量" 来显示(参照 3 - 1 - 4 节)。

- ※3:所谓"自整定测试运行比率",是指"自整定执行时马达的动作速度相对于马达额定速度的比率"。
- ※4: 所谓"自整定最大扭矩",是指"自整定时相对于马达额定扭矩的最大扭矩"。
- ※5:"自整定惯量倍率选择"中,将"相对于马达惯量(转子惯量)的机械系统负载的惯量倍率"区分为3 个以进行选择。

#### 7-6-1 测试运行相关参数

根据以下参数设定测试运行时马达的动作方向及动作速度。

| 参数编号 | 参数名称 **1                             | 初期值   | 设定范围(定义)                                                                                                                                                                                              | 单位 |
|------|--------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| P604 | 测试运行<br>开始位置指定<br>(开始位置指定)           | 无效    | 无效: 开始位置指定"无效",从现在位<br>置开始测试运行。<br>ABS: 从现在位置移动到 [P605] 中设定<br>的位置。移动到比现在位置小的位<br>置时向着逆方向移动,若移动到比<br>现在位置大的位置则向着正向移<br>动。<br>INC: 在从现在位置移动 [P605] 中设定<br>的量后开始。指定量若是-数值则向<br>逆方向着移动,若是+数值则向着正<br>向移动。 |    |
|      | 测试运行<br>动作方向 <sup>*2</sup><br>(动作方向) | 往返    | 往返:马达在最初向着正向移动后,向<br>着逆方向移动。<br>+方向:向着正方向移动。<br>-方向:向着逆方向移动。                                                                                                                                          |    |
|      | 测试运行<br>SEL 选择<br>(SEL 选择)           | 0     | 适用 SEL0~7 中所选择的 SEL 编号的参数。                                                                                                                                                                            |    |
|      | 测试运行<br>停止时间<br>(停止时间)               | 1.000 | <ul><li>0.000~999.999</li><li>系 1 次动作完成后,直到执行后续动<br/>作为止的停止时间。</li></ul>                                                                                                                              | S  |

※1:"参数名称"栏中()内的名称为<测试运行>画面内的项目。

※2:1 次动作的"移动量"为[P606]中设定的量。只要马达中没有发出警报,测试运行就不会自动停止 (参照3-2节)。

| 参数编号 | 参数名称                       | 初期值 | 设定范围                   | 单位          |
|------|----------------------------|-----|------------------------|-------------|
| P605 | 测试运行<br>开始位置 <sup>**</sup> | 0   | -2147483648~2147483647 | 基于[P161]的设定 |

※ [P605] 为 [P604] 中的"测试运行开始位置指定"时"ABS"中的开始位置,"INC"中的移动距离。

| 参数编号 | 参数名称          | 初期值 | 设定范围         | 单位          |
|------|---------------|-----|--------------|-------------|
| P606 | 测试运行<br>定位量 * | 0   | 0~2147483647 | 基于[P161]的设定 |

※ [P606] 为测试运行时的定位量,也即<测试运行>画面上1次动作的"移动量"。

| 参数编号 | 参数名称                       | 初期值       | 设定范围       | 单位                  |
|------|----------------------------|-----------|------------|---------------------|
| P607 | 测试运行<br>定位速度 <sup>*1</sup> | 10000 **2 | 0~30000000 | (基于[P161]的设<br>定)/s |

※1: [P607] 为测试运行时的定位动作速度,也即<测试运行>画面上的"速度"。

※2: 此初期值系马达为 τ DISC 马达时。

| 参数编号 | 参数名称              | 初期值   | 设定范围       | 单位                  |
|------|-------------------|-------|------------|---------------------|
| P608 | 测试运行开始<br>位置移动速度* | 10000 | 0~30000000 | (基于[P161]的设<br>定)/s |

※ [P608] 为在 [P604] 下移动至"测试运行开始位置指定"的速度。

# 7-6-2 测试运行执行时的错误

测试运行没有正常完成时,"状态"栏中会显示出错误显示及其内容(显示的区分请参照下表)。请确认状态显示和错误内容,在排除原因后再次执行测试运行。

| _ 状态           |  |
|----------------|--|
| ALARM STOP [0] |  |
| 马达过负载异常        |  |
| 开始(3) 关闭(3)    |  |

### 表 7-1 测试运行时错误一览

| 状态           | 错误内容               | 处理                     |  |
|--------------|--------------------|------------------------|--|
| ALARM STOP   | 因警报而被中止。           | 请在确认警报内容后,在排除原因的基础     |  |
|              |                    | 上解除警报。                 |  |
| WARNING STOP | 田敬生而祉由止            | 请在确认警告内容后,在排除原因的基础     |  |
|              | 囚言口叫似中止。           | 上解除警报。                 |  |
|              | 因以下原因而马达没有动作。      | 请进行对应各原因的处理            |  |
|              | ●单击了"急速停止"按钮       |                        |  |
| FORCED STOP  | ●开启了 RST 信号        |                        |  |
|              | ●测试运行的相关参数设定了范围外的值 |                        |  |
|              | ●自动磁极检测尚未完成        |                        |  |
| USB CLOSE    | USB 通信已被切断。        | 请在 PC 与本驱动器间连接 USB 线缆。 |  |

## 7-6-3 测试运行执行时的马达动作状态

测试运行执行时的动作状态,可从<测试运行>画面进行确认。若单击通常的<测试运行>画面右上的"动作状态 ②",就会如下图右侧所示显示动作状态画面。



图 7-1 测试运行画面示例( TDISC 马达时)

通过设定S字时间,就可缓解加速、减速的开始时及结束时的冲击。S字时间的设定由2个段阶构成。通过加入第1段、第2段的S字调整,成为平滑的加速、减速(S字加减速)。



图 7-2 加速、减速时设定了 S 字时间时的速度曲线