
定位时间的确认 STEP1

按照下述示例计算所选产品的定位时间,确认是否符合需要的节拍。

恒速区域

有效角速度: Vb

极限角速度: Vmax

恒速时间: Tc

定位时间 T

恒速角度:Sc

减速区域

角减速度

d

减速时间

Td

减速角度

Sd

按压 谏度 Vn

按压 时间 Tn

按压角度

时间

sec

位置 deg

按压动作的定位时间

加速区域

角加速度

а

加速时间

Ta

加速角度

Sa

角速度

deg/s

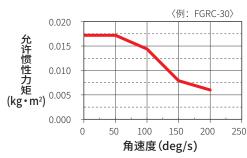
	项目	符号	单位	备 注
	设定角速度	V	deg/s	
设定值	设定角加速度	а	deg/s ²	
以 止阻	设定角减速度	d	deg/s ²	
	移动角度	S	deg	
	极限角速度	Vmax	deg/s	$= \{2 \times a \times d \times S/(a+d)\}^{1/2}$
	有效角速度	Vb	deg/s	V和Vmax中较小的一方
	加速时间	Та	S	=Vb/a
	减速时间	Td	S	=Vb/d
计算值	恒速时间	Tc	S	=Sc/Vb
	加速角度	Sa	deg	$=(a\times Ta^2)/2$
	减速角度	Sd	deg	$=(d\times Td^2)/2$
	恒速角度	Sc	deg	=S-(Sa+Sd)
	定位时间	Т	S	=Ta+Tc+Td

- 请勿在超出规格的角速度下使用。
- 对于某些角加减速度和移动角度,可能无法形成梯形速度波形(达不到设定 Ж 角速度)。
 - 此时,有效角速度(Vb)请选择设定角速度(V)和极限角速度(Vmax)中的较 小值。
- 角加速度、角减速度请在3000deg/s²以下使用。
- 整定时间因使用条件而异,可能需要约0.2s。
- $1G = 9800 \text{deg/s}^2$

	项目	符号	单位	备 注
	设定角速度	V	deg/s	
	设定角加速度	а	deg/s ²	
设定值	设定角减速度	d	deg/s ²	
及足ഥ	移动角度	S	deg	
	按压速度	Vn	deg/s	
	按压角度	Sn	deg	
	极限角速度	Vmax	deg/s	$= \{2 \times a \times d \times (S-Sn+Vn^2/2/d)/(a+d)\}^{1/2}$
	有效角速度	Vb	deg/s	V和Vmax中较小的一方
	加速时间	Та	S	=Vb/a
	减速时间	Td	S	=(Vb-Vn)/d
计算值	恒速时间	Tc	S	=Sc/Vb
17 异但	按压时间	Tn	s	=Sn/Vn
	加速角度	Sa	deg	$=(a\times Ta^2)/2$
	减速角度	Sd	deg	$=((Vb+Vn)\times Td)/2$
	恒速角度	Sc	deg	=S-(Sa+Sd+Sn)
	定位时间	T	S	=Ta+Tc+Td+Tn

- 对于某些角加减速度和移动角度,可能无法形成梯形速度波形(达不到设定 角速度)。
- 此时,有效角速度(Vb)请选择设定角速度(V)和极限角速度(Vmax)中的较
- 角加速度、角减速度请在3000deg/s²以下使用。 整定时间因使用条件而异,可能需要约0.2s。
- $1G = 9800 \text{deg/s}^2$

负载的惯性力矩的确认


移动角度 S

请计算负载的惯性力矩,从角速度与允许惯性力矩的图表中选择机种。

形状	概略图	必要事项	惯性力矩I kg・m²	旋转半径
转台	d	●直径 d(m) ●重量 M(kg)	$I = \frac{Md^2}{8}$	$\frac{d^2}{8}$
长方形薄板(长方体)	a ₁ b	●板长 a ₁ a ₂ ●边长 b ●重量 M ₁ M ₂	$I = \frac{M_1}{12} (4a_1^2 + b^2) + \frac{M_2}{12} (4a_2^2 + b^2)$	$\frac{(4a_1^2+b^2)+(4a_2^2+b^2)}{12}$

请参阅第43页。 *

【DC24V】 角速度与允许惯性力矩

请参阅第30、32、34页。

STEP3 所需扭矩的确认

请使用下式计算负载扭矩的最大值,然后参照角速度和输出扭矩图表选择对象机种。

根据负载的种类,主要分为三大类。

请根据各种情况计算所需扭矩。复合负载时,请将各扭矩合计作为所需扭矩。

①静负载(Ts)

需要夹紧等静态的按压力时

$T_S = F_S \times L$

Ts:所需扭矩(N·m)

Fs: 所需力(N)

L: 从旋转中心到作用点的长度(m)

②阻力负载(TR)

承受摩擦力、重力、其他外力合成的力时

$T_R=3\times F_R\times L$

T_R: 所需扭矩(N·m)

F_R: 所需力(N)

L: 从旋转中心到作用点的长度(m)

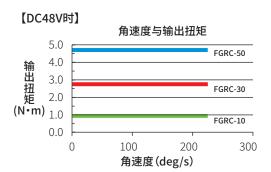
③惯性负载(TA)

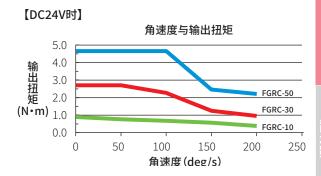
旋转物体时

 $T_A=3\times I\times \dot{\omega}$

T_A:所需扭矩(N·m) I:惯性力矩(kg·m²)

 $\dot{\omega}$: 设定角加减速度 (rad/s^2)


θ: 移动角度(rad)


t:移动时间(s) ※ ω 按角加速度、角减速度中较快的一方计算。

根据度(deg)计算弧度(rad)的计算公式如下所示。

rad = $deg \times (\pi/180)$

惯性力矩请利用惯性力矩和移动时间(30、32、34页)或惯性力矩计算图(43页)等进行计算。

STEP4 允许负载的确认

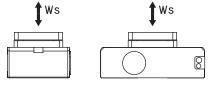
对摆台直接施加负载时,请设为表1的允许值以下。 复合负载时,合计值请设为1.0以下。

表1

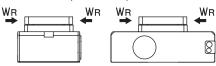
型号	W _s max	W _R max	M max
FGRC-10	80	80	2.5
FGRC-30	200	200	5.5
FGRC-50	450	320	10

 Ws
 : 推力负载(N)

 WR
 : 径向负载(N)

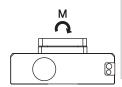

 M
 : 力矩负载(N·m)

 Wsmax
 : 允许推力负载(N)


 Wrmax
 : 允许径向负载(N)

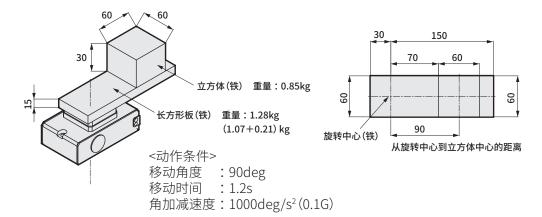
 Mmax
 : 允许力矩负载(N·m)

①推力负载(轴向负载)



②径向负载(横向负载)

③力矩负载


复合时

求出各负载后,请代入下式进行确认。

使用以重量过

选型示例<水平>

STEP1 定位时间的确认

根据动作条件,定位时间为1.09s。 由于所需移动时间为1.2s以下,进入下一步。

设定值

角速度	V	90 deg/s
角加速度	а	1000 deg/s ²
角减速度	d	1000 deg/s ²
移动角度	S	90 deg

计算值

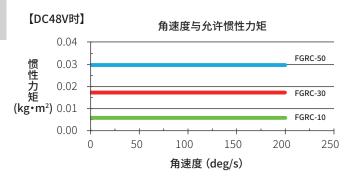
极限角速度	Vmax	300 deg/s	
有效角速度	Vb	90 deg/s	
加速时间	Та	0.09 s	
减速时间	Td	0.09 s	
恒速时间	Tc	0.91 s	
定位时间	Т	1.09 s	

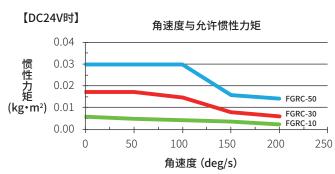
STEP2 负载的惯性力矩的确认

请计算惯性力矩I,从角速度与允许惯性力矩的图表中暂时选择机种。

<长方形板>

$$11=1.07\times\frac{4\times0.15^2+0.06^2}{12}+0.21\times\frac{4\times0.03^2+0.06^2}{12}=0.00847$$

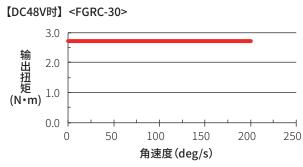

<立方体>


$$|2=0.85 \times \left[\frac{0.06^2 + 0.06^2}{12} + 0.09^2 \right] = 0.00740$$

整体的惯性力矩l如下。

$$I = I1 + I2 = 0.01587(kg \cdot m^2) \cdot \cdot \cdot \cdot \cdot 1$$

从角速度与允许惯性力矩的图表中,可选择满足角速度90deg/s时允许惯性力矩FGRC-30[DC48V]。



STEP3 所需扭矩的确认

计算负载扭矩,并确认是否在角速度与输出扭矩图表的范围内。设定加减速度 $a=d=1000~deg/s^2$

$$\dot{\omega} = 1000 \times \frac{\pi}{180}$$
$$= 17.45 \text{ rad/s}^2 \cdots 2$$

由①、②得出惯性负载Ta为 Ta=3×0.01587×17.45 =0.831(N・m)

角速度 $V=90(\deg/s)$ 、 $TA=0.598(N\cdot m)$ 的交点位于图表内侧,可使用。

STEP4 允许负载的确认

最后,计算施加于摆台的负载值, 确认是否在允许负载值范围内。

<推力负载>

总重量为 1.07+0.21+0.85=2.13 (kg) 因此,推力负载 (Ws) 为 Ws=2.13×9.8=20.9 (N)

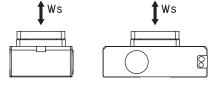
<径向负载>

无径向负载,因此 WR=0(N)

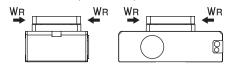
<力矩负载>

长方形板的力矩负载 (M1) 为 1.07×9.8=10.5 (N) 0.21×9.8=2.06 (N) 因此, M1=10.5×0.075-2.06×0.015=0.76 (N・m)

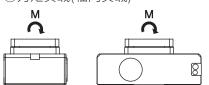
长方体的力矩负载 (M₂) 为 0.85×9.8=8.3 (N) 因此, M₂=8.3×0.09=0.75 (N·m)


由此,合计M1、M2为 M=0.76+0.75=1.51(N⋅m)

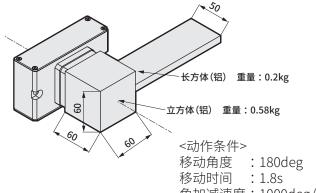
$$\frac{\text{Ws}}{\text{Wsmax}} + \frac{\text{WR}}{\text{WRmax}} + \frac{\text{M}}{\text{Mmax}}$$


$$\frac{20.9}{200} + \frac{0}{200} + \frac{1.51}{5.5} = 0.4 \le 1.0$$

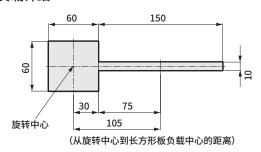
由此,合计负载值在允许负载值以内,因此可选择FGRC-30。


①推力负载(轴向负载)

②径向负载(横向负载)



③力矩负载(轴向负载)


哲 無 型 世 世

选型示例<壁挂>

角加减速度:1000deg/s²(0.1G)

负载详细

STEP1 定位时间的确认

根据动作条件,定位时间为1.57s。 由于所需移动时间为1.8s以下,进入下一步。

设定值

角速度	V	125 deg/s
角加速度	а	1000 deg/s ²
角减速度	d	1000 deg/s ²
移动角度	S	180 deg

计算值

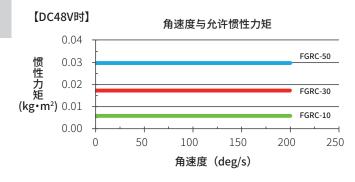
极限角速度	Vmax	424.3 deg/s
有效角速度	Vb	125 deg/s
加速时间	Та	0.125 s
减速时间	Td	0.125 s
恒速时间	Tc	1.315 s
定位时间	Т	1.57 s

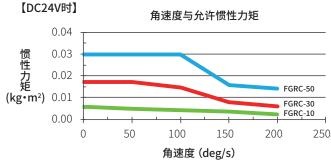
STEP2 负载的惯性力矩的确认

请计算惯性力矩I,从角速度与允许惯性力矩的图表中暂时选择机种。

<长方体>

$$I_1 = 0.2 \times \frac{(0.01^2 + 0.15^2)}{12} + 0.2 \times 0.105^2 = 0.00258 (kg \cdot m^2)$$


<立方体>


$$I_2 = 0.58 \times \frac{(0.06^2 + 0.06^2)}{12} = 0.00035 (kg \cdot m^2)$$

整体的惯性力矩如下。

$$I = I_1 + I_2 = 0.00293 (kg \cdot m^2) \cdots 1$$

从角速度与允许惯性力矩的图表中,可选择满足角速度125deg/s时允许惯性力矩FGRC-10[DC48V]。

STEP3 所需扭矩的确认

计算负载扭矩,并确认是否在角速度与输出扭矩图表的范围内。 负载扭矩计算重力作用下的阻力负载(TR)和惯性负载(TA)。

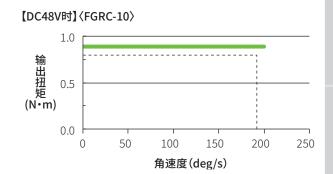
<阻力负载>

$$T_R = 3 \times 0.2 \times 9.8 \times 0.105$$

= 0.617 (N • m) ······②

<惯性负载>

设定加减速度 a=d=1000 deg/s²


$$\dot{\omega} = 1000 \times \frac{\pi}{180}$$

$$=17.45 \text{ rad/s}^2 \cdots 3$$

由①、③得出惯性负载TA为 TA=3×0.00293×17.45 =0.153(N・m) ······④

根据②、④,合计负载扭矩(T)为 T=T_R+T_A=0.617+0.153=0.77(N·m)

角速度V=180(deg/s)、 $T=0.77(N \cdot m)$ 的交点位于图表内侧,可使用。

STEP4 允许负载的确认

最后,计算施加于摆台的负载值, 确认是否在允许负载值范围内。

<推力负载>

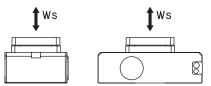
无推力负载,因此 Ws=0(N)

<径向负载>

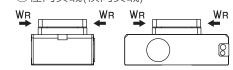
总重量为 0.2+0.58=0.78(kg) 因此,径向负载(WR)为 WR=0.78×9.8=7.64(N)

<力矩负载>

根据右下图, 力矩负载(M)为 M=0.03×(0.2+0.58)×9.8=0.23(N・m)

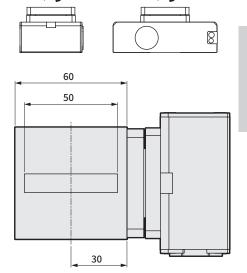

由此,

$$\frac{\text{Ws}}{\text{Wsmax}} + \frac{\text{WR}}{\text{WRmax}} + \frac{\text{M}}{\text{Mmax}}$$


$$\frac{0}{80} + \frac{7.64}{80} + \frac{0.23}{2.5} = 0.19 \le 1.0$$

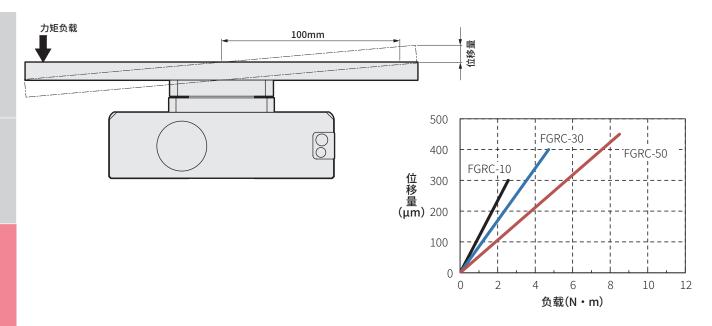
由此,合计负载值在允许负载值以内,因此可选择FGRC-10。

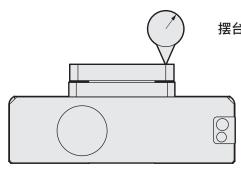
①推力负载(轴向负载)


②径向负载(横向负载)

М

③力矩负载(轴向负载)


М

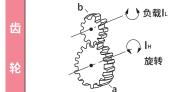

滑台位移量 ※参考值

FGRC受到力矩负载作用时,距离旋转中心100mm的点的摆台位移量。 (摆台以不旋转的静止状态为例。)

摆台位移量

跳动精度:移动180 deg时的位移量 ※参考值

摆台上表面跳动量


测量位置 FGRC 摆台上表面的跳动量 0.1

(mm)

惯性力矩计算用图

旋转轴与工件相连时

旋转轴与工件相连时						
形 概略图	必要事项		惯性力矩l kg・m²	旋转半径 Kı²	备注	
转 台	直径重量	d (m) M (kg)	$I = \frac{Md^2}{8}$	$\frac{d^2}{8}$	● 无特定安装方向 ● 滑动使用时另行考 虑	
阶梯式转台	● 直径 ● 重量d1部分 d2部分	d1 (m) d2 (m) M1 (kg) M2 (kg)	$I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$	$\frac{d1^2+d2^2}{8}$	● 与d1部分相比d2部 分极小时可以无视	
棒 (旋转中心位于端部)	●棒长●重量	R (m) M (kg)	$I = \frac{MR^2}{3}$	R ² 3	●安装方向为水平 ●安装方向为垂直 时,摆动时间会发 生变化	
细 R ₂ R ₁ 棒	●棒长	R ₁ R ₂ M ₁ M ₂	$I = \frac{M_1 \cdot R_1^2}{3} + \frac{M_2 \cdot R_2^2}{3}$	$\frac{R_1^2 + R_2^2}{3}$	●安装方向为水平 ●安装方向为垂直 时,摆动时间会发 生变化	
棒 (旋转中心位于重心)	●棒长●重量	R (m) M (kg)	$I = \frac{MR^2}{12}$	R ² 12	●无特定安装方向	
长方形薄板(长方体)	 板长 边长 重量	a ₁ a ₂ b M ₁ M ₂	$I = \frac{M_1}{12} (4a_1^2 + b^2) + \frac{M_2}{12} (4a_2^2 + b^2)$	$\frac{(4a_1^2+b^2)+(4a_2^2+b^2)}{12}$	●安装方向为水平 ●安装方向为垂直 时,摆动时间会 发生变化	
长方体	● 並长	a (m) b (m) M (kg)	$I = \frac{M}{12}(a^2 + b^2)$	$\frac{a^2+b^2}{12}$	● 无特定安装方向 ● 滑动使用时另行 考虑	
集中负载 R1 R2 第 M2 将经由齿轮的负载JL换算成旋转执行	● 集中负载的形状 ● 到集中负载的重心 长度 ● 臂长 ● 集中负载的重量 ● 臂的重量 5器轴周边值的方法	为止的 R1 R2(m) M1(kg) M2(kg)	$I = M_1(R_1^2 + k_1^2) + \frac{M_2R_2^2}{3}$	kı²根据集中 负载的形状 计算	●安装方向为水平 ● M2与M1相比极小时可按照M2=0计算	

- 齿轮 旋转侧(齿数) a 负载侧(齿数)b
- 负载的惯性 力矩 $N\boldsymbol{\cdot} m$
- 负载的转轴周边的惯性力矩
 - $I_H = \Big(\frac{a}{b}\Big)^2 I_L$

●如果齿轮的形状增 大,则需要考虑齿 轮的惯性力矩。

● 旋转轴与工件偏移时

形状	概略图	必要事项	惯性力矩lkg・m²	备注
长方体	R	● 边长 a (m) ● 从转动轴到负荷 b (m) 中心的距离 R (m) ● 重量 M (kg)	$I = \frac{M}{12} (a^2 + b^2) + MR^2$	● 立方体也相同
中空的长方体	h1 h1 h2 h2	● 边长 h ₁ (m) h ₂ (m) ● 从转动轴到负荷中心的距离 R (m) ● 重量 M (kg)	$I = \frac{M}{12}(h_1^2 + h_2^2) + MR^2$	● 截面仅限立方体
圆柱	R	●直径 d (m) ● 从转动轴到负荷中心的距离 R (m) ●重量 M (kg)	$I = \frac{Md^2}{16} + MR^2$	
中空的圆柱	R d_1	●直径 d ₁ (m) d ₂ (m) ● 从转动轴到负荷 中心的距离 R (m) ●重量 M (kg)	$I = \frac{M}{16} (d_1^2 + d_2^2) + MR^2$	

※计算惯性力矩时,先模拟负荷、夹具等转换成简单的形状,然后再计算。复合负荷时,计算各惯性力矩后再计算合计值。