STS·STL

ガイド付

ガイド付シリンダ

 $\phi 8 \cdot \phi 12 \cdot \phi 16 \cdot \phi 20 \cdot \phi 25$ $\phi 32 \cdot \phi 40 \cdot \phi 50 \cdot \phi 63 \cdot \phi 80 \cdot \phi 100$

CONTENTS

商品紹介	474
シリーズ体系表	476
バリエーション・オプション組合せ可否表	478
● 複動・片ロッド形(ST º-M)	482
● 複動・ストローク調整形(ST ⁸ -MP)	504
● 複動·耐熱形(ST ễ-MT)	520
● 複動・パッキン材質フッ素ゴム(STº-MT2)	528
● 複動・ゴムエアクッション付(ST º-M-※C)	536
● 複動・エアクッション付(STº-MC)	544
● 複動·落下防止形(ST ^S -MQ)	556
● 複動·微速形(ST ² -MF)	574
● 複動·低速形(ST ² -MO)	578
● 複動・スクレーパ形(ST°S-MG・G1)	582
● 複動·耐切削油形(ST ⁸- ^MG2·G3)	602
● 複動・スパッタ付着防止形(ST ^S -MG4)	618
● 複動・バルブ搭載形(ST [°] . [™] V)	628
スイッチ付外形寸法図	636
機種選定ガイド	638
技術資料	642
カスタム品	654
▲使用上の注意事項	656

シリンダ スイッチ

STS. STL

STR2

UCA2

巻末

472

CKD

CKD

シリンタ スイッチ

STG

STR2

UCA2

角形、省スペースシリンダSSDの 両サイドにガイドを一体化して

高精度・高剛性を実現

■用途例

リフターや プッシャーなどの 用途に使用できます。

■ 400mmまでのロングストロークに対応

ロングストローク形STLはø8~ø16で最大ストローク 200mm、620~680で最大ストローク400mmまで 対応可能です。

■組込む装置の精度向上に貢献

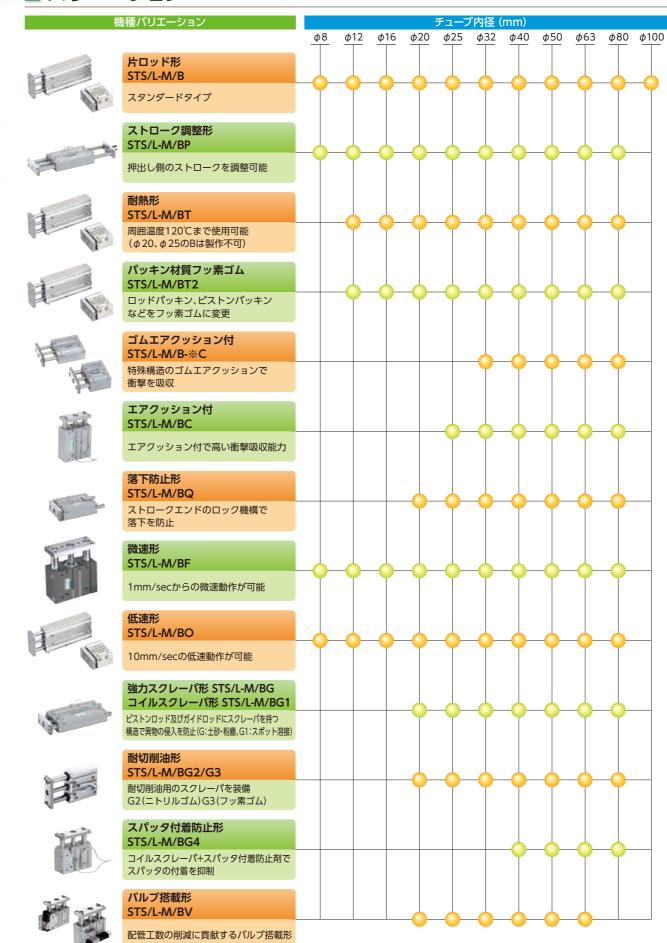
すべり軸受(M)またはころがり軸受(B)を採用した 2本のガイドロッド付。不回転精度、振れ精度が高く、 組込む装置の精度アップに貢献します。

■高負荷での使用が可能

ガイドロッドが2本搭載されているため剛性が高く、 横荷重等に強いシリンダです。

■ショートストローク専用STS

STSではエンドプレート引き込み時にガイドロッドの 本体からの出っ張りがありません。シリンダ底面を 使用した取付の場合にガイドロッドの逃がし用の 穴を開ける必要がありません。


■ スッキリデザイン

本体に内溝を設置。シリンダスイッチや結束バンド、 端子台などを固定できます。スッキリした角形の デザインで省スペースです。

■エンドプレートの材質が選べます

エンドプレートの材質には、アルミ(標準)に加え、 鋼(オプション)を用意しています。

■ バリエーション

巻末

巻末

STR2

UCA2

ガイド付シリンダ STS/STLシリーズ

STG

UCA2

Figure 1 Figure 2 Figure 3 Figure																			(● : ₹	標準	◎: ७	プシ	ョン	\subset	: 力	スタ	ム品	:	製作不	「可
10 20 25 30 40 50 75 100 125 150 175 200 225 250 275 300 325 350 376 400 10 10 10 10 10 10 1	バリコ	エーション				標準ス		(mm))							ス	トローク		m)				2	コ ロ 7 ク m)(mn		すべり軸受	ころがり軸受エンドプレート材質	耐食形エンドプレート材質	耐食形エンドプレート材質	ヘーシ	^
接動・ドロッド形	-				10 00	Joel		F0 7	- l.oo	1 - 1	7F 10	20	 1-	05 15	01175	-1000	loorlo		75 00		-lo-c	امحدا				20					
他の大力に対しています。	 - 複動・/					•	9 9	•		0	0 0			25 15 • • •	0	0	0	0	75 30		25 350	•	• -	5 5	40	0 0	B F		0 (© 4E	32
複動・耐熱形				φ8·φ12·φ16 ¢20·¢25·¢32·¢40·¢50·¢63	• •		• •	•		•	•		 	• • • •	•	•	•	•				•	• 1	0 -	20	0 •				© 5C)4
機計・バフクッション内 ロー・	_	・耐熱形	ST S-MT	φ12·φ16 ¢20·¢25·¢32·¢40·¢50·¢63	•		•	•		•	•		 	• • • •	•	•	•	•				•	• E	5 5	40	0 •	●	○注1	○注1	52	20
機動・エアクッション付 ST E- NG	- 複動・パッキ	Fン材質フッ素ゴム	ST 2-MT2	¢20·¢25·¢32·¢40·¢50·¢63 φ 8Ο	• •	•	•			•				• • • •	•	•	•	•				•	•		40	0 •		0	0	© 52	28
使動・アクック3 77 1 1 1 1 1 1 1 1	複動・ゴム:	エアクッション付	STE-M-%C	φ63 φ80		_		•		. •	• •)	 	• •	•	•	•	•				•	• 1 • 1	5 0 5 0	40	0 •		0	0 0	© 53	36
複動・落下防止形 ST f- NG ゆ20・ゆ25・ゆ32 ゆ40・ゆ50・ゆ63 ゆ80 ゆ40・ゆ50・ゆ63 ゆ80 ゆ40・ゆ50・ゆ63 ゆ80 ゆ8	複動・エフ	アクッション付	ST E-MC	φ25·φ32·φ40·φ50·φ63 φ 80								<u> </u>	 	• •									• 1 ½	5 _ £2 _						◎ 54	14
複動・微速形	複動・落	落下防止形	ST S-MQ	φ20·φ25·φ32 φ40·φ50·φ63				•		•	•		 	• • • •	•	•	•	•						5 5	40	0 •	 0 0 0	0	0	© 5E	56
複動・強力スクレーパ形 ST 2-MG T	複動	・微速形	STE-WF	φ20·φ25·φ32·φ50·φ63 φ 80	- -	•	• •							• • • •	•	•							E	5 5	20	0 0		0	0	© 57	74
複動・耐切削油形 ST 2-MG2		」・低速形		φ8·φ12·φ16 φ20·φ25·φ32·φ40·φ50·φ63 φ80	• •	•	• •			<u>.</u>				• • • •	•	•	•	•					5	5 5	30	0 •	lacklacklack	0	0	© 57	78
複動・耐切削油形 ST 2-MG2	複動・強力	カスクレーパ形 ルスクレーパ形	STE-MG	\$\phi20\phi25\phi32\phi40\phi50\phi63								<u> </u>	 	• •		•							· · · · · · · · · · ·	5 5	40	0 0				© 5E	32
複動・スパッタ付着防止形 ST 🖺 G4 一		耐切削油形	ST §- NG2 ST §- NG3	\$20\\$25\\$32\\$40\\$50\\$63		•		•		•		· · · · · · · · · · · · · · · · · · ·	 	• •		•	•						·:···	5 5	40	0			\sim 1 $^{\circ}$	© 60)2
	複動・スパ					•		•		•	•		 		•	•	•					•	• .	5 5	40	0		0	<u></u>	0 61	18
複動・バルブ搭載形 ST ^{2-M} V (1) (1) (25・432・440・450・463	複動・ハ	バルブ搭載形	ST S-MV	\$\phi_20\cdot\phi_25\cdot\phi_32\cdot\phi_40\cdot\phi_50\cdot\phi_63		•		•		•														5 5						© 62	28

注1: ころがり軸受(B)のみの対応となります。 注2: 最小ストローク以下はクッション効果が得られないので基本形を選定ください。

注3: ϕ 20・ ϕ 25のころがり軸受(B)は製作不可です。

STM

STG

STR2

UCA2

巻末

巻末

シリンダ スイッチ

STS・STL-M(すべり軸受) Series

バリエーション・オプション組合せ可否表

バリエーションとオプション項目との組合せ可否表(すべり軸受)

●印:標準

◎印:オプション

○印:カスタム品

△印:条件により製作可(相談ください)

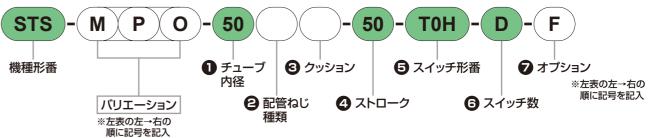
×印:製作不可

		四八						15,1							.			配	管	②		٠	
区		区分						Λi	JΙ	·—:	УΞ	עו						ね	じ	クッション	オノ	゚ショ	צ
分			複動基本形(メタルブシュ式)	ストローク調整形(押出し)	落下防止形	電磁弁付	エアクッション付	耐熱形(20℃)	パッキン材質フッ素ゴム		強力スクレーパ形	コイルスクレーパ形	耐切削油スクレーパ形(NBR)	耐切削油スクレーパ形(FKM)	スパッタ付着防止形		2色表示・オフディレー・口・18 スイッチ付 汐	NPT	φ)	耐食形(エンドプレート材質アルミ)	食形(エンドプレート	プレート材質指定 鋼
		記号	М	Р	Q	٧	С	Т	T2	0	G	G1	G2	G3	G4	F	L1	N	G	С	М	M1	F
	複動基本形(メタルブシュ式)	M									•						0	\bigcirc	0		0	0	\bigcirc
	ストローク調整形(押出し)	Р			注2	0	0	×	0	0	注6	注6	×	X	注6	\triangle	0	0	0	0	\triangle	\triangle	0
	落下防止形	Q				×	×	×	×	×	\triangle	\triangle	\triangle	\triangle	\triangle	X	0	0	0	X	0	0	0
	電磁弁付	V				\setminus	X	×	X	0	X	×	×	X	X	X	0	0	0	0	\triangle	\triangle	0
	エアクッション付	С					\setminus	注1	注1	0	0	0	0	0	0	×	0	0	0	X	0	0	0
1,	耐熱形(120°)	Т							×	×	X	0	×	×	×	×	×	0	0	X	×	X	0
부	パッキン材質フッ素ゴム	T2							abla	×	X	0	×	注3	×	×	0	0	0	X	0	0	0
Į Į	低速形	0									X	×	×	×	×	×	0	0	0	0	0	0	0
バリエーション	強力スクレーパ形	G								Ī	\setminus	×	×	×	×	×	0	0	0	0	0	0	0
ラ	コイルスクレーパ形	G1											×	×	注4	×	0	0	0	0	0	0	0
	耐切削油スクレーパ形(NBR)	G2												X	X	×	注5	0	0	0	注3	0	×
	耐切削油スクレーパ形(FKM)	G3												\setminus	×	×	注5	0	0	X	注3	0	×
	スパッタ付着防止形	G4														×	0	0	0	0	0	0	0
	微速形	F															0	0	0	0	0	0	0
	2色表示・オフディレー・T1・T8 スイッチ付 注7	L1																0	0	0	0	0	0
醒	NPT	N																eg	×	0	0	0	
配管ねじ	G φ32以上	G																		0	0	0	$\overline{\Box}$
クッション	ゴムエアクッション付	С																	\Box	abla	0	0	Image: section of the content of the
	耐食形(エンドプレート材質アルミ)	М		П	П	П						П	П									X	X
オプション	耐食形(エンドプレート材質SUS)	M1																				\triangleleft	×
ョン	プレート材質指定 鋼	F																			\Box	\uparrow	\triangleleft
付属品	シリンダスイッチ	別掲示	0	0	0	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\overline{\bigcirc}$
	550~100のみ製作可.								-		_			-	-	-	_	_					

注1: φ50~100のみ製作可。

注2:ヘッド側落下防止形のみ製作可。

注3:G3とT2の組合せはG3を選択することによりシリンダ内部のパッキン類はフッ素ゴムになります。(T2の記号は不要です。) また、G2、G3とM(耐食形)の組合せも同様にしてG2、G3を選択した場合にM(耐食形)を含みます。(Mの記号は不要です。)


注4:G4タイプは、コイルスクレーパを含んだ構造となっています。

注5:L1 仕様となっています。(L1 の記号は不要です。)

注6:ショックキラーは標準品です。

注7:T2W、T3Wは除く。

〈形番表示例〉

注: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては バリエーション形番とチューブ内径の間に「L1」を入れて「-」で結んでください。(ただしT2W、T3Wは除く。) (例)STS-MPO-L1-50-50-T2JH-D-F

 ϕ 80、 ϕ 100は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界スイッチを後付する場合、取付できません。 この場合**①**項と**②**項の間に「L1」を入れた形番で手配してください。 (例)STS-B-L1-80-50-F

機種形番 :ガイド付シリンダ、ショートストローク ● バリエーション: すべり軸受、ストローク調整形、低速形

チューブ内径 : φ50mm ②配管ねじ種類 : Rcねじ

③ クッション : ゴムクッション付

4ストローク : 50mm

⑤スイッチ形番 :有接点TOHスイッチ、リード線1m

⑥スイッチ数 : 2個付

オプション : エンドプレート材質;鋼

STM

STG

STR2

UCA2

STM

STG

STR2

UCA2

巻末

スイッチ

バリエーションとオプション項目との組合せ可否表(ころがり軸受)

●印:標準

◎印:オプション

○印:カスタム品△印:条件により製作可(相談ください)

×印:製作不可

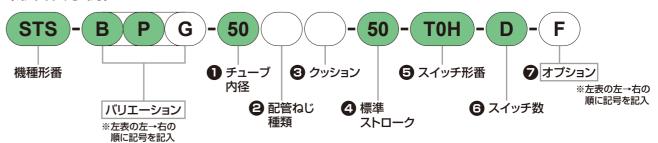
		1												<u>^ FI</u>	J .	₹ ₹1	F1			_			_
区		区分						Λί	JI	:—:	ショ	ン						配ね	管じ	クッション	オフ	゚゚シ≣	ン
分			複動基本形(ベアリングブシュ式)	ストローク調整形(押出し)	落下防止形	電磁弁付	エアクッション付	耐熱形(20℃) 注2	パッキン材質フッ素ゴム	低速形	強力スクレーパ形	コイルスクレーパ形	耐切削油スクレーパ形(NBR)	耐切削油スクレーパ形(FKM)	スパッタ付着防止形	微速形	2色表示・オフディレー・口・17 スイッチ付 汀	NPT ゆ 32以上	G	ゴムエアクッション付	耐食形(エンドプレート材質アルミ)	形(エンドプレート	プレート材質指定 鋼
		記号	В	Р	Q	٧	С	Т	T2	0	G	G1	G2	G3	G4	F	L1	N	G	С	М	M1	F
	複動基本形(ベアリングブシュ式)	В							•	•							0	0	0		0	0	0
	ストローク調整形(押出し)	Р			注2	0	0	×	0	0	注6	注6	×	×	注6	\triangle	0	0	0	0	\triangle	\triangle	0
	落下防止付	Q				×	×	×	×	×	\triangle	\triangle	\triangle	\triangle	\triangle	×	\bigcirc	0	0	×	0	0	\bigcirc
	電磁弁付	V					×	×	×	0	×	×	×	×	×	×	\bigcirc	0	0	0	\triangle	\triangle	\bigcirc
	エアクッション付	С						注1	注1	0	0	0	0	0	0	×	0	0	0	×	0	0	0
バ	耐熱形(120°) 注2	Т							×	×	×	0	×	×	×	×	×	0	0	×	0	0	0
Ĭ	パッキン材質フッ素ゴム	T2								×	×	0	×	注3	×	×	\bigcirc	0	0	×	0	0	0
バリエーション	低速形	0									×	×	×	×	×	×	\bigcirc	0	0	0	0	0	0
ショ	強力スクレーパ形	G										X	X	×	X	X	0	0	0	0	0	0	0
ラ	コイルスクレーパ形	G1											×	×	注4	×	\bigcirc	0	\bigcirc	0	0	0	\bigcirc
	耐切削油スクレーパ形(NBR)	G2												×	×	×	注5	0	0	0	注3	0	×
	耐切削油スクレーパ形(FKM)	G3													X	X	注5	0	0	X	注3	0	×
	スパッタ付着防止形	G4														×	\bigcirc	0	0	0	0	0	\bigcirc
	微速形	F															\bigcirc	0	0	0	0	0	\bigcirc
	2色表示・オフディレー・T1・T8 スイッチ付 注7	L1																0	0	0	0	0	0
配管ねじ	NPT	N																	×	0	0	0	0
ねじ	G	G																		0	0	0	\bigcirc
クッション	ゴムエアクッション付	С																			0	0	\bigcirc
オプ	耐食形(エンドプレート材質アルミ)	М																				×	×
オプション	耐食形(エンドプレート材質SUS)	M1																				\bigvee	×
	プレート材質指定 鋼	F																					
付属品	シリンダスイッチ	別掲示	0	\bigcirc	\bigcirc	0	0	X	0	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	50-100の3制作可																						

注1: φ50~100のみ製作可。 注2: ヘッド側落下防止のみ製作可。

注3:G3とT2の組合せはG3を選択することによりシリンダ内部のパッキン類はフッ素ゴムになります。(T2の記号は不要です。)

また、G2、G3とM(耐食形)の組合せも同様にしてG2、G3を選択した場合にM(耐食形)を含みます。

(Mの記号は不要です。)


注4: G4タイプはコイルスクレーパを含んだ構造となっています。

注5:L1仕様となっています。(L1の記号は不要です。)

注6:ショックキラーは標準品です。

注7:T2W、T3Wは除く。

〈形番表示例〉

注: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては バリエーション形番とチューブ内径の間に[L1]を入れて[-]で結んでください。(ただしT2W、T3Wは除く。) (例)STS-B-**L1**-63-50-T1H-D-F

φ80、φ100は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界スイッチを後付する場合、取付できません。
この場合
① 項と
② 項の間に「L1」を入れた形番で手配してください。
(例) STS-B-L1-80-50-F

幾種形番 : ガイド付シリンダ・ショートストローク

● バリエーション: ころがり軸受・ストローク調整形・強力スクレーパ形

1 チューブ内径 : φ50mm2 配管ねじ種類 : Rcねじ

③ クッション : ゴムクッション付

⑤スイッチ形番 :有接点TOHスイッチ、リード線1m

6 スイッチ数 : 2個付

⑦オプション :エンドプレート 材質:鋼

STM

STG

STS.

STR2

UCA2

类士

スイッチ

巻末

シリンダ スイッチ

STM

STG

STR2

UCA2

● チューブ内径: φ8・φ12・φ16・φ20・φ25・φ32・ $\phi 40 \cdot \phi 50 \cdot \phi 63 \cdot \phi 80 \cdot \phi 100$

4

4

4

50

4

4

T2H

0

6

T2H

6

0

0

6

回路図記号

8

8

40

8

8

8

40

3

3

3

3

3

形番表示方法

●ショートストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

スイッチ付(注1) (スイッチ用磁石内蔵)

STS -

機種形番

機種形番

(STS)-

機種形番

(STL)

機種形番

STL

機種形番

(STL)

(STS)-(

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上)

●ロングストローク

STM

STG

STS STL

STR2

UCA2

スイッチなし(注1) (スイッチ用磁石内蔵)

スイッチ付(注1) (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付

(スイッチ用磁石内蔵)(φ40以上) 機種形番

軸受

M

-L1-(

方式

8 3 内径

種類

4

形番

0 チューブ 配管ねじ ストローク スイッチ スイッチ オプション

注 1: φ80、φ100は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

● 軸受方式

•		
記号	内容	
M	すべり軸受	
В	ころがり軸受	

② チューブ内径(mm)

記号	内容
8	φ8
12	φ12
16	φ16
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80
100	φ100(カスタム品)

② 配管ねじ種類

	10.0 10.00
記号	内容
# ====	M5(φ8~φ25)
無記号	Rcねじ(ø32~ø100)
NN	NPTねじ(ø32以上)カスタム品
GN	Gねじ(ø32以上)カスタム品

♠ ストローク(mm)

シ	ストロ	ーク				ì	毎用チ	ュー	ブ内谷	 ₹			
シリーズ	(mr		φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80	φ100
		10	•	•	•								
İ		20			•								
l		25											•
	標準	30		•	•								
S	ストローク	40											
STS		50											
٦		75											
		100											
	中間 ストローク	注1 注2					5	imm					

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。 専用の長さで対応する

2	:	中間ストローク時の全長寸法を中間ストローク
		ことも可能です。(カスタム品)

シリーズ	ストロ	ーク				ì	適用チ	ュー	ブ内征	 Z £			
[노	(mn	1)	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80	ø100
		50											
		75						•					
		100											
		125											
		150											
		175											
	標準	200											
ls	1宗学 ストローク	225											
S	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	250											
L		275											
		300											
		325											
		350											
		375											
		400											
	中間	注1					5	mm£	=				
	ストローク	注2					- 5	1111111	#				

スイッチ詳細については、753ページをご参照ください。 6 スイッチ形番 スイッチは製品に添付して出荷します。

_	,,,,,	117 124	/\ 1 / / lo-	SAUTIC WILL O	о с ш поо					_
接	表示灯	配線	負荷電	Œ(V)	負荷電流	充(mA)	リード	泉注1		1
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字		l
		2線	85~265	_	5~100	_	тінж	T1V%	*	
	1色		_	10~30	_	5~20 注2	T2H%	T2V%		1
		3線(NPN)	_	30以下	_	100以下	ТЗНЖ	T3V%	- 1	١
		3線(PNP)	_	3012 1	_	1001	ТЗРН※	T3PV%	1775	l
	2色	2線	_	24±10%	_	5~20	T2WH%	T2WV%		١
		3線(NPN)	_	30以下	_	50以下	T3WH%	T3WV ※		
無接点	2色 耐水性 向上		_	24±10%	_	5~20	T2WLH%	T2WLV%		
	2色交流		–	041100/	_	3 -20	T2YD%	_		I
	磁界用	O	_	24±10%	_		T2YDT%	_	C. C.	İ
	1色 オフディレー タイプ	- 2線	_	10~30	_	5~20	т2ЈН※	T2JV※	52 52	
	1色 耐屈曲リード 線タイプ		_	10~30	_	注2	T2HR3	T2VR3	1775	
	1色		110	12/24	7~20	5~50	TOH*	TOV*	- (
有	表示灯なし	O##	110	5/12/24	20以下	50以下	T5H%	T5V%	C1222	
接点	表示灯なし 1色	2線	110/220	12/24	7~20/ 7~10	5~50	твнж	T8V%	6 W 5 M	1

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

※リード線長さ、コネクタ仕様

	記号	内容
	無記号	1m(標準)
	3	3m(オプション)
	5	5m(オプション)
注7	W	M8コネクタ、 1PIN(+)4PIN(ー) リード線0.3m

注7: T2WLH、T2WLVのみ選定 可能です。

例) リード線長さ 1m TOH 3m TOH3 5m TOH5

STM

STG

STR2

UCA2

注4: φ8~φ16はT8H/Vを搭載できません。 注5:φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、❶と❷の間に "L1" を入れて−で結んでください。(ただし、T2WH/V、T3WH/Vは除く。)

6 スイッチ数

<u> </u>	/ / × ×
記号	内容
R	ロッド側1個付
Н	ヘッド側 1 個付
D	2個付
Т	3個付

(60℃のとき5~10mAとなります。)

例) STS-M-L1-63-50-T1H3-D-F

この場合、 **①**と**②**の間に"L1" を入れた形番で手配してください。

7 オプション

上記の負荷電流の最大値: 20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、20mAより低くなります。

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの使用を推奨します。

 ϕ 80、 ϕ 100 は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。

注6:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページをご参照ください。

	• • • • •	
	記号	内容
	F	エンドプレート材質:鋼
注1	М	耐食形 (ピストンロッド、 ガイドロッド 材質 : SUS)
注1	М1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS)
	,	•

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

二次電池対応仕様

(カタログNo.CC-1226)

●二次電池製造工程で使用できる構造

STS/L-M - · · · · - (P4 **

※詳細はお問い合わせください。

高耐久機器HPシリーズ

(カタログNo.CC-1421)

●安定稼働で、生産性向上に貢献できる 長寿命アクチュエータ

STS/L-M-···-(HP*

カスタム品の仕様について

詳細は654ページをご参照ください。 内容

STS/L- M ------

記号 ポート対称形 -0 形番例)

スイッチ単品形番表示方法

るイッチ形番

スイッチ

巻末

スイッチ

仕様

72 🖂						OTO A	MD OT	L MAZO								
項目						STS-N	1/B 21	L-M/B								
チューブ内径	mm	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80	φ100				
作動方式							複動形									
使用流体							圧縮空気									
最高使用圧力	MPa						1.0									
最低使用圧力	MPa			0.15					0	.1						
耐圧力	MPa		1.6													
周囲温度	c		- 10~60(ただし、凍結なきこと)													
接続口径				M5			Rc	1/8	Rc	1/4	Rc3	3/8				
フレローを計算	÷						+2.0									
ストローク許容差	≣ mm						0									
使用ピストン速度	mm/s				50~	500					50~300	1				
クッション						ゴノ	ュクッショ:	ン付								
給油					不要(給	油時はター	ビン油1種	ISOVG32	2を使用)							
許容吸収エネルコ	ギー J	0.029	0.056	0.088	0.157	0.157	0.401	0.627	0.980	1.560	2.510	3.92				

STM

STG

ストローク

● ショートストロークSTS

STR2

UCA2

チューブ内径	標準ストローク	最大ストローク	最小ストローク	スイッチ付最小	
フューフド31主	(mm)	(mm)	(mm)	T2WL	その他スイッチ
φ8	10.00.00			25	
φ12	10,20,30			15	
φ16	40,50			25	
φ20					
φ25	25,50	50			5
φ32			5) 注1
φ40				5	<u> </u>
φ50				注1	
φ63					
φ80	25 50 75 100	100			

注1:スイッチ1個付、または2個付の場合です。

● ロングストロークSTL

φ100

チューブ内径	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ8	50,75,100			F0
φ12	125,150	200	50	50 注2
φ16	175,200			/ <u>/</u>
φ20	E0.7E 100			
φ25	50,75,100			
φ32	125,150,175		20	30
φ40	200,225,250		30	注2
φ50	275,300,325	400		
φ63	350,375,400			
	75,100,125,150,175			
φ80	200,225,250,275,300			55
	325,350,375,400		55	注2
φ100	75,100,125,150,175,200	200		

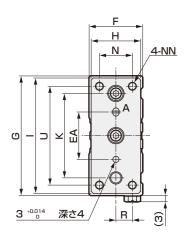
注1:中間ストロークについては5mm毎に製作可能です。

ただし、全長寸法はその上の標準ストロークと同じになります。

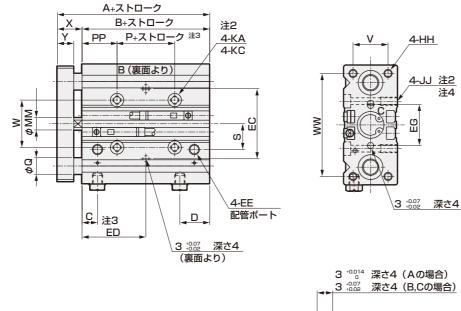
注2:スイッチ1個付、または2個付の場合です。

巻末

理論推力表


(単位:N) 使用圧力 MPa チューブ内径 (mm) 方向 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10.1 45.2 50.3 7.54 15.1 20.1 25.1 30.2 35.2 Push φ8 Pull 5.65 7.54 11.3 15.1 18.8 22.6 26.4 33.9 37.7 30.2 17.0 22.6 33.9 56.5 79.2 90.5 1.02×10² | 1.13×10² Push 45.2 φ12 Pull 12.7 17.0 33.9 42.4 50.9 59.4 76.3 84.8 _ 25.4 67.9 40.2 1.01×10^{2} 1.21 × 10² 1.41×10² | 1.61×10² 1.81×10^{2} 2.01 × 10² φ16 Pull 22.6 30.2 60.3 75.4 90.5 1.06×10^{2} | 1.21×10^{2} | 1.36×10^{2} | 1.51×10^{2} 45.2 $|1.88 \times 10^{2}|2.20 \times 10^{2}|2.51 \times 10^{2}|2.83 \times 10^{2}|3.14 \times 10^{2}|$ Push 47.1 1.26×10² 1.57×10^{2} _ 62.8 94.2 φ20 1.18×10^{2} 1.41×10^{2} 1.65×10^{2} 1.88×10^{2} 2.12×10^{2} 2.36×10^{2} 47.1 70.7 35.3 94.2 $|1.47 \times 10^{2}|1.96 \times 10^{2}|2.45 \times 10^{2}|2.95 \times 10^{2}|3.44 \times 10^{2}|3.93 \times 10^{2}|4.42 \times 10^{2}|4.91 \times 10^{2}|$ 98.2 73.6 Push _ φ25 $|1.13\times10^2|1.51\times10^2|1.89\times10^2|2.27\times10^2|2.64\times10^2|3.02\times10^2|3.40\times10^2|3.78\times10^2|$ 1.61×10^{2} | 2.41×10^{2} | 3.22×10^{2} | 4.02×10^{2} | 4.83×10^{2} | 5.63×10^{2} | 6.43×10^{2} | 7.24×10^{2} | 8.04×10^{2} 80.4 1.21×10² φ32 60.3 90.5 1.21×10^{2} | 1.81×10^{2} | 2.41×10^{2} | 3.02×10^{2} | 3.62×10^{2} | 4.22×10^{2} | 4.83×10^{2} | 5.43×10^{2} | 6.03×10^{2} 1.26×10² 1.88×10² | 2.51×10² | 3.77×10² | 5.03×10² | 6.28×10² | 7.54×10² | 8.80×10² | 1.01×10³ | 1.13×10³ | 1.26×10³ φ40 $1.06 \times 10^2 \, | \, 1.58 \times 10^2 \, | \, 2.11 \times 10^2 \, | \, 3.17 \times 10^2 \, | \, 4.22 \times 10^2 \, | \, 5.28 \times 10^2 \, | \, 6.33 \times 10^2 \, | \, 7.39 \times 10^2 \, | \, 8.44 \times 10^2 \, | \, 9.50 \times 10^2 \, | \, 1.06 \times 10^3 \, | \, 1.06 \times 10^$ $1.96 \times 10^{2} | 2.95 \times 10^{2} | 3.93 \times 10^{2} | 5.89 \times 10^{2} | 7.85 \times 10^{2} | 9.82 \times 10^{2} | 1.18 \times 10^{3} | 1.37 \times 10^{3} | 1.57 \times 10^{3} | 1.77 \times 10^{3} | 1.96 \times 10^{3$ φ50 1.65×10² | 2.47×10² | 3.30×10² | 4.95×10² | 6.60×10² | 8.25×10² | 9.90×10² | 1.15×10³ | 1.32×10³ | 1.48×10³ | 1.65×10³ $3.12 \times 10^{2} |4.68 \times 10^{2} |6.23 \times 10^{2} |9.35 \times 10^{2} |1.25 \times 10^{3} |1.56 \times 10^{3} |1.87 \times 10^{3} |2.18 \times 10^{3} |2.49 \times 10^{3} |2.81 \times 10^{3} |3.12 \times 10^{3} |$ φ63 $2.80 \times 10^{2} | 4.20 \times 10^{2} | 5.61 \times 10^{2} | 8.41 \times 10^{2} | 1.12 \times 10^{3} | 1.40 \times 10^{3} | 1.68 \times 10^{3} | 1.96 \times 10^{3} | 2.24 \times 10^{3} | 2.52 \times 10^{3} | 2.80 \times 10^{3} | 1.68 \times 10^{3} | 1.68 \times 10^{3} | 1.96 \times 10^{3$ $5.03 \times 10^2 \ | 7.54 \times 10^2 \ | 1.01 \times 10^3 \ | 1.51 \times 10^3 \ | 2.01 \times 10^3 \ | 2.51 \times 10^3 \ | 3.02 \times 10^3 \ | 3.52 \times 10^3 \ | 4.02 \times 10^3 \ | 4.52 \times 10^3 \ | 5.03 \times 10^3 \ | 6.03 \times 10^3$ φ80 $|4.54\times10^2|6.80\times10^2|9.07\times10^2|1.36\times10^3|1.81\times10^3|2.27\times10^3|2.72\times10^3|3.17\times10^3|3.63\times10^3|4.08\times10^3|4.54\times10^3|$ 7.85×10² | 1.18×10³ | 1.57×10³ | 2.36×10³ | 3.14×10³ | 3.93×10³ | 4.71×10³ | 5.50×10³ | 6.28×10³ | 7.07×10³ | 7.85×10³ φ100 $|7.15\times10^{2}|1.07\times10^{3}|1.43\times10^{3}|2.14\times10^{3}|2.86\times10^{3}|3.57\times10^{3}|4.29\times10^{3}|5.00\times10^{3}|5.72\times10^{3}|6.43\times10^{3}|7.15\times10^{3}|$

シリンダ質量については642ページ~645ページをご参照ください。


外形寸法図 (チューブ内径: ϕ 8・ ϕ 12・ ϕ 16)

●標準・片ロッド形 STS- M

● 耐食形 STS-M-M·M1

φ16

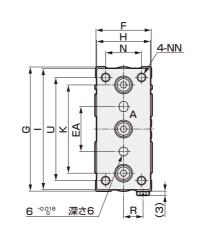
A、B、C長穴部寸法

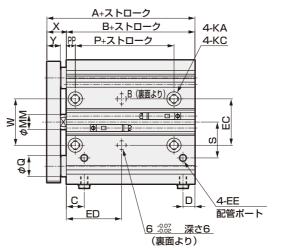
2-(R)

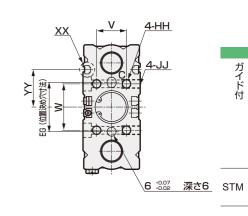
記号 チューフ៉ħ経(mm)\	標準ストローク (mm 10、20、30			m)	A	В	С	D	DD	E	E	EA	EC	EC	注3		G	F	G	н	нн		
φ8		10	20	20		40	28	11	14.5	6.5	M	5	20	25	15+	_		20	24	53	22	M4深さ	8
φ12						44	32	7.5	14.5	7.5	M	5	23	34		_		20	26	58	24	M4深さ	8
φ16	40, 50				45	32	7.5	17	7.5	M	5	24	36	16+	ストロー 2	2 2	24	30	64	28	M5深さ1	10	
記号	I JJ k			V	L	(A			KC		ММ	N	_	IN	Р	PP				Q		R	
チューブ内径(mm)				K	ľ	LA.			N.C		IVIIVI	IV	"	41.4		FF		STS	-M		STS-B] "	
φ8	51	M4	深さ1	0	40	3.3	置通	6	.5座く	り深さ	23.3	4	15	M4	貫通	-10	20		6			5	7.5
φ12	56	M4	深さ1	0	41	3.3	貫通	6	.5座ぐ	り深さ	23.3	6	16	M4	貫通	-2	17		8			6	8
φ16					置通	1 8	8座ぐ	り深さ	4.4	8	18	M5	貫通	-2	17		10			8	10		
記号																							

記号 チューファ襁(mm)\	S	U	V	W	ww	Х	Υ
φ8	13.5	43	16	25	45	12-1.5	8
φ12	12.5	48	17	23	50	12-1.5	8
φ16	13	52	22	25	54	13-1.5	9

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2:STS-M-8-10(10mm ストローク)時 2-KA、2-KC、2-JJ(取付け穴2カ所)となります。 注3:STS-M-8-10(10mm ストローク)時、ED寸法は5となります。

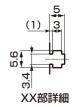

注4:STS-№-16-10(10mm ストローク)時、JJ寸法M5ねじは図の通り4ヶ所ありますが、取付は2ヶ所となります。


注5: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。


外形寸法図 (チューブ内径: φ20・φ25)

● 標準・片ロッド形 STS-M

● 耐食形 STS-M-M·M1



STG

STR2

UCA2

6 ^{+0.018} 深さ6 (Aの場合) 6 +0.07 深さ6 (B,Cの場合) A、B、C長穴部寸法

記号 チューフヤ軽(mm)\	標準	まストロ	ローク	(mm)	A	В	С	D	EE	EA	EC	E		ED		F	G	Н	HF	4
φ20		25	5、50			53	40	12	8	M5	30	31	33	3 14	l+ ^{ストロ・} 2	<u>-ク</u>	38	83	36	M6深る	12
φ25		20	, 50			54	41	12	9	M5	32	35	37	7 14	1.5+ [∠]	<u>ローク</u> 2	42	86	38	M6深る	12
記号 チューフォ軽(mm)\	ı	J	IJ	К		KA			ا	кс	МІ	и	N	NN	Р	PP	STS	-M	•	S-B	R
φ20	81	M6潔	まさ12	59		5.2貫	通	9	.5座ぐ	り深さ5.4	10) 2	24	M6貫通	20	6	14	ļ.	1	2	13
φ25	84	M6潟	た12	63	1	5.2貫	通	9	.5座ぐ	り深さ5.4	12	2 2	26	M6貫通	20	6	14	ļ.	1	2	14
記号	s	ш	v	w	Y	V	VV	,													

φ25	26	72	24	35	13	9	27	
注1:中間ス	 	-クの場	启、 名	- - - - - - - - - - - - - - - - - - -	は長い	方の標	準スト	ロークと同一になります。
注2: 各スペ	イッチ	付のす	寸法は	. 63	86ペ -	-ジ、	637	ページをご参照ください。

24 69 20 31 13 2 9 25

シリンダ スイッチ

STM

STG

STS ·

STR2

UCA2

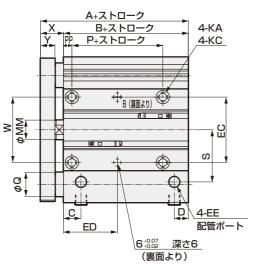
巻末

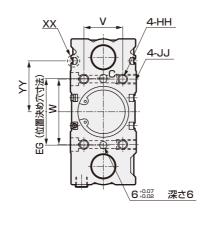
487

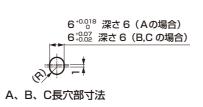
シリンダ スイッチ

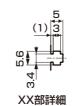
巻末

486


CKD

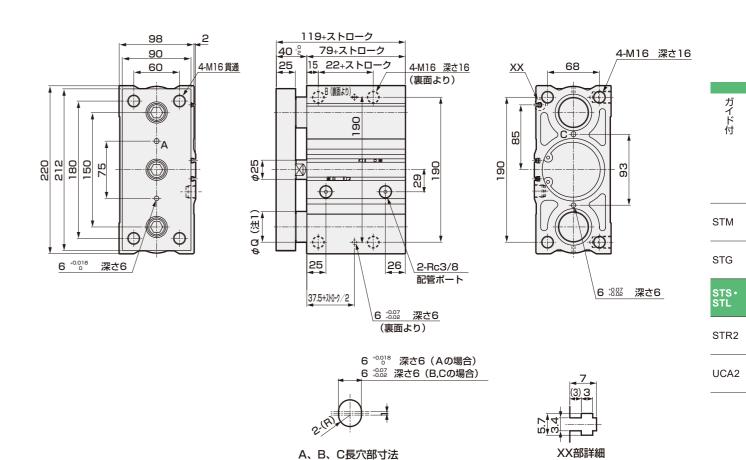

外形寸法図 (チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)


●標準・片ロッド形 STS- M


● 耐食形 STS-M-M·M1

4-NN ■ N 6 0 深さ6

記号 チューブ梱(mm)	標準	スト	ローク	(mr	n)	A	В	С	D	EE	EA	EC	EG		D		F	G	Н	НН	
φ32					L	68	49	14	10.5	Rc1/8	42	45	46	17.5+			47	111	45	M8深さ	16
φ40		25	5、50			72	53	14.5	12	Rc1/8	45	54	55	19.5+			54	120	50	M8深さ	16
φ50			, 50		L	77	55	16	12.5	Rc1/4	55	66	69	19.5+			66	147	64	M10深	20
φ63						83	61	17.5	17.5	Rc1/4	62	79	82	22.5+	ストロー 2	· ク	79	162	75	M10深	±20
記号			JJ		l/	,	ΚA			КС		ММ	N	NN	P	PP			Q		R
チューブ内径(mm)	•		00	16 81 6			\ A			KC .		IVIIVI	14	IVIV			ST	S-M	5	STS-B	
φ32	109	M8	深さ1	6	81	6.	3貫通	į	11座ぐり深さ6.5				29	M8貫通	22	7	2	20		16	16
φ40	118	M8	深さ1	6	90	6.	3貫通	į	11層	至ぐり深さ6.	.5	16	34	M8貫通	25	7	2	20		16	18
φ50	145	M10	O深さ	20	110	8.	6貫通	į	14區	至ぐり深さ8.	.6	20	44	M10貫通	26	8	2	25		20	22
φ63	160	M10	D深さ	20	124	8.	6貫通	i	14座ぐり深さ8.6				55	M10貫通	26	8	2	25		20	26
記号	s	U	V	w	x	Y	Y														
チューブ内径(mm)		.		•	^	'	1'														
φ32	39	93	25	45	19-	2 12	2 3	9													
φ40	43	102	32	54	19	2 12	2 4	2													


注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

φ50 49 125 38 66 22-⁰ 16 45 φ63 56 140 50 79 22-2 16 52

外形寸法図 (チューブ内径: *φ*80)

● 標準・片ロッド形 STS-M

● 耐食形 STS-M-M·M1

注1:寸法Qについては M (すべり軸受) の場合 ϕ 40、B (ころがり軸受) の場合 ϕ 35 となります。

シリンダ スイッチ

STM

STG

STS ·

STR2

UCA2

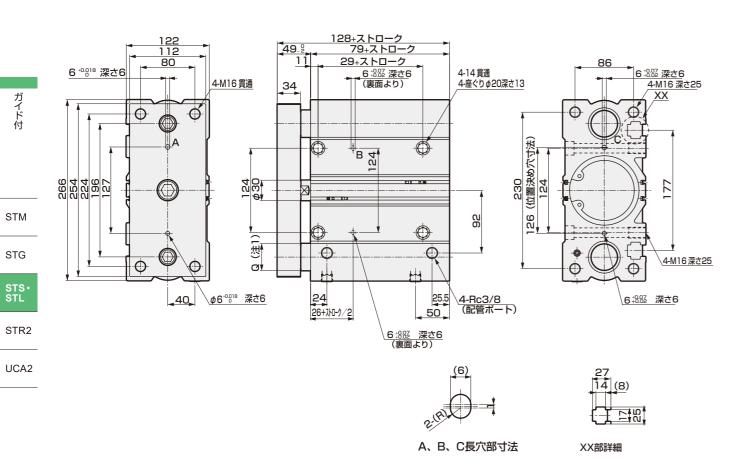
巻末

488

CKD

シリンダ スイッチ

巻末

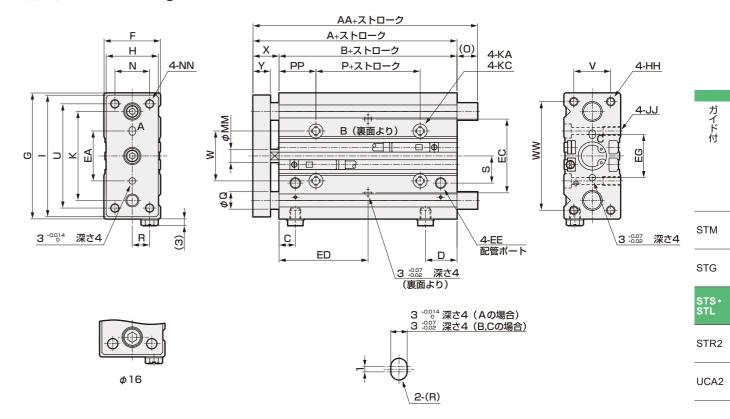

489

ロングストロークφ8・φ12・φ16

外形寸法図(チューブ内径: *φ* 100)

● 標準・片ロッド形 STS- M

● 耐食形 STS- M-M·M1



注1:寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。 注2:各スイッチ付の寸法は、636ページ、637ページをご参照ください。

外形寸法図 (チューブ内径: ϕ 8・ ϕ 12・ ϕ 16)

●標準・片ロッド形 STL-™

● 耐食形 STL-M -M·M1

<u>記号</u> チューフ៉p径(mm)\	標準ス	(10-	-ク(m	m)	A	AA	В	С	D	DD	E	E	EA	EC		ED		E	G	F	G	н	HI	4
φ8	E0 -	7E 10	00、12	_	40	46	28	11	14.5	6.5	N	15	20	25	1	5+ ^{スト}	ローク 2	2	20	24	53	22	M4深	さ8
φ12			5, 200		44	53.5	32	7.5	14.5	7.5	N	15	23	34		6+ ^{スト}	_	2	20	26	58	24	M4深	さ8
φ16	15	U. 17	J, 200	<u> </u>	45	64	32	7.5	17	7.5	IV	15	24	36	1	6+ ^{スト}	<u>ローク</u> 2	2	24	30	64	28	M5深	さ10
記号						KA			K	С		ММ	N		IN	o	Р	PP			G	!		R
チューブ内径(mm)	骚(mm)∖			K		IX.	`					IVIIVI	'		114					STL-	М	ST	L-B	
φ8	51	M4%	深さ10					6.5	をぐり)深さ	3.3	4	15	M4	貫通	6	-10	20		6		ļ	5	7.5
φ12	56	M4%	深さ10	41		3.3貫	通	6.5	を ぐり)深さ	3.3	6	16	M4	貫通	9.5	-2	17		8		(6	8
<i>φ</i> 16	62	M5%	深さ10	46	3	4.3貫	通	8	座ぐり	深さ4	.4	8	18	M5	貫通	19	-2	17		10		1	3	10
記号 チューフn経(mm)	s	U	V	W	wv	x	Y																	
φ8	13.5	43	16	25	45	12.	0 1.5 8																	
φ12	12.5	48	17	23	50	12.	0 8																	
φ16	13	52	22	25	54	13.	D 1.5 9																	

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2:各スイッチ付の寸法は、636ページ、637ページをご参照ください。

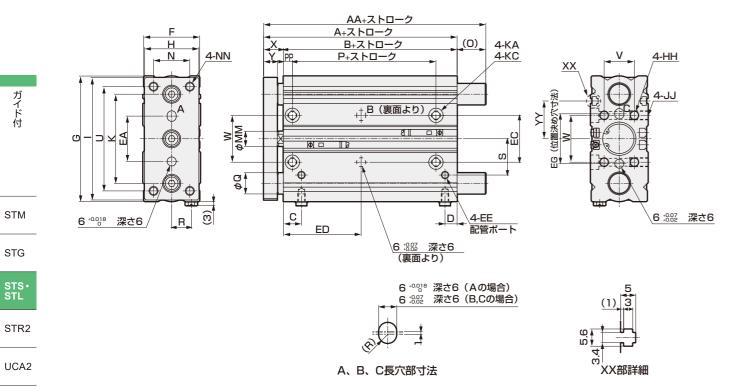
シリンダ スイッチ

巻末

シリンダ スイッチ

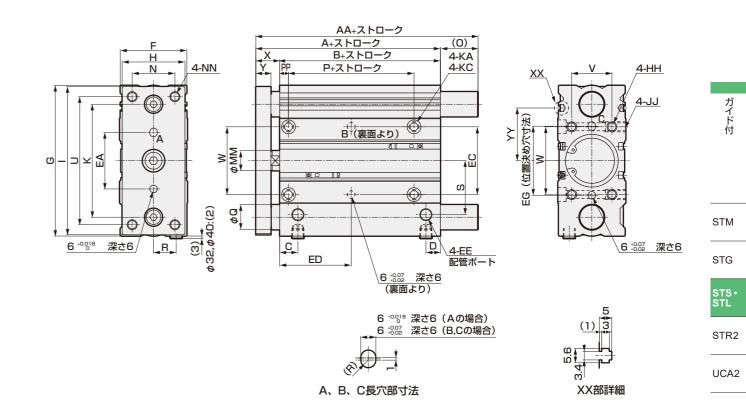
巻末

491


490 **CKD**

ロングストロークφ 32・φ 40・φ 50・φ 63

外形寸法図 (チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63) 外形寸法図(チューブ内径: *φ*20・*φ*25)


●標準・片ロッド形 STL-☆

● 耐食形 STL-M-M·M1

記号 チューフ៉p径(mm)\		標準に	ストロ	一ク	(mm)		Α	AA	В	С	D		EE		EA	EC	EG			D		F	G	н
φ20	50、7	5、100、	125、	150、	175、20	00、22	25、	53	72	40	12	8		M5		30	31	33		14.0			38	83	36
φ25	250	、275、	300	325、	350、37	5、40	0	54	72	41	1 12	9		M5		32	35	37		14.5	<u>ストロ-</u> 2	<u>-ク</u>	42	86	38
記号		4H			JJ		К		KA			KC		мм	N	,	NN		0	Р	PP		Q		В
チューブ内径(mm)		117			JJ		K		KA			N.C		IVIIVI	,	۱ '	ININ		١		FF	STL-	M S	TL-B	n
φ20	M6	架さ12	2 8	1 [M6深さ	12	59	5	.2貫通	1	9.5座<	り深さ	5.4	10	2	4	M6貫	通	19	20	6	14	.	12	13
φ25	M6	架さ12	2 8	4 1	M6深さ	12	63	5	.2貫通	<u> </u>	9.5座<	り深さ	5.4	12	2	6	M6貫	通	18	20	6	14	.	12	14
記号 チューフ៉p径(mm)	S	U	V	w	х	Υ	Υ	Y																	
φ20	24	69	20	31	13-2	9	2	5																	
φ25	26	72	24	35	13-2	9	2	7																	

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。 ● 標準・片ロッド形 STL-M ● 耐食形 STL-M -M·M1

記号 チューフ៉州経(mm)\	標準	基ストローク()	mm)	А	АА	В	С	О	E	=	EA	EC	EG	3	ED		F	G	н	Н	Н
φ32				68	102	49	14	10.5	Rc1	/8	42	45	46	3	17.5+ ⁻²	<u>トローク</u> 2	47	111	45	M8深	さ16
φ40		75、100、125、 200、225、250		72	102	53	14.5	12	Rc1	/8	45	54	55	5	19.5+ ⁻²	トローク 2	54	120	50	M8深	さ 16
φ50		325、350、37!		77	125	55	16	12.5	Rc1	/4	55	66	69)		トローク 2	66	147	64	M10潟	き20
φ63	0000	020, 000, 07,	J. 700	83	125	61	17.5	17.5	Rc1	/4	62	79	82	2 2	22.5+ ⁻²	<u>トローク</u> 2	79	162	75	M10潔	き20
記号 チューフែト醛(mm)\	ı	JJ	К	KA		K	2	ММ	N	NN		0	Р	PP	STL-M	ີ່ STL-l	R B	s	U	V	w
φ32	109	M8深さ16	81	6.3貫	通 1	1座ぐり	深さ6.5	16	29	M8貫	通 3	34	22	7	20	16	16	39	9	3 25	45
φ40	118	M8深さ16	90	6.3貫	通 1	1座ぐり	深さ6.5	16	34	M8貫	通 3	30	25	7	20	16	18	43	3 10	2 32	54
φ50	145	M10深さ20	110	8.6貫	通 14	4座ぐり	深さ8.6	20	44	M10賃	通	48	26	8	25	20	22	49	12	5 38	66
φ63	160	M10深さ20	124	8.6貫	通 14	4座ぐり	深さ8.6	20	55	M10賃	通 4	42	26	8	25	20	26	56	14	0 50	79
記号 チューフヤヤ経(mm)\		Y																			
φ32	19-2	12 39																			

ナューフ内径(MM) \			
φ32	19-2	12	39
φ40	19-2	12	42
φ50	22.2	16	45
φ63	22.2	16	52

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

STM

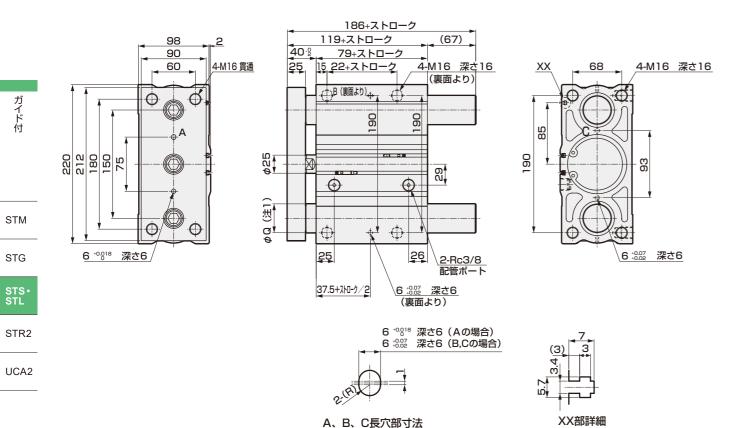
STG

STS. STL

STR2

巻末

492


CKD

シリンダ スイッチ 巻末

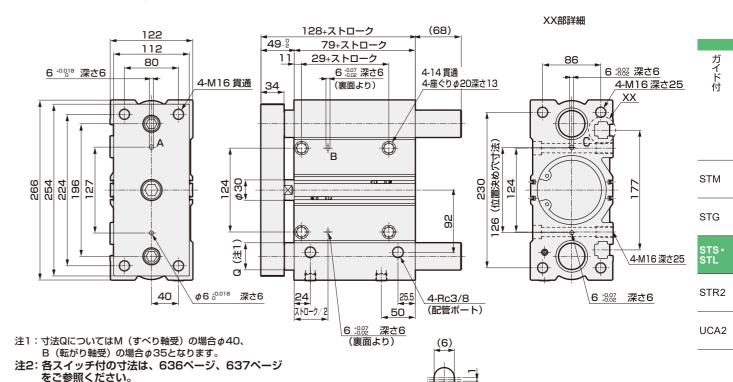
27 14 (8)

●標準・片ロッド形 STL-M

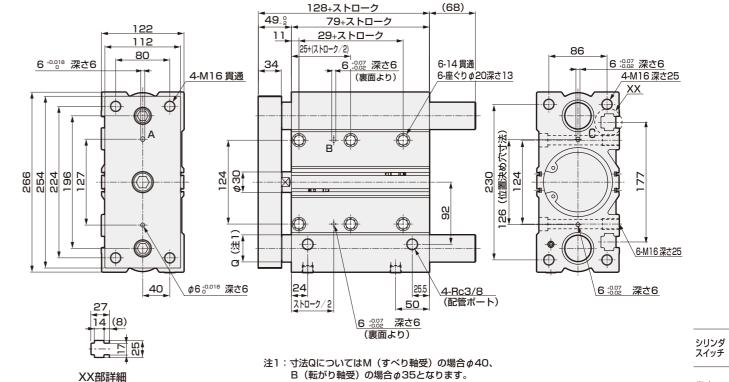
STL-^M-M⋅M1 ● 耐食形

注1:寸法QについてはM(すべり軸受)の場合 ϕ 40、B(ころがり軸受)の場合 ϕ 35となります。

注2:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 ϕ 80の標準ストロークは、75 \sim 400mmのあいだで25mm毎です。


注3: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

外形寸法図(チューブ内径: ø100)


●標準・片ロッド形 STL-

STL-M-M·M1 ● 耐食形

<100ストローク以下>

<125ストローク以上>

巻末

B (転がり軸受) の場合 ϕ 35となります。 注2: 各スイッチ付の寸法は、636ページ、637ページ をご参照ください。

A,B,C 長穴部寸法

CKD

494

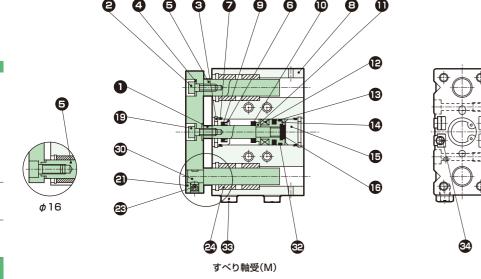
CKD

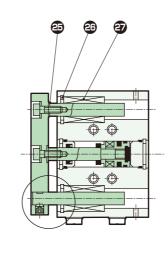
内部構造図・材質 (チューブ内径: φ8~φ63)

● 複動・標準片ロッド形 STS-[™]

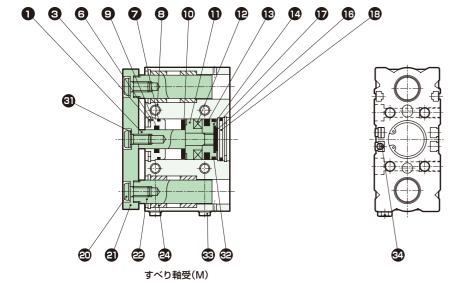
 $\phi 8 \cdot \phi 12 \cdot \phi 16$

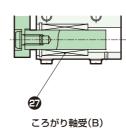
 ϕ 20 · ϕ 25

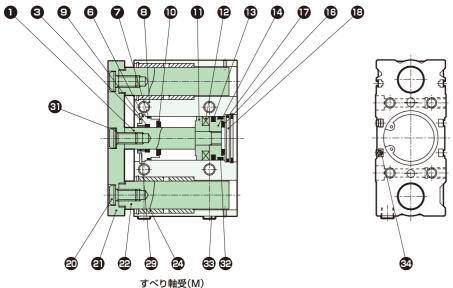

STM

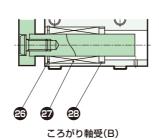

STG

STS.

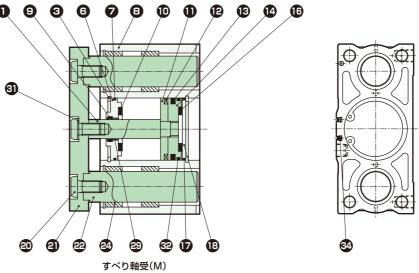

STR2

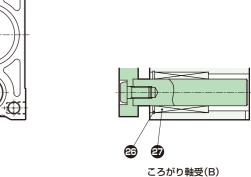

UCA2




ころがり軸受(B)

 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63




内部構造図・材質 (チューブ内径: φ80)

φ80: 鋼

● 複動・標準片ロッド形 STS-₩

φ80

品番	部品名称		材質	備考	品番	部品名称		材質	備考
1	ピストンロッド		φ8~25 : ステンレス鋼	工業用クロムめっき	19	六角ナット(φ8)		鋼	亜鉛クロメート
1			φ32~φ80 : 鋼		19	六角穴付ボルト(φ12、φ	16)	鋼	亜鉛クロメート
2	六角穴付ボルト		鋼	亜鉛クロメート	20	六角穴付ボタンボル	· ト	鋼	亜鉛クロメート
3	C形止め輪		鋼	リン酸亜鉛	21	エンドプレート		アルミニウム合金	アルマイト
4	平座金		鋼	黒染	22	ガイドロッド(φ20~φ80)	М	鋼	工業用クロムめっき
5	ガイドロッド(1)	М	ステンレス鋼	φ12,16: 工業用クロムめっき	22		В	合金鋼	工業用クロムめっき
5	(φ8~φ16)	В	合金鋼	工業用クロムめっき	23	六角穴付止めねじ		鋼	黒染(φ8、φ12のみ)
6	ロッドメタル		アルミニウム合金	φ12~25: アルマイト	24	メタル		含油軸受合金	
ь				φ32~50 : クロメート	25	平座金		鋼	黒染
7	メタルガスケット		ニトリルゴム		26	C形止め輪		鋼	リン酸亜鉛
8	シリンダ本体		アルミニウム合金	硬質アルマイト	27	ボールブシュ			
9	ロッドパッキン		ニトリルゴム		28	カラー		アルミニウム合金	
10	クッションゴム(R)		ウレタンゴム		29	ブシュ		軸受合金	
11	スペーサ		φ8~φ12、φ63、φ80:アルミニウム合金	φ8~φ12、φ63、φ80:クロメート	30	ガイドロッド(2)	М	ステンレス鋼	φ12: 工業用クロムめっき
			φ20∼φ50∶ポリアミド		30	(φ8, φ12)	В	合金鋼	工業用クロムめっき
12	磁石				31	さらばね座金		鋼	
13	ピストンパッキン		ニトリルゴム		32	ウェアリング		ポリアセタール	φ12~φ80のみ
14	ピストン		アルミニウム合金	φ8、φ20~φ80:クロメート	33	プラグ			φ12~φ25:FPL(CKD)
15	カバー		アルミニウム合金		33			φ32~φ63:鋼	φ32~φ63: 亜鉛クロメート
16	クッションゴム(H)		ウレタンゴム		スイ	ッチ付			
17	ロリング		ニトリルゴム		34	スイッチ			
10	底板		φ20~φ63: アルミニウム合金	φ20~φ63 : クロメート					

CKD

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

φ80: 亜鉛クロメート

巻末

シリンダ スイッチ

STM

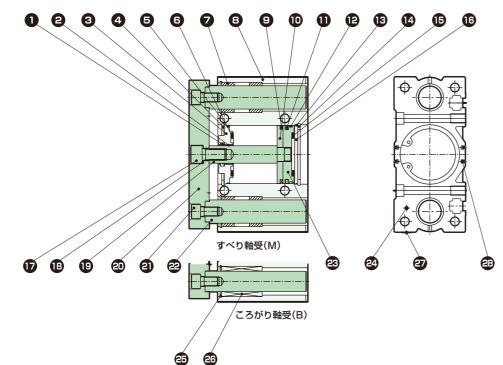
STG

STR2

UCA2

内部構造図・材質 (チューブ内径: φ100)

● 複動・標準片ロッド形 STS-∄

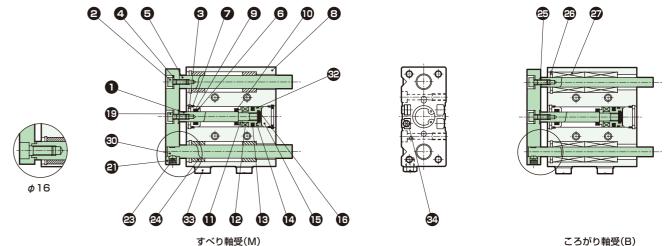

φ100

STG

STS.

STR2

UCA2

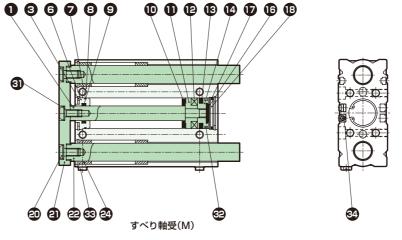

形番	部品名称	材質	備考	形番	部品名称	材質	備考
1	ロッドパッキン	ニトリルゴム		16	底板	鋼	亜鉛クロメート
2	ブシュ	軸受合金		17	六角穴付ボルト	鋼	亜鉛クロメート
3	ロッドメタル	アルミニウム合金	クロメート	18	さらばね座金	鋼	亜鉛クロメート
4	C形止め輪	鋼	リン酸亜鉛	19	ピストンロッド	鋼	工業用クロムめっき
5	メタルガスケット	ニトリルゴム		20	エンドプレート	アルミニウム合金	アルマイト
6	クッションゴム(R)	ウレタンゴム		21	六角穴付ボルト	鋼	亜鉛クロメート
7	メタル	含油軸受合金		22	ガイドロッド	鋼	工業用クロムめっき
8	チューブ本体	アルミニウム合金	硬質アルマイト	23	ピストン	アルミニウム合金	クロメート
9	磁石			24	六角穴付止めねじ	鋼	黒染
10	スペーサ	アルミニウム合金	クロメート	25	C形止め輪	鋼	リン酸亜鉛
11	ピストンパッキン	ニトリルゴム		26	ボールベアリング		
12	ウェアリング	ポリアセタール		27	プラグ	鋼	ニッケルめっき
13	ロリング	ニトリルゴム		スイッ	· チ付		
14	C形止め輪	鋼	リン酸亜鉛	28	スイッチ		
15	クッションゴム(H)	ウレタンゴム					

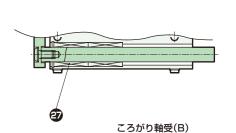
内部構造図・材質 (チューブ内径: ϕ 8~ ϕ 63)

● 複動・標準片ロッド形 STS-[™]

φ8·φ12·φ16

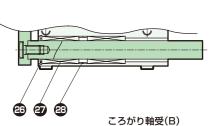
 ϕ 20 · ϕ 25




STG

STR2

UCA2


STM

φ32 · φ40 · φ50 · φ63

シリンダ スイッチ

巻末

巻末

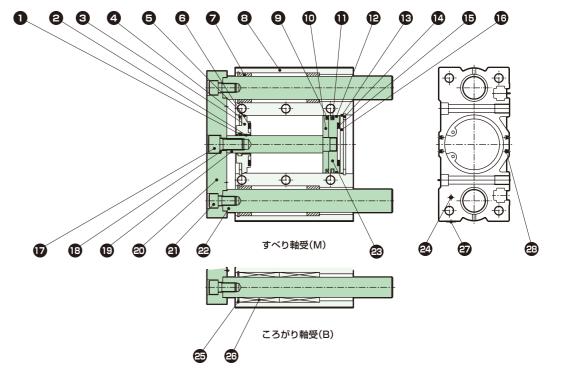
シリンダ スイッチ

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

内部構造図・材質 (チューブ内径: φ80)

●標準片ロッド形 \$\phi\$80 STL-M

49 すべり軸受(M) ころがり軸受(B)


3.	品番
•	1
R2	
	3
42	4
	5

STG

品番	部品名称		材質	備考	番品	部品名称		材質	備考
	ピストンロッド		φ8~25: ステンレス鋼	工業用クロムめっき	19	六角ナット(φ8)		鋼	亜鉛クロメート
1			φ32~φ80 : 鋼		19	六角穴付ボルト(φ12、φ	16)	鋼	亜鉛クロメート
2	六角穴付ボルト		鋼	亜鉛クロメート	20	六角穴付ボタンボル	, 卜	鋼	亜鉛クロメート
3	C形止め輪		鋼	リン酸亜鉛	21	エンドプレート		アルミニウム合金	アルマイト
4	平座金		鋼	黒染	22	ガイドロッド(φ20~φ80)	М	鋼	工業用クロムめっき
5	ガイドロッド(1)	М	ステンレス鋼	φ12,16: 工業用クロムめっき	22		В	合金鋼	工業用クロムめっき
5	(¢8∼¢16)	В	合金鋼	工業用クロムめっき	23	六角穴付止めねじ		鋼	黒染(φ8、φ12のみ)
6	ロッドメタル		アルミニウム合金	φ12~25: アルマイト	24	メタル		含油軸受合金	
ь				φ32~50∶クロメート	25	平座金		鋼	黒染
7	メタルガスケット		ニトリルゴム		26	C形止め輪		鋼	リン酸亜鉛
8	シリンダ本体		アルミニウム合金	硬質アルマイト	27	ボールブシュ			
9	ロッドパッキン		ニトリルゴム		28	カラー		アルミニウム合金	
10	クッションゴム(R)		ウレタンゴム		29	ブシュ		軸受合金	
11	スペーサ		φ8~φ12、φ63、φ80:アルミニウム合金	φ8~φ12、φ63、φ80:クロメート	30	ガイドロッド(2)	М	ステンレス鋼	φ12: 工業用クロムめっき
11			φ20~φ50 : ポリアミド		30	(φ8, φ12)	В	合金鋼	工業用クロムめっき
12	磁石				31	さらばね座金		鋼	
13	ピストンパッキン		ニトリルゴム		32	ウェアリング		ポリアセタール	φ12~φ80のみ
14	ピストン		アルミニウム合金	φ8、φ20~φ80:クロメート	33	プラグ			φ12~φ25:FPL(CKD)
15	カバー		アルミニウム合金		33			φ32~φ63:鋼	φ32~φ63:亜鉛クロメート
16	クッションゴム(H)		ウレタンゴム		スイ	ッチ付			
17	ロリング		ニトリルゴム		34	スイッチ			
18	底板		φ20~φ63: アルミニウム合金	φ20~φ63: クロメート					
18			φ80:鋼	φ80: 亜鉛クロメート					

内部構造図・材質 (チューブ内径: φ100)

● 複動・標準片ロッド形 φ100 STL-M_B

形番	部品名称	材質	備考	形番	部品名称	材質	備考
1	ロッドパッキン	ニトリルゴム		16	底板	鋼	亜鉛クロメート
2	ブシュ	軸受合金		17	六角穴付ボルト	鋼	亜鉛クロメート
3	ロッドメタル	アルミニウム合金	クロメート	18	さらばね座金	鋼	
4	C形止め輪	鋼	リン酸亜鉛	19	ピストンロッド	鋼	工業用クロムめっき
5	メタルガスケット	ニトリルゴム		20	エンドプレート	アルミニウム合金	アルマイト
6	クッションゴム(R)	ウレタンゴム		21	六角穴付ボルト	鋼	亜鉛クロメート
7	メタル	含油軸受合金		22	ガイドロッド	鋼	工業用クロムめっき
8	チューブ本体	アルミニウム合金	硬質アルマイト	23	ピストン	アルミニウム合金	クロメート
9	磁石			24	六角穴付止めねじ	鋼	黒染
10	スペーサ	アルミニウム合金	クロメート	25	C形止め輪	鋼	リン酸亜鉛
11	ピストンパッキン	ニトリルゴム		26	ボールベアリング		
12	ウェアリング	ポリアセタール		27	プラグ	鋼	ニッケルめっき
13	ロリング	ニトリルゴム		スイッ	チ付		
14	C形止め輪	鋼	リン酸亜鉛	28	スイッチ		
15	クッションゴム(H)	ウレタンゴム				· · · · · · · · · · · · · · · · · · ·	

シリンダ スイッチ

巻末

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 シリンダ スイッチ

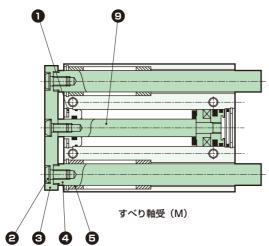
STR2

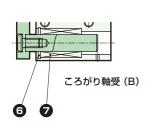
UCA2

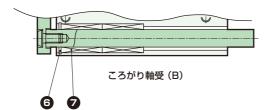
CKD

● 耐食形 STS-M-M·M1

STM


STG


STS.


STR2

UCA2

● 耐食形 STL-M-M·M1

(下記部品以外は複動標準片ロッド形と同じです。497ページ~501ページをご参照ください。)

形番	部品名称	材質	備考	形番	部品名称	材質	備考
1	C形止め輪	ステンレス鋼		5	メタル	軸受合金鋼	
2	六角穴付ボタンボルト(φ8~φ80)	ステンレス鋼		6	アダプタ(φ8~φ16)	アルミニウム合金	
_	六角穴付ボルト(ø100)	人ノンレ人到		١	C形止め輪(φ32~φ100)	ステンレス鋼	
3	エンドプレート	M:アルミニウム合金	アルマイト	7	ボールブシュ	ステンレス製	
	エントフレート	M1:ステンレス鋼		8	ピストンロッド	ステンレス鋼	工業用クロムめっき
4	ガイドロッド	ステンレス鋼	工業用クロムめっき(Mタイプのみ)	9	ピストンロッド	ステンレス鋼	工業用クロムめっき

STG

UCA2

シリンダ スイッチ

巻末

502

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

CKD

シリンダ スイッチ

CKD

503

(出力)

表示灯

点 特殊機能

注7: T2WLH、T2WLVのみ選定

例) リード線長さ 1m TOH 3m TOH3 5m TOH5

STM

STG

STR2

UCA2

※リード線長さ、コネクタ仕様

負荷電圧(V) 負荷電流(mA) リード線 注1 AC DC AC DC ストレート L字 5~100 **T1H**% **T1V**% 10~30 5~20 注2 **T2H**※ **T2V**% _ 注7 **T3H**% **T3V**% 30以下 100以下 T3PH% T3PV% 24±10% 5~20 **T2WH**% **T2WV**

7 オプション

内容

エンドプレート材質:鋼

記号

85~265 2線 1色 3線(NPN) 3線(PNP) 2線 2色 3線(NPN) 30以下 50以下 | T3WH※ | T3WV % 2色 T2WLH%|T2WLV 耐水性 24±10% 向上 5~20 T2YD* _ 2色交流 24±10% 磁界用 _ _ T2YDT% 2線 1色 オフディレ 10~30 T2JH% T2JV% タイプ 5~20 1色 注2 耐屈曲リード 10~30 T2HR3 T2VR3 線タイプ 7~20 TOV* 110 12/24 5~50 TOH* 1色 20以下 50以下 **T5H**% **T5V**% 表示灯なし 110 5/12/24 7~20/ 1色 110/220 12/24 5~50 **T8H**% **T8V**%

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

注2:上記の負荷電流の最大値:20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、 20mAより低くなります。(60℃のとき5~10mAとなります。)

7~10

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの 使用を推奨します。

注4: φ8~φ16はT8H/Vを搭載できません。

6 スイッチ数

記号

R

Н

D

注5: ø40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、**●**と**②**の間に"L1"を入れてーで 結んでください。(ただし、T2WH/V、T3WH/Vは除く。) 例) STS-MP-L1-63-50-T1H3-D-F

φ80は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。

この場合、❶と❷の間に"L1" を入れた形番で手配してください。 例) STS-MP-L1-80-50-F

注6:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

ねじ種類
内容
M5(φ8~φ25)
Rcねじ(ø32~ø80)
NPTねじ(ø32以上)カスタム品
Gねじ(ø32以上)カスタム品

スイッチ オプション

RoHS

Ø

Ø

Ø

Ø

一一一	rit
8	φ8
12	φ12
16	φ16
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

ガイド付シリンダ 複動・ストローク調整形

8

8

8

40

8

8

8

40

内径

② チューブ内径(mm) 記号 内突

注 1: ø80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

P-L1-

回路図記号

M

(STS)-(M)P-L1-(

軸受

(STS)-(

機種形番

(STS)-

機種形番

(STL)-

機種形番

機種形番

(STL)-

STS·STL-MP Series

3

➌

3

3

3

3

種類

● チューブ内径: Ø8・Ø12・Ø16・Ø20・Ø25・Ø32

 $\phi 40 \cdot \phi 50 \cdot \phi 63 \cdot \phi 80$

4

4

10

4

50

4

50

4

4

チューブ 配管ねじ ストローク スイッチ

T2H

0

0

T2H

0

0

形番

0

0

0

4 ストローク(mm)

すべり軸受

ころがり軸受

形番表示方法

●ショートストローク

スイッチなし(注1)

(スイッチ用磁石内蔵)

スイッチ付(注1)

(スイッチ用磁石内蔵)

STM

STG

STS STL

STR2

UCA2

2色表示、T1H/V、T8H/V、

オフディレータイプスイッチ付

●ロングストローク

スイッチなし(注1)

(スイッチ用磁石内蔵)

スイッチ付(注1)

2色表示、T1H/V、T8H/V、

オフディレータイプスイッチ付

(スイッチ用磁石内蔵)(φ40以上) 機種形番

内容

(スイッチ用磁石内蔵)

● 軸受方式

記号

В

(スイッチ用磁石内蔵)(φ40以上) 機種形番

シリ	ストロ	ーク		適用チューブ内径										
Ļ	(mn	1)	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80		
		10	•											
		20	•		•									
STS	標準 ストローク	25							•			•		
		30	•		•									
		40	•											
		50	•		•		•		•	•		•		
		75										•		
		100										•		

注:中間ストロークは対応できません。ストローク調整機構でストローク調 整をしてください。

シリ	ストロ	ーク				適月	<u> </u>	ーブゲ]径			
シリーズ	(mn	1)	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80
		50			•		•	•	•	•	•	
		75								•		•
		100							•		•	
		125										
		150										•
		175										
s		200										•
S		225										
ᆫ		250										
		275										
		300										•
		325										
		350										
		375										
		400										

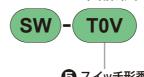
478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

バリエーション・オプションの組合せについては、

カスタム品の仕様について

ロッド側1個付

ヘッド側1個付


2個付 3個付

	・フセングがくだこから
記号	内容
-0	ポート対称形

形番例)

STS/L-MP-----

スイッチ単品形番表示方法

⑤ スイッチ形番

スイッチ

巻末

504 CKD

スイッチ

巻末

仕様

				STS	MP/BP	STL-M	P/BP			
mm	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80
				i	复動・ストロ	コーク調整刑	1			
					圧縮	空気				
MPa					1.	.0				
MPa			0.2					0.15		
MPa					1.	.6				
Ĉ				-10~	·60 (ただし	ノ、凍結なき	こと)			
			M5			Rc	1/8	Rc	1/4	Rc3/8
¥ mm					+2	2.0				
토 !!!!!!					()				
mm/s				50~	·500				50~	·300
			ゴノ	クッション	′付、押出し	時ショック	アブソーバ・	一付		
⊞ mm					2	5				
			不	要(給油時	はタービンジ	由1種ISOV	G32を使用)		
⊭ — J	0.029	0.056	0.088	0.157	0.157	0.401	0.627	0.980	1.560	2.510
	MPa MPa MPa °C	MPa MPa MPa C E mm mm/s	MPa MPa MPa C E mm mm/s	MPa 0.2 MPa 0.2 MPa	mm	複動・ストロ 圧縮 MPa 0.2 MPa 0.2 MPa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mm	mm	mm	mm

STM

STG

STS. STL

STR2

UCA2

ストローク

● ショートストロークSTS

チューブ内径	標準ストローク	最大ストローク	最小ストローク	スイッチ付最小ス	ストローク(mm)
テューフ的生	(mm)	(mm)	(mm)	T2WL	その他スイッチ
φ8				25	
φ12	10,20,30,40,50		10	15	10
φ16					
φ20					
φ25		50			
φ32	25.50			25	25
φ40	25,50		25	注1	
φ50					<u></u>
φ63					
φ80	25,50,75,100	100			

● ロングストロークSTL

チューブ内径	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ8	50,75,100,125,150			
φ12	175,200	200		
φ16	175,200			
φ20				50
φ25	50,75,100,125,150		50	注1
φ32	175,200,225,250			<u> </u>
φ40	275,300,325,350			
φ50	375,400	400		
φ63]			
	75,100,125,150,175			75
φ80	200,225,250,275,300		75	
	325,350,375,400			注2

注1:スイッチ1個付、または2個付の場合です。

シリンダ スイッチ

巻末

506 **CKD**

理論推力表

チューブ内径 使用圧力 MPa 0.5 0.9 (mm) 0.15 0.2 0.3 0.4 0.6 0.7 8.0 1.0 方向 20.1 10.1 15.1 25.1 30.2 35.2 40.2 45.2 50.3 Push φ8 Pull 7.54 11.3 15.1 18.8 22.6 26.4 37.7 30.2 33.9 22.6 45.2 56.5 67.9 79.2 90.5 1.02×10² 1.13×10² Push 33.9 φ12 59.4 Pull 17.0 25.4 33.9 42.4 50.9 67.9 76.3 84.8 80.4 $1.01 \times 10^2 | 1.21 \times 10^2 |$ 1.41×10² 1.61×10²|1.81×10²|2.01×10² 40.2 60.3 Push φ16 $|1.06 \times 10^{2}|1.21 \times 10^{2}|1.36 \times 10^{2}|1.51 \times 10^{2}|$ Pull 30.2 45.2 60.3 75.4 90.5 62.8 94.2 1.26×10² 1.57×10^{2} 1.88×10^{2} 2.20×10^{2} 2.51×10^{2} 2.83×10^{2} 3.14×10^{2} Push φ20 1.18×10^{2} 1.41×10^{2} 1.65×10^{2} 1.88×10^{2} 2.12×10^{2} 2.36×10^{2} 47.1 70.7 94.2 _ 1.47×10^{2} 1.96×10^{2} 2.45×10^{2} 2.95×10^{2} 3.44×10^{2} 3.93×10^{2} 4.42×10^{2} 4.91×10^{2} φ25 75.6 1.13×10^{2} 1.51×10^{2} 1.89×10^{2} 2.27×10^{2} 2.64×10^{2} 3.02×10^{2} 3.40×10^{2} 3.78×10^{2} 1.21×10^{2} 1.61×10^{2} 2.41×10^{2} 3.22×10^{2} 4.02×10^{2} 4.83×10^{2} 5.63×10^{2} 6.43×10^{2} 7.24×10^{2} 8.04×10^{2} Push φ32 1.21×10^{2} 1.81×10^{2} 2.41×10^{2} 3.02×10^{2} 3.62×10^{2} 4.22×10^{2} 4.83×10^{2} 5.43×10^{2} 6.03×10^{2} $1.88 \times 10^{2} | 2.51 \times 10^{2} | 3.77 \times 10^{2} | 5.03 \times 10^{2} | 6.28 \times 10^{2} | 7.54 \times 10^{2} | 8.80 \times 10^{2} | 1.01 \times 10^{3} | 1.13 \times 10^{3} | 1.26 \times 10^{3$ φ40 1.58×10^{2} 2.11×10^{2} 3.17×10^{2} 4.22×10^{2} 5.28×10^{2} 6.33×10^{2} 7.39×10^{2} 8.44×10^{2} 9.50×10^{2} 1.06×10^{3} 2.95×10^{2} 3.93×10^{2} 5.89×10^{2} 7.85×10^{2} 9.82×10^{2} 1.18×10^{3} 1.37×10^{3} 1.57×10^{3} 1.77×10^{3} 1.96×10^{3} φ50 2.47×10^{2} 3.30×10^{2} 4.95×10^{2} 6.60×10^{2} 8.25×10^{2} 9.90×10^{2} 1.15×10^{3} 1.32×10^{3} 1.48×10^{3} 1.65×10^{3} 4.68×10² 6.23×10² 9.35×10² 1.25×10³ 1.56×10³ 1.87×10³ 2.18×10³ 2.49×10³ 2.81×10³ 3.12×10³ φ63 4.20×10^{2} 5.61×10^{2} 8.41×10^{2} 1.12×10^{3} 1.40×10^{3} 1.68×10^{3} 1.96×10^{3} 2.24×10^{3} 2.52×10^{3} 2.80×10^{3} 7.54×10^{2} 1.01×10^{3} 1.51×10^{3} 2.01×10^{3} 2.51×10^{3} 3.02×10^{3} 3.52×10^{3} 4.02×10^{3} 4.52×10^{3} 5.03×10^{3} φ80 Pull 6.80×10² 9.07×10² 1.36×10³ 1.81×10³ 2.27×10³ 2.72×10³ 3.17×10³ 3.63×10³ 4.08×10³ 4.54×10³

シリンダ質量については642ページ~645ページをご参照ください。

STS

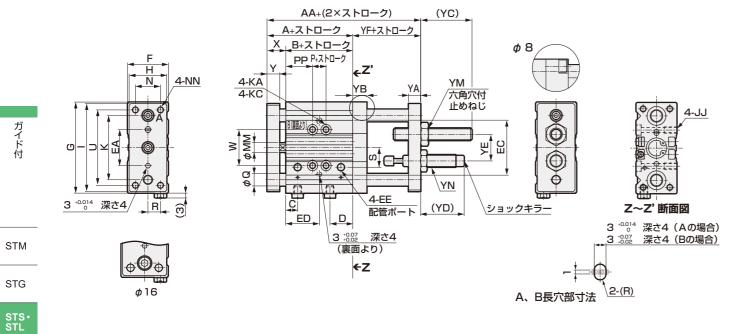
STR2

OTIVE

UCA2

シリンダ スイッチ

STM


STG

STR2

UCA2

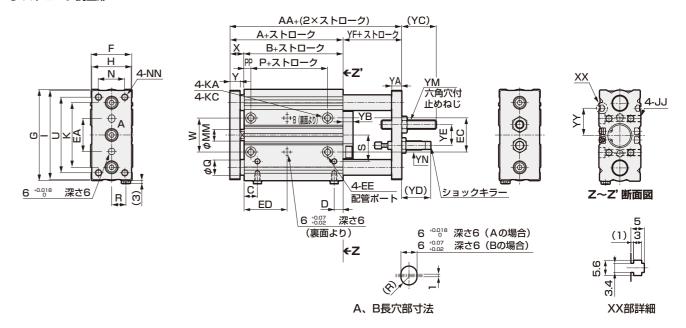
外形寸法図 (チューブ内径: ϕ 8・ ϕ 12・ ϕ 16)

● ストローク調整形

記号 チューブ内径(mm) \	標準	隼ストロ	コーク	(mm)	А	A	A E	С	D	EE	EA	E	С	ED		F	G	н
φ8		10.	20、3	0	40	67	.5 28	3 11	14.5	М5	20	2		5+ ^{スト}	-	24	53	22
φ12			20, 3 , 50	U	44	71	.5 3	2 7.5	14.5	M5	23	3		6+ ^{スト}	_	26	58	24
φ16		40	, 50		45	73	.5 3	2 7.5	17	М5	24	3	6 1	6+ ^{スト}	<u>ローク</u> 2	30	64	28
記号		J,		К	KA		K	C	ММ	N		NN	Р	PP		Q		В
チューブ内径(mm) \	•									<u> </u>				<u> </u>	STS	-M S	TS-B	
φ8	51	M4深	さ10	40	3.3貫	通 6	.5座ぐ	り深さ3.3	4	15	M	4貫通	-10	20	6		5	7.5
φ12	56	M4深	さ10	41	3.3貫	通 6	.5座ぐ	り深さ3.3	6	16	M	4貫通	-2	17	8		6	8
φ16	62	M5深	さ10	46	4.3貫	通 8	3座ぐり	深さ4.4	8	18	M	5貫通	-2	17	10		8	10
記号 チューブ内径(mm) \	S	U	W	х	Υ	YA	ΥВ	YC 注6	YD ä	6 Y	E	YF	YM	Υ	'N	ショッ	クキラ	一形番
φ8	13.5	43	25	12-1.5	8	8	9	32.5	27.5	5 1	7 2	27.5	M8×50	M8>	<0.75	NC	K-00-0	.3-C
φ12	12.5	48	23	12-1.5		8	9	32.5	27.5	5 1	7 2	27.5	M8×50	M8>	<0.75	NC	K-00-0.	.3-C
φ16	13	52	25	13-1.5	9	9	9	31.5	26.5	5 1	7 2	28.5	M8×50	M8>	(0.75	NC	K-00-0.	.3-C

注1:STS-M-8-10(10mm ストローク)時 2-KA、2-KC、2-JJ(取付け穴2カ所)となります。

注2: STS-M-8-10(10mm ストローク)時、ED寸法は5となります。 注3: STS-M-16-10(10mm ストローク)時、JJ寸法M5ねじは図の通り4ヶ所ありますが、取付は2ヶ所となります。


注4: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

注5:中間ストロークの対応はできません。

注6:YC, YD寸法は出荷時の寸法を表示しています。

外形寸法図 (チューブ内径: φ20・φ25)

● ストローク調整形

記号 チューブ内径(mm) \	標準	草スト[コーク	(mm)	1	4	АА	В	С	D	EE	EA	EC		EC)		F	G	н
φ20		25	5, 50		5	3	81.5	40	12	8	M5	30	31	1	14+ ^즈	_		38	83	36
φ25		25	, 50		5	4	84	41	12	9	M5	32	35	1	14.5+	ストローク 2		42	86	38
記号	ī	J.	_	ν	KA			КС		мм	N	NN	,	, ,	PP -		(3		В
チューブ内径(mm) \		J.	,	K	IN.A	`		KU		IVIIVI	IV	IVIV				STS-	М	ST	S-B	"
φ20	81	M6深	さ12	59	5.2貫	通	9.5座	ぐり没	Rさ5.4	10	24	M6貫	通 2	0	6	14			12	13
φ25	84	M6深	さ12	63	5.2貫	通	9.5座	ぐり没	ぷさ5.4	12	26	M6貫	通 2	0	6	14			12	14
記号 チューブ内径(mm) \	S	U	W	х	Υ	Y	A YI	3 Y	2 注3	YD 注3	YE	YF	YM		ΥN	YY	シ	/ヨツ:	クキラ·	一形番
φ20	24	69	31	13 -2	9	9	9	3	31.5	26.5	19	28.5	M8×5	ОМ	8×0.7	'5 25		NCK	-00-0.	3-C
φ25	26	72	35	13 -2	9	9	9		30	29	19	30	M8×5	о м	110×	1 27		NCK	-00-0.	7-C

注1: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。 注2: 中間ストロークの対応はできません。

注3:YC,YD寸法は出荷時の寸法を表示しています。

シリンダ スイッチ

STR2

UCA2

巻末

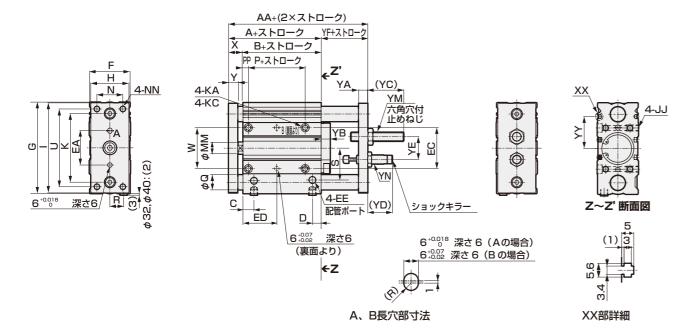
シリンダ スイッチ

巻末

509

外形寸法図(チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● ストローク調整形


STM

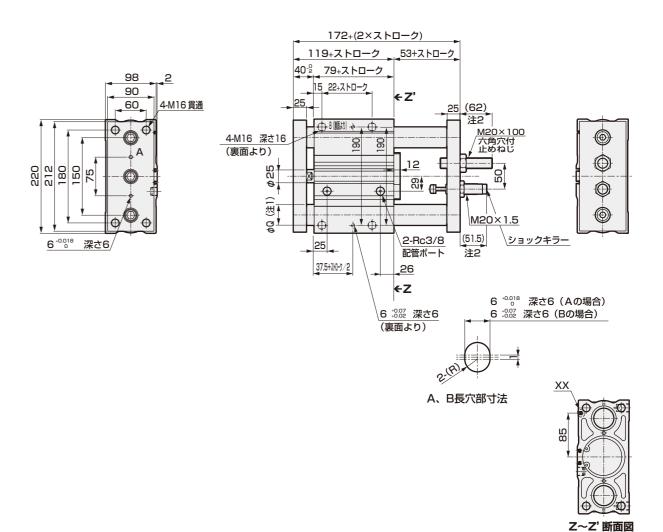
STG

STS ·

STR2

UCA2

標準	ミスト [コーク	(mm)	A	AA	В	С	ı	D	EE	E	A	EC		EC)		F	G	н
					68 1	04.5	49	14	10	D.5 F	Rc1/	8 4	42	45		17.5+	ストローク 2		47	111	45
	25	. FO			72 1	08.5	53	14.5	5 12	2 F	Rc1/	8 4	45	54					54	120	50
	20	, 50			77	124	55	16	12	2.5 F	Rc1/	4 5	55	66			_		66	147	64
				1	83	130	61	17.5	5 17	7.5 F	Rc1/	4 6	32	79		22.5+ ²	ストローク 2		79	162	75
		JJ		к	КА		К	C		ММ	N		NIV	J	P	PP -		_	_		R
				.,											<u> </u>		STS-I	M	ST	S-B	
109	M8	深さ16	6	81	6.3貫道	1	1座ぐり	深さ	6.5	16	29) N	/18貫	通 2	22	7	20		1	6	16
118	M8	深さ10	6	90	6.3貫道	通 1	1座ぐり	深さ	6.5	16	34	l N	/18貫	通 2	25	7	20		1	6	18
145	M1C)深さ2	. 02	110	8.6貫道	通 1.	4座ぐり	深さ	8.6	20	44	I M	10	貫通 2	26	8	25		2	0	22
160	M1C	深さ2	20 .	124	8.6貫道	通 1.	4座ぐり	深さ	8.6	20	55	5 M	10	貫通 2	26	8	25		2	0	26
S	U	W	х	Υ	YA	ΥВ	YC ;	ŧ3	YD:	注3	YE	YF		ΥM		YN	YY	シ	ョック	キラー	-形番
39	93	45	19-2	12	12	12	47.	.5	32	2.5	30	36.5	M1	12×70) N	/112×1	39	ı	NCK-0	00-1.2	-C
43	102	54	19-2	12	12	12	47.	.5	32	.5	30	36.5	M	12×70	N	/112×1	42	ı	NCK-0	00-1.2	C
49	125	66	22-2	16	16	16	51	I	5	2	40	47	M	16×80	M	14×1.5	45		NCK-C	00-2.6	-C
56	140	79	22-2	16	16	16	51	ı	5	2	40	47	M	16×80	M	14×1.5	52		NCK-C	00-2.6	-C
	1 109 118 145 160 S 39 43 49	109 M8. 118 M8. 145 M10. 160 M10. S U 39 93 43 102 49 125	25、50 I JJ 109 M8深さ10 118 M8深さ11 145 M10深さ2 160 M10深さ2 S U W 39 93 45 43 102 54 49 125 66	JJ	JJ K	Bar Ba	Record Record	Bar Ba	68 104.5 49 14 72 108.5 53 14.8 77 124 55 16 83 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 17.8 130 61 130 1	Barage	68 104.5 49 14 10.5 172 108.5 53 14.5 12 15 15 16 12.5 16 13.5 16 13.5 17.5 18 130 61 17.5 17.5 18 130 61 17.5 17.5 18 130 61 17.5 17.5 18 130 61 17.5 17.5 18 130	68 104.5 49 14 10.5 Rc 1/72 108.5 53 14.5 12 Rc 1/77 124 55 16 12.5 Rc 1/83 130 61 17.5 17.5 Rc 1/84 109 M8深さ16 81 6.3貫通 11座ぐり深さ6.5 16 29 18 M8深さ16 90 6.3貫通 11座ぐり深さ6.5 16 34 145 M10深さ20 110 8.6貫通 14座ぐり深さ8.6 20 44 160 M10深さ20 124 8.6貫通 14座ぐり深さ8.6 20 55 160 M10深さ20 124 8.6貫通 14座ぐり深さ8.6 20 55 160 M10 68 104.5 49 14 10.5 Rc1/8 472 108.5 53 14.5 12 Rc1/8 483 130 61 17.5 17.5 Rc1/4 683 130 882 11 Re	68	68 104.5 49 14 10.5 Rc1/8 42 45 72 108.5 53 14.5 12 Rc1/8 45 54 77 124 55 16 12.5 Rc1/4 55 66 83 130 61 17.5 17.5 Rc1/4 62 79 I	68 104.5 49 14 10.5 Rc1/8 42 45 72 108.5 53 14.5 12 Rc1/8 45 54 77 124 55 16 12.5 Rc1/4 55 66 83 130 61 17.5 17.5 Rc1/4 62 79 I	88 104.5 49 14 10.5 Rc1/8 42 45 17.5+ 2 108.5 53 14.5 12 Rc1/8 45 54 19.5+ 2 12 12 47.5 32.5 30 36.5 M12×70 M12×1 49 125 66 22 2 16 16 16 51 52 40 47 M16×80 M14×1.5 1	68	Box 104.5 49 14 10.5 Rc1/8 42 45 17.5+ (2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Box 104.5 49 14 10.5 Rc1/8 42 45 17.5+ (2 - 2 - 2 - 54 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 54 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	68	


注1: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

注2:中間ストロークの対応はできません。

注3:YC, YD寸法は出荷時の寸法を表示しています。

外形寸法図 (チューブ内径: *φ*80)

● ストローク調整形

注1:寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。

注2:出荷時の寸法を表示しています。

注3:中間ストロークの対応はできません。

注4: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ

シリンダ スイッチ

巻末

巻末

CKD

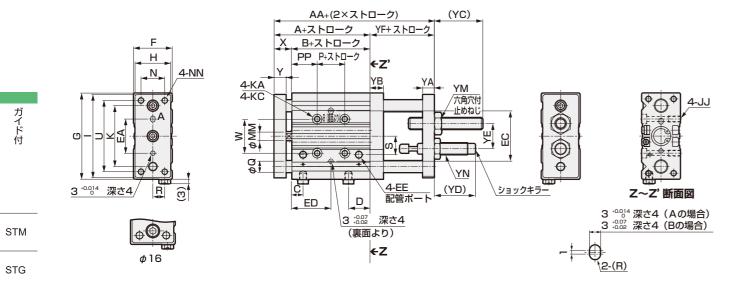
___ 511

510 **CKD**

ניו

STM

STG

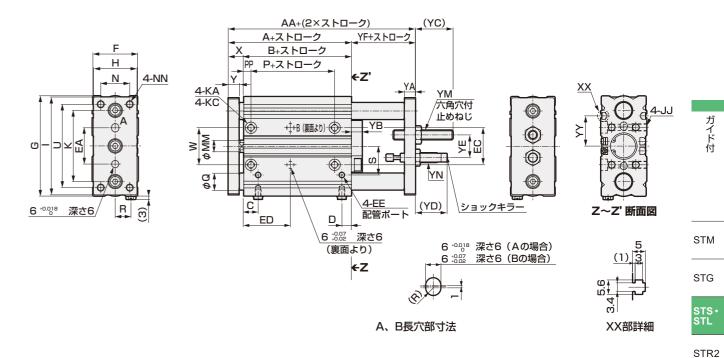

STR2

UCA2

複動・ストローク調整形

外形寸法図 (チューブ内径: ϕ 8・ ϕ 12・ ϕ 16)

● ストローク調整形


記号 チューブ内径(mm) \	標	準スト	ローク	7(mm)		A	AA	В	С	D	EE	EA	EC		E	D		F	G	н
φ8	E0	75	100.	125		40	67.5	28	11	14.5	M5	20	25			ストローク 2	2	24	53	22
φ12			175			44	71.5	32	7.5	14.5	M5	23	34			ストローク 2	2	26	58	24
φ16		150,	175,	200		45	73.5	32	7.5	17	M5	24	36		16+	ストローク 2	3	30	64	28
記号		_	IJ	К	К	Δ		кс		мм	N	NN	l F	,	PP		Ģ			В
チューブ内径(mm) \								RO		101101		INIT				STL-	М	ST	L-B	
φ8	51	M43	に 10	40	3.3	貫通	6.5座	ぐり深る	2.8	4	15	M4貫i	通 -1	0	20	6		į	5	7.5
φ12	56	M43	に 10	41	3.3	貫通	6.5座	ぐり深る	2.8	6	16	M4貫i	通 -2	2	17	8		(3	8
φ16	62	M5%	に 10	46	4.3	貫通	8座ぐ	り深さ	4.4	8	18	M5貫ì	通 -2	2	17	10		8	3	10
記号 チューブ内径(mm) \	S	U	W	х	Υ	YA	ΥВ	YC ž	1 3	YD 注3	YE	YF	ΥN	Л	Υ	'N	ショ	ック	キラー	-形番
φ8	13.5	43	25	12-1.5	8	8	9	32.	5	27.5	17	27.5	M8×	50	M8>	(0.75	N	CK-C	0.0-0	B-C
φ12	12.5	48	23	12-1.5	8	8	9	32.	5	27.5	17	27.5	M8×	50	M8>	(0.75	N	CK-C	0-0.3	B-C
φ16	13	52	25	13-1.5	9	9	9	31.	5	26.5	17	28.5	M8×	50	M8>	(0.75	N	CK-C	0-0.3	B-C

注1: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。 注2: 中間ストロークの対応はできません。

注3:YC,YD寸法は出荷時の寸法を表示しています。

外形寸法図 (チューブ内径: φ20・φ25)

● ストローク調整形

記号 チューブ内径(mm) \		標	準スト	・ローク	(mn	1)		A	АА	В	С	D	E	E	EC		ED		F	G	Н
φ20	50、7	5、100)、125	. 150.	175、	200, 2	25、	53	81.5	40	12	8	M	5 30	31	14.0)+ ^{ストロー} 2	<u>-2</u>	38	83	36
φ25	250	0、275	、300、	325, 3	350, 3	375、40	00	54	84	41	12	9	M	5 32	35	14.5	5+ ^{ストロー} 2	<u>-</u> 2	42	86	38
記号 チューブ内径(mm) \	1	ر	IJ	К		KA		ŀ	(C		ММ	N		NN	Р	PP ·	STL	-M		L-B	R
φ20	81	M6%	Rさ12	59	5.	2貫通	9.	5座ぐ	り深さ	5.4	10	24	l M	6貫通	20	6	14		1	2	13
φ25	84	M6%	Rさ12	63	5.	2貫通	9.	5座ぐ	り深さ	5.4	12	26	S M	6貫通	20	6	14		1	2	14
記号 チューブ内径(mm) \	s	U	w	х	Υ	YA	ΥВ	YC	注3	YD 🧎	ŧз	YE	YF	YM	,	ΥN	YY	ショ	ック	キラー	-形番
φ20	24	69	31	13.2	9	9	9	31	1.5	26.	5	19	28.5	M8×50	M8	×0.75	25	Ν	ICK-C	0.0-0	3-C
φ25	26	72	35	13-2	9	9	9	3	80	29)	19	30	M8×50	M1	0×1	27	Ν	ICK-C	0-0.7	'-C

注1: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

注2:中間ストロークの対応はできません。

注3:YC, YD寸法は出荷時の寸法を表示しています。

シリンダ スイッチ

巻末

STG

STS ·

STR2

UCA2

CKD

512

CKD

シリンダ スイッチ 巻末

UCA2

513

STL-MP Series

内部構造図・材質

外形寸法図(チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● ストローク調整形

STM

STG

STS.

STR2

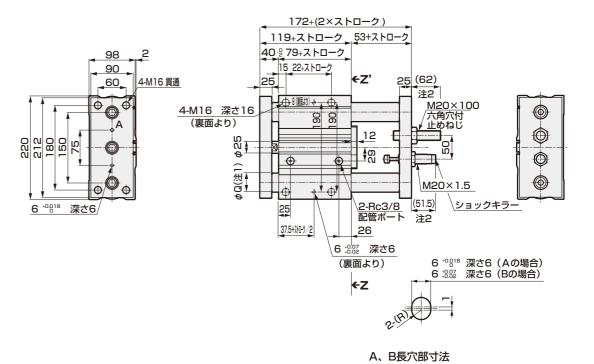
UCA2

AA+(2×ストローク) A+ストローク YF+ストローク B+ストローク PP P+ストローク YA (YC) ←Z' N 4-KA 4-KC ф. (ф. 1 六角穴付 -止めねじ **(** 0 -Z~Z' 断面図 <u>4-EE</u> (YD) \<u>ショックキ</u>ラー ËD (1) 3 6 +0.018 深さ6 (Aの場合) 6 +0.02 深さ6 (Bの場合) 6 :8.82 深さ6 (裏面より)

A、B長穴部寸法

XX部詳細

記号 チューブ内径(mm) \		標準に	ストロ・	ーク(r	nm)	А	AA	В	С	D	E	=	EA	EC		ED		F	G	н
φ32		75	100	105	. 150.	68	104.5	49	14	10.5	Rc1	/8	42	45	17	7.5+ ^{3.50}		47	111	45
φ40					0、275、	72	108.5	53	14.5	12	Rc1	/8	45	54	19).5+ ^{2,50}	<u>ーク</u>	54	120	50
φ50	l				75、400	77	124	55	16	12.5	Rc1	/4	55	66	19).5+ ²	<u>ーク</u>	66	147	64
φ63	300	J. 32	o, oo	0, 3,	3, 400	83	130	61	17.5	17.5	Rc1	/4	62	79	22	2.5+ ^{2 + 2}	<u>ーク</u>	79	162	75
記号 チューブ内径(mm) \	ı	,	IJ	К	KA		кс	MN	N	N	IN	P	PP	STL	M	STL-B	R	s	U	w
φ32	109	M8%	深さ16	81	6.3貫通	11座<	ぐり深さ6.!	5 16	29	M8	貫通	22	7	2	0	16	16	39	93	45
φ40	118	M8%	深さ16	90	6.3貫通	11座<	ぐり深さ6.!	5 16	34	M8	貫通	25	7	2	0	16	18	43	102	54
φ50	145	M10	深さ20	110	8.6貫通	14座<	ぐり深さ8.0	6 20	44	M10	D貫通	26	8	2	5	20	22	49	125	66
φ63	160	M10	深さ20	124	8.6貫通	14座<	ぐり深さ8.0	6 20	55	M10	D貫通	26	8	2	5	20	26	56	140	79
記号 チューブ内径(mm) \	х	Υ	YA	ΥВ	YC 注3	Y	'D 注3	ΥE	YF		ΥM			Yľ	N.	YY	ショ	ックキ	Fラー J	形番
φ32	19-2	12	12	12	47.5		32.5	30	36.5	M	12×	70		M12	×1	39	N	CK-00	0-1.2-	C
φ40	19.2	12	12	12	47.5		32.5	30	36.5	M	12×1	70		M12	×1	42	N	CK-00	0-1.2-	C
φ50	22.2	16	16	16	51		52	40	47	M	16×8	30		M14>	< 1.5	45	N	CK-00	0-2.6-	C
φ63	22.2	16	16	16	51		52	40	47	M	16×8	30		M14>	< 1.5	52	N	CK-00	0-2.6-	C


注1: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

注2:中間ストロークの対応はできません。

注3:YC, YD寸法は出荷時の寸法を表示しています。

外形寸法図 (チューブ内径: φ80)

● ストローク調整形

2~2′ 断面図

XX部詳細

STM

STG

STS.

STR2

11040

UCA2

注1:寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。

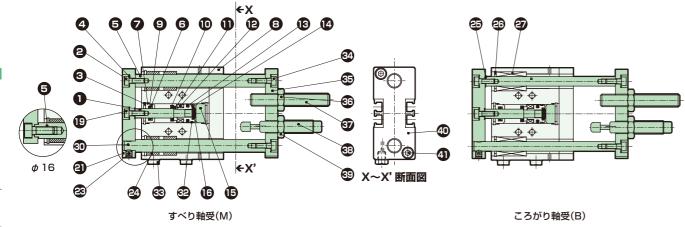
注2: 出荷時の寸法を表示しています。 注3: 中間ストロークの対応はできません。

注4: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ

巻末

巻末


シリンダ スイッチ

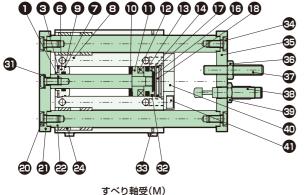
内部構造図・材質

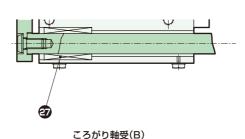
内部構造図・材質(チューブ内径: ϕ 8 \sim ϕ 63)

● ストローク調整形 STS-[™]P

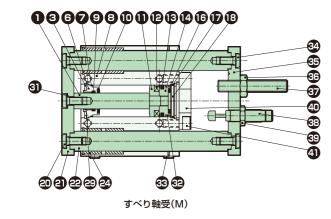
 $\phi 8 \cdot \phi 12 \cdot \phi 16$

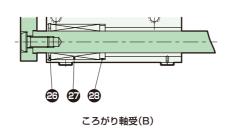
STG

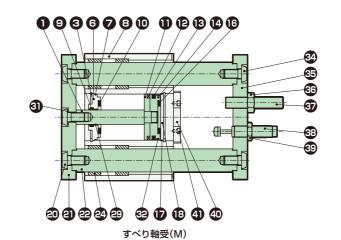

 ϕ 20 · ϕ 25

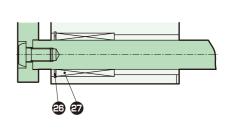

UCA2

STM


STS ·


STR2


 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63



内部構造図・材質(チューブ内径: 080)

● ストローク調整形

ころがり軸受(B)

STM

STG

TS• TL

STR2

UCA2

部品名称 備考 ピストンロッド φ8~25: ステンレス鋼 工業用クロムめっき 20 六角穴付ボタンボルト 鋼 亜鉛クロメート φ32~φ80:鋼 21 エンドプレート アルミニウム合金 アルマイト 2 六角穴付ボルト 工業用クロムめっき 亜鉛クロメート ガイドロッド(φ20~φ80) M 鋼 22 3 C形止め輪 リン酸亜鉛 B 合金鋼 工業用クロムめっき 4 平座金 黒染 23 六角穴付止めねじ 黒染(φ8、φ12のみ) M ステンレス鋼 ガイドロッド(1) φ12,16: 工業用クロムめっき 24 メタル 含油軸受合金 (φ8~φ16) B合金鋼 工業用クロムめっき 25 平座金 黒染 ロッドメタル アルミニウム合金 φ12~25: アルマイト 26 C形止め輪 リン酸亜鉛 6 φ32~50: クロメート 27 ボールブシュ ニトリルゴム 7 メタルガスケット 28 カラー アルミニウム合金 8 シリンダ本体 アルミニウム合金 硬質アルマイト 29 ブシュ 軸受合金 9 ロッドパッキン ニトリルゴム M ステンレス鋼 φ 12: 工業用クロムめっき ガイドロッド(2) 30 10 クッションゴム(R) ウレタンゴム $(\phi 8, \phi 12)$ B 合金鋼 工業用クロムめっき スペーサ φ8~φ12、φ63、φ80:アルミニウム合金 | φ8~φ12、φ63、φ80:クロメート 31 さらばね座金 11 φ20~φ50: ポリアミド 32 ウェアリング ポリアセタール φ12~φ80のみ 12 磁石 ϕ 12 \sim ϕ 25:FPL(CKD) プラグ 33 13 ピストンパッキン ニトリルゴム φ32~φ63: 亜鉛クロメート φ32~φ80:鋼 14 ピストン 亜鉛クロメート アルミニウム合金 φ8、φ20~φ80:クロメート 34 六角穴付ボタンボルト 15 カバー アルミニウム合金 35 エンドプレート(H) アルミニウム合金 アルマイト 16 クッションゴム(H) ウレタンゴム 36 六角ナット 黒染 17 0リング 黒染 ニトリルゴム 37 六角穴付止めねじ 鋼 φ20~φ63: アルミニウム合金 | φ20~φ63: クロメート 38 ショックキラー 18 φ80:鋼 39 六角ナット φ80: 亜鉛クロメート 亜鉛クロメート 六角ナット(φ8) 亜鉛クロメート 40 ストッパプレート 鋼 亜鉛クロメート 六角穴付ボルト(φ12、φ16) | 鋼 亜鉛クロメート 41 六角穴付ボルト 鋼 亜鉛クロメート

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

シリンダ スイッチ

巻末

516

CKD

シリンダ スイッチ

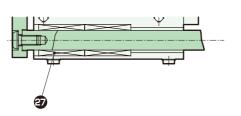
内部構造図・材質(チューブ内径: ϕ 8 \sim ϕ 63)

● ストローク調整形 STL-^MP

 $\phi 8 \cdot \phi 12 \cdot \phi 16$

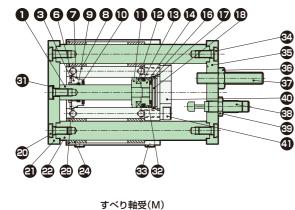
 ϕ 20 · ϕ 25

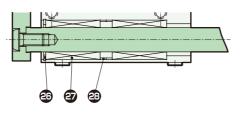
STM


STG

STS ·

STR2


UCA2


すべり軸受(M)

ころがり軸受(B)

 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63

軸受(M) ころがり軸受(B)

内部構造図・材質(チューブ内径: ϕ 80)

■ ストローク調整形STL-NP

部品名称

ピストンロッド

2 六角穴付ボルト

C形止め輪

平座金

14 ピストン

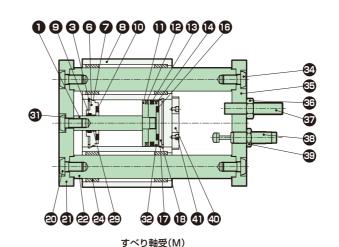
16 クッションゴム(H)

六角ナット(ϕ 8)

六角穴付ボルト(φ12、φ16) 鋼

15 カバー

17 0リング


18

19

底板

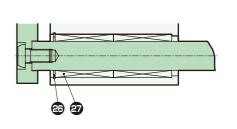
3

4

材質

φ32~φ80:鋼

アルミニウム合金


アルミニウム合金

ウレタンゴム

ニトリルゴム

φ80:鋼

φ8~25: ステンレス鋼 工業用クロムめっき

ころがり軸受(B)

B 合金鋼

20 六角穴付ボタンボルト 鋼

ガイドロッド(φ20~φ80) M I 鋼

21 エンドプレート

23 六角穴付止めねじ

34 六角穴付ボタンボルト

35 エンドプレート(H)

37 六角穴付止めねじ

40 ストッパプレート

41 六角穴付ボルト

38 ショックキラー

36 六角ナット

39 六角ナット

22

材質

アルミニウム合金

アルミニウム合金

鋼

鋼

鋼

備考

工業用クロムめっき

工業用クロムめっき

黒染(φ8、φ12のみ)

亜鉛クロメート

亜鉛クロメート

亜鉛クロメート

亜鉛クロメート

アルマイト

黒染

黒染

亜鉛クロメート

アルマイト

STG

STM

STR2

UCA2

ガイドロッド(1) M ステンレス鋼 φ12,16: 工業用クロムめっき 24 メタル 含油軸受合金 $(\phi 8 \sim \phi 16)$ B 合金鋼 工業用クロムめっき 25 平座金 黒染 リン酸亜鉛 26 C形止め輪 ロッドメタル アルミニウム合金 φ12~25: アルマイト ∅32~50: クロメート 27 ボールブシュ 7 メタルガスケット ニトリルゴム アルミニウム合金 28 カラー アルミニウム合金 軸受合金 8 シリンダ本体 硬質アルマイト 29 ブシュ 9 ロッドパッキン ニトリルゴム ガイドロッド(2) M ステンレス鋼 φ12: 工業用クロムめっき 10 クッションゴム(R) ウレタンゴム (φ8, φ12) B 合金鋼 工業用クロムめっき スペーサ め8~ φ12、φ63、φ80:アルミニウム合金 | φ8~ φ12、φ63、φ80:クロメート 31 さらばね座金 φ20~φ50: ポリアミド 32 ウェアリング φ12~φ80の ポリアセタール 12 磁石 φ12~φ25:FPL(CKD) プラグ 33 13 ピストンパッキン ニトリルゴム φ32~φ63: 亜鉛クロメート ϕ 32~ ϕ 80:鋼

備考

亜鉛クロメート

φ8、φ20~φ80:クロメート

φ80: 亜鉛クロメート

亜鉛クロメート

亜鉛クロメート

φ20~φ63: アルミニウム合金 | φ20~φ63: クロメート

リン酸亜鉛

黒染

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

518

シリンダ スイッチ

● チューブ内径: φ12・φ16・φ20・φ25・φ32・φ40 $\phi 50 \cdot \phi 63 \cdot \phi 80$

回路図記号

ガイド付シリンダ 複動・耐熱形

形番表示方法

ショートストローク (スイッチ搭載不可)

ロングストローク (スイッチ搭載不可)

STS 3 9 機種形番 機種形番 **②** チューブ 4 ストローク 内径 1 軸受方式 3 配管 **⑤** オプション ねじ種類

STM

STG

STS.

● 軸受方式 記号

内容

(φ20、φ25は製作不可です。)

すべり軸受

ころがり軸受

STR2

UCA2

② チューブ内径(mm)

記号	内容
12	φ12
16	φ16
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

② 配管ねじ種類

	10-0-12700
記号	内容
無記号	M5(φ12~φ25)
無記芍	Rcねじ(<i>ϕ</i> 32~ <i>ϕ</i> 80)
NN	NPTねじ(φ32以上)カスタム品
GN	Gねじ(¢32以上)カスタム品

4 ストローク(mm)

シリーズ	ストロー	5	適用チューブ内径								
ļ	(mm)		φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80
		10	•	•							
		20	•	•							
		25			•	•	•	•	•	•	•
	標準	30	•	•							
STS	ストローク	40	•	•							
S		50	•	•	•	•	•	•	•	•	
		75									
		100									•
	中間 ストローク	注1 注2				5	5mm∄	₽			

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。 注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ことも可能です。(カスタム品)

シリーズ	ストロー	ク	適用チューブ内径									
J ズ	(mm)		φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80	
		50	•	•	•	•	•	•	•	•		
		75	•	•	•	•	•	•	•	•	•	
		100	•	•	•	•	•	•	•	•	•	
		125	•	•	•	•	•	•	•	•	•	
		150	•	•	•	•	•	•	•	•	•	
		175	•	•	•	•	•	•	•	•	•	
		200	•	•	•	•	•	•	•	•	•	
s	標準 ストローク	225			•	•	•	•	•	•	•	
S T L	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	250			•	•	•	•	•	•	•	
_		275			•	•	•	•	•	•	•	
		300			•	•	•	•	•	•	•	
		325			•	•	•	•	•	•	•	
		350			•	•	•	•	•	•	•	
		375			•	•	•	•	•	•	•	
		400			•	•	•	•	•	•	•	
	中間 ストローク	注1 注2				5	mm∄	=				

日 オプション

	9 13 7 .	
	記号	内容
	F	エンドプレート材質:鋼
注1	М	耐食形 (ピストンロッド、ガイドロッド 材質:SUS) (カスタム品)
注1	М1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1: ころがり軸受 (B) のみ対応できます。 材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について

詳細は654ページをご参照くたさい。					
記号	記号 内容				
-0	ポート対称形				

STS/L-NT------

巻末

CKD 520

シリンダ スイッチ

STM

STG

STR2

UCA2

巻末

仕様

.—												
項目					STS-MT	BT STL	MT/BT					
チューブ内径	mm	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80		
作動方式			復動・耐熱形									
使用流体						圧縮空気						
最高使用圧力	MPa		1.0									
最低使用圧力	MPa		0.2 0.15									
耐圧力	MPa		1.6									
周囲温度	°C		5~120									
接続口径			M	5		Rc1/8 Rc			1/4	Rc3/8		
ストローク許容	¥ mm	+2.0										
ストローク計合	差 mm	0										
使用ピストン速度	mm/s		50~500							50~300		
クッション			なし									
給油				不要(定期的]に耐熱グリー	-スをグリース	スアップして	ください。)	·	·		
許容吸収エネル	ギー J	0.004	0.01	0.016	0.021	0.025	0.092	0.1	0.12	0.27		

STM

STG

STS · STL

STR2 UCA2 ストローク

● ショートストロークSTS

チューブ内径	標準ストローク (mm)	最大ストローク (mm)	最小ストローク (mm)	
φ12	10,20,30,40,50			
φ16	10,20,30,40,30			
φ20			5	
φ25		50		
φ32	25,50	50		
φ40	25,50			
φ50				
φ63				
φ80	25,50,75,100	100		
		·	·	

● ロングストロークSTL

チューブ内径	標準ストローク (mm)	最大ストローク (mm)	最小ストローク (mm)
φ12	50,75,100,125,150	200	50
φ16	175,200	200	50
φ20			
φ25	50,75,100,125,150		
φ32	175,200,225,250		30
φ40	275,300,325,350		30
φ50	375,400	400	
φ63			
φ80	75,100,125,150,175 200,225,250,275,300 325.350.375.400		55

注:中間ストロークについては5mm毎に製作可能です。 ただし、全長寸法はその上の標準ストロークと同じになります。

理論推力表

(単位:N)

5ュ-ブ内径			使用圧力 MPa												
(mm)	作動方向	0.15	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0				
410	Push	_	22.6	33.9	45.2	56.5	67.9	79.2	90.5	1.02×10 ²	1.13×10 ²				
φ12	Pull	_	17.0	25.4	33.9	42.4	50.9	59.4	67.9	76.3	84.8				
416	Push	_	40.2	60.3	80.4	1.01×10 ²	1.21×10 ²		1.61×10 ²						
φ16	Pull	_	30.2	45.2	60.3	75.4	90.5		1.21×10 ²						
#20	Push	_	62.8	94.2	1.26×10 ²	1.57×10 ²				2.83×10 ²					
φ20	Pull	_	47.1	70.7	94.2	1.18×10 ²				2.12×10 ²					
# OE	Push	_	98.2	1.47×10 ²	1.96×10 ²					4.42×10 ²					
φ25	Pull	_	75.6	1.13×10 ²						3.40×10 ²					
#30	Push	1.21×10 ²								7.24×10 ²					
φ32	Pull	90.5								5.43×10 ²					
φ40	Push		2.51×10 ²												
Ψ40	Pull		2.11×10 ²												
φ50	Push		3.93×10 ²								1.96×10 ³				
Ψ30	Pull		3.30×10 ²								1.65×10 ³				
460	Push	4.68×10 ²	6.23×10 ²	9.35×10 ²							3.12×10 ³				
φ63	Pull	4.20×10 ²	5.61×10 ²							2.52×10 ³					
400	Push	7.54×10 ²								4.52×10 ³					
φ80	Pull	6.80×10 ²	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10 ³	2.72×10 ³	3.17×10 ³	3.63×10 ³	4.08×10 ³	4.54×10 ³				

シリンダ スイッチ

シリンダ質量については 642 ページ~ 645 ページをご参照ください。

外形寸法図

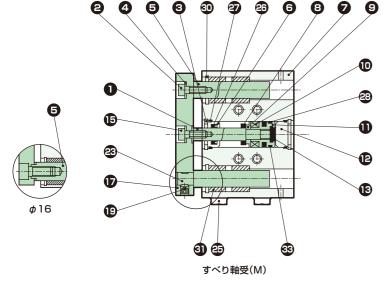
複動・片ロッド形STS/STLシリーズと同じです。下記ページをご参照ください。 ただし、スイッチは付きません。

 $\mathsf{STS}\,\,\mathfrak{>}\,\mathsf{U}-\vec{\mathsf{X}}\,:\,486\,\,^{\alpha}-\vec{\!y}\,(\phi\,8\sim\phi\,16),\,487\,\,^{\alpha}-\vec{\!y}\,(\phi\,20,\,\,\phi\,25),\,488\,\,^{\alpha}-\vec{\!y}\,(\phi\,32\sim\phi\,63),\,489\,\,^{\alpha}-\vec{\!y}\,(\phi\,80)$ ${\rm STL}\, \flat {\rm U} - {\rm X}: 491\, {\rm ^A} - {\rm ^{\dot{2}}}\, (\phi 8 \sim \phi \, 16), \, 492\, {\rm ^A} - {\rm ^{\dot{2}}}\, (\phi \, 20, \,\, \phi \, 25), \, 493\, {\rm ^A} - {\rm ^{\dot{2}}}\, (\phi \, 32 \sim \phi \, 63), \, 494\, {\rm ^A} - {\rm ^{\dot{2}}}\, (\phi \, 80)$

STM

STG

STR2


UCA2

シリンダ スイッチ

内部構造図・材質 (チューブ内径: ø12~ø63)

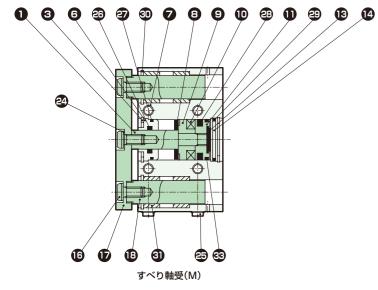
● 耐熱形 STS-≝T

 ϕ 12 · ϕ 16

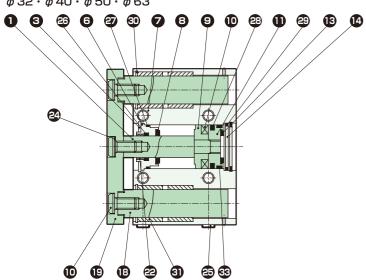
a - -

ころがり軸受(B)

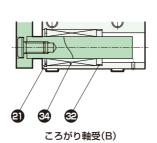
 $\phi 20 \cdot \phi 25$


UCA2

STM


STG

STS.


STR2

 $\phi 32 \cdot \phi 40 \cdot \phi 50 \cdot \phi 63$

すべり軸受(M)

内部構造図・材質 (チューブ内径: φ80)

● 耐熱形 STS-≝T

ピストンロッド

 $(\phi 12, \phi 16)$

クッションゴム(R)

ロッドメタル

7 シリンダ本体

スペーサ

13 クッションゴム(H)

17 エンドプレート

15 六角穴付ボルト(φ12、φ16) 鋼

16 六角穴付ボタンボルト 鋼

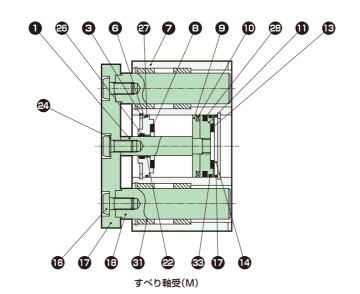
8

9

10 磁石

11 ピストン

12 カバー


ガイドロッド(1) M ステンレス鋼

B 合金鋼

2 六角穴付ボルト

C形止め輪

平座金

材質

φ32~φ80:鋼

アルミニウム合金

アルミニウム合金

アルミニウム合金

アルミニウム合金

アルミニウム合金

ウレタンゴム

φ20~φ50: ポリアミド

ウレタンゴム

φ12~25: ステンレス鋼 工業用クロムめっき

φ12、φ63、φ80:アルミニウム合金 φ12、φ63、φ80:クロメート

φ20~φ63: アルミニウム合金 φ20~φ63: クロメート

備考

亜鉛クロメート

φ12,16: 工業用クロムめっき

工業用クロムめっき

φ12~25: アルマイト

φ32~50: クロメート

φ20~φ80: クロメート

φ80: 亜鉛クロメート

亜鉛クロメート

亜鉛クロメート

アルマイト

硬質アルマイト

リン酸亜鉛

黒染

18

19

20

21

22

23

24

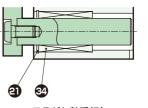
25

26

27 メタルガスケット

28 ピストンパッキン

ウェアリング


29 0リング

31 メタル

32 カラー

30 丸R型止め輪

34 ボールブシュ

ころがり軸受(B)

部品名称		材質	備考		
ガイドロッド(φ20~φ80)	М	鋼	工業用クロムめっき		
	В	合金鋼	工業用クロムめっき		
六角穴付止めねじ		鋼	黒染(φ12のみ)		
平座金		鋼	黒染		
C形止め輪		鋼	リン酸亜鉛		
ブシュ		軸受合金			
ガイドロッド(2)	М	ステンレス鋼	φ12: 工業用クロムめっき		
(φ12) B		合金鋼	工業用クロムめっき		
さらばね座金		鋼			
プラグ		φ12~φ25:—	φ12~φ25:FPL(CKD)		
		φ32~φ63 : 鋼	φ32~φ63:亜鉛クロメート		
ロッドパッキン		フッ素ゴム			

フッ素ゴム

フッ素ゴム

フッ素ゴム

軸受合金

アルミニウム合金

φ12、φ16:四ふっ化エチレン樹脂

φ20~φ80:特殊樹脂

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 シリンダ スイッチ

STG

STR2

UCA2

巻末

CKD

黒染

524

CKD

巻末

525

内部構造図・材質 (チューブ内径: φ12~φ63)

● 耐熱形

STL-[™]T

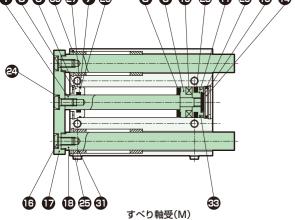
φ12·φ16

2 3

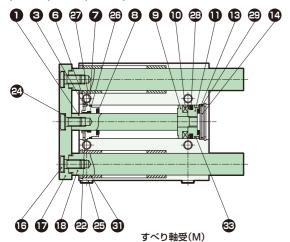
ころがり軸受(B)

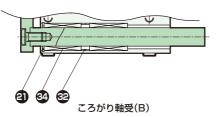
φ20 · φ25

STM


STG

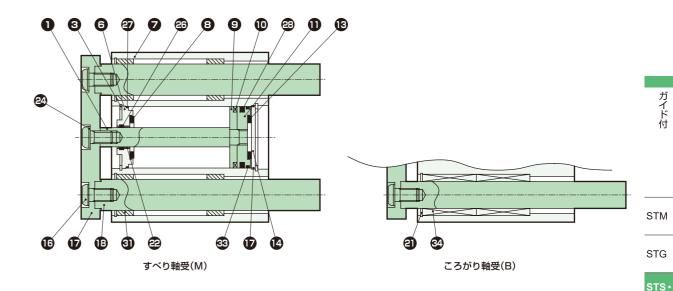
STS. STL


STR2


UCA2

0363273 8 9 0 3 0 3 6 0

 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63



内部構造図・材質 (チューブ内径: φ80)

● 耐熱形

STL-⊮T

品番	部品名称		材質	備考	品番	部品名称		材質	備考
1	ピストンロッド		φ12~25: ステンレス鋼	工業用クロムめっき	18	ガイドロッド(φ20~φ80)	М	鋼	工業用クロムめっき
			φ32~φ80 : 鋼		10		В	合金鋼	工業用クロムめっき
2	六角穴付ボルト		鋼	亜鉛クロメート	19	六角穴付止めねじ		鋼	黒染(φ12のみ)
3	C形止め輪		鋼	リン酸亜鉛	20	平座金		鋼	黒染
4	平座金		鋼	黒染	21	C形止め輪		鋼	リン酸亜鉛
5	ガイドロッド(1) M		ステンレス鋼	φ12,16: 工業用クロムめっき	22	ブシュ		軸受合金	
Э	(φ12, φ16)	В	合金鋼	工業用クロムめっき	23	ガイドロッド(2)	М	ステンレス鋼	φ12: 工業用クロムめっき
6	ロッドメタル		アルミニウム合金	φ12~25: アルマイト	23	(φ12)	В	合金鋼	工業用クロムめっき
ь				φ32~50 : クロメート	24	さらばね座金		鋼	
7	シリンダ本体		アルミニウム合金	硬質アルマイト	25	プラグ		φ12~φ25:-	φ12~φ25:FPL(CKD)
8	クッションゴム(R)		ウレタンゴム		25			φ32~φ63 : 鋼	φ32~φ63:亜鉛クロメート
9	スペーサ		ø 12、ø63、ø80:アルミニウム合金	φ12、φ63、φ80:クロメート	26	ロッドパッキン		フッ素ゴム	
9			φ20∼φ50∶ポリアミド		27	メタルガスケット		フッ素ゴム	
10	磁石				28	ピストンパッキン		フッ素ゴム	
11	ピストン		アルミニウム合金	φ20~φ80∶クロメート	29	ロリング		フッ素ゴム	
12	カバー		アルミニウム合金		30	丸R型止め輪		鋼	黒染
13	タッションゴム(H)		ウレタンゴム		31	メタル		軸受合金	
1.4	底板		φ20~φ63: アルミニウム合金	φ20~φ63∶クロメート	32	カラー		アルミニウム合金	
14	*		φ80:鋼	φ80:亜鉛クロメート	33	ウェアリング		φ 12、φ 16:四ふっ化エチレン樹脂	
15	六角穴付ボルト(φ12、φ	16)	鋼	亜鉛クロメート	33			φ20~φ80:特殊樹脂	
16	六角穴付ボタンボル	\	鋼	亜鉛クロメート	34	ボールブシュ			
17	エンドプレート		アルミニウム合金	アルマイト					

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

巻末

526

CKD

CKD

527

UCA2

12

8

8

40

8

12

8

12

8

3

3

3

3

3

STS·STL-MT2 Series

● チューブ内径: ø12・ø16・ø20・ø25・ø32・ø40 $\phi 50 \cdot \phi 63 \cdot \phi 80$

4

4

10

4

4

4

(T2H

0

ፅ

(a)

0

0

7

回路図記号

M T2-

STS - M T2-L1-

形番表示方法

●ショートストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

STS -機種形番

(STS)-(

機種形番

機種形番

機種形番

(STL)-

スイッチ付(注1) (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

●ロングストローク スイッチなし(注1)

STM

STG

STS STL

STR2

UCA2

(スイッチ用磁石内蔵)

スイッチ付(注1) (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付

(スイッチ用磁石内蔵)(φ40以上) 機種形番

軸受

8 内径

種類

ストローク (mm)

4

ፅ

T2H

6

形番

チューブ 配管ねじ ストローク スイッチ スイッチ オプション

注 1:φ80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、¶と❷の間に"L1"を入れた形番で手配してください。

● 軸受方式

● TM2/320							
記号		内容					
M	すべり軸受						
В	ころがり軸受						

9	ナユ・	ーブ内径(mm
6	T -	一一一一一一

	> 1 31 — (
記号	内容
12	φ12
16	φ16
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

② 配管ねじ種類

記号	内容					
# =1=	$M5(\phi 12 \sim \phi 25)$					
無記号	Rcねじ(ø32~ø80)					
NN	NPTねじ(<i>φ</i> 32以上)カスタム品					
GN	Gねじ(ø32以上)カスタム品					

適用チューブ内径

φ12 | φ16 | φ20 | φ25 | φ32 | φ40 | φ50 | φ63 | φ80

50 0 0 0 0 0 0 0

♠ ストローク(mm)

ジ ストローク (mm) 適用チューブ内径 (pm) ψ12 φ16 φ20 φ25 φ32 φ40 φ50 φ63 φ80 (pm)											
ストロー	ク	適用チューブ内径									
(mm)	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80		
	10										
	20										
	25			•	•		•		•	•	
標準 ストローク	30	•	•								
	40		•								
	50	•	•	•	•		•	•	•	•	
	75									•	
	100									•	
中間 ストローク	注1 注2										
	ストロー (mm) 標準 ストローク	ストローク (mm) 10 20 25 標準 30 ストローク 40 50 75 100 中間 注1	ストローク (mm)	ストローク (mm)	ストローク (mm)	ストローク 適用月	ストローク 適用チュー:	ストローク 適用チューブ内径 (mm)	Repair Note	ストローク 適用チューブ内径	

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。 注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する

ことも可能です。(カスタム品)

CKD

Н			75										
1			100	•				•	•				
1			125	•	•			•	•	•	•	•	
1			150	•				•	•		•		
1			175	•	•			•	•	•	•		
1		+m:4±	200	•				•	•				
1	s	標準 ストローク	225					•	•		•		
1	S	ストロージ	250				•	•	•	•	•	•	
ı	ᆫ		275					•	•	•	•		
_			300				•	•	•	•	•	•	
3			325					•	•	•	•		
			350					•	•	•	•	•	
	İ		375			•	•	•	•	•	•	•	
			400					•	•	•	•	•	
		中間 ストローク	注1 注2		5mm毎								

STS·STL-MT2 Series

6 スイッチ形番

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。

_	,,,,,	· · · · ·	717716			_						
接	表示灯	配線	負荷電	汪(V)	負荷電流	充(mA)	リード	泉注1				
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字		L		
		2線	85~265	_	5~100	_	тінж	T1V%	20 20			
	1色		_	10~30	_	5~20 注2	T2H%	T2V%		1		
	2色	3線(NPN)	_	30以下	_	100以下	T3H%	T3V%	- 1	l		
		3線(PNP)	_	3012 1	_	1001	T3PH%	T3PV%	Chillian Child	l		
		2線	_	24±10%	_	5~20	T2WH%	2WH% T2WV%		l		
	28	3線(NPN)	_	30以下	_	50以下	T3WH%	T3WV ※				
無接点	2色 耐水性 向上		_	24±10%	_	5~20	T2WLH%	T2WLV%		注		
	2色交流		_	24±10%	_	3.920	T2YD%	_				
	磁界用	O##	り組	2線	_	24110%	_		T2YDT%	_	C. Carlotte	l
	1色 オフディレー タイプ	△柳	_	10~30	_	5~20	T2JH※	T2JV※	6 5 5 5 5 5 S			
	1色 耐屈曲リード 線タイプ		_	10~30	_	注2	T2HR3	T2VR3	275			
	1色		110	12/24	7~20	5~50	TOH*	TOV*]		
摃	表示灯なし	O#	110	5/12/24	20以下	50以下	T5H%	T5V%	4755			
有接点	1色	2線	110/220	12/24	7~20/ 7~10	5~50	твнж	T8V%		注		

※リード線長さ、コネクタ仕様

記号 内容 無記号 1m(標準) 3m(オプション) 3 5m(オプション) 5 M8コネクタ、 1PIN(+)4PIN(-) リード線0.3m

注7: T2WLH、T2WLVのみ選定 可能です。

例) リード線長さ 1m TOH 3m TOH3 5m TOH5

STM

STG

STR2

注5: ø40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、❶と❷の間に "L1" を入れてーで結んでください。(ただし、T2WH/V、T3WH/Vは除く) UCA2

例) STS-MT2-L1-80-50-F 注6:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページをご参照ください。

φ80は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。

注2: 上記の負荷電流の最大値: 20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、20mAより低くなります。

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの使用を推奨します。

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

6 スイッチ数

記号	内容						
R	ロッド側1個付						
Н	ヘッド側1個付						
D	2個付						
Т	3個付						

(60°Cのとき5~10mAとなります。)

例) STS-MT2-L1-63-50-T1H3-D-F

この場合、❶と❷の間に"L1" を入れた形番で手配してください。

注4: ϕ 12· ϕ 16はT8H/Vを搭載できません。

の オプション

	6 3 7.	
	記号	内容
	F	エンドプレート材質:鋼
注1	М	耐食形 (ピストンロッド、ガイドロッド 材質:SUS) (カスタム品)
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、

478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について

詳細は654ページをご参照ください。

記号	内容
-0	ポート対称形

STS/L-MT2------

スイッチ単品形番表示方法

スイッチ

巻末

CKD

スイッチ

STS·STL-MT2 Series

仕様

項目 STS-MT2、BT2 STL-MT2、BT2											
チューブ内径	mm	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80	
作動方式					複動・パ	ッキン材質フ	ッ素ゴム				
使用流体	用流体										
最高使用圧力	MPa		1.0								
最低使用圧力	MPa		0.15 0.1								
耐圧力	MPa		1.6								
周囲温度	c				-10~60	(ただし、凍終	結なきこと)				
接続口径			M5				Rc1/8 Rc			Rc3/8	
ストローク許容差	達 mm	+2.0									
	± ''''''		0								
使用ピストン速度	mm/s				50~500				50~	300	
クッション		ゴムクッション付									
給油		不要(給油時はタービン油1種ISOVG32を使用)									
許容吸収エネル	ギー J	0.056	0.088	0.157	0.157	0.401	0.627	0.980	1.560	2.510	

STM

STG

● ショートストロークSTS

STR2

STS.

UCA2

ストローク

最大ストローク 最小ストローク スイッチ付最小ストローク(mm) ストローク(mm) チューブ内径 その他スイッチ T2WL (mm) (mm) φ12 15 10,20,30,40,50 25 φ16 φ20 φ25 50 5 φ32 5 注1 25,50 5

注1

注1:スイッチ1個付、または2個付の場合です。

25,50,75,100

● ロングストロークSTL

φ40

φ50 φ63

φ80

チューブ内径	ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)							
φ12	50,75,100,125,150	200	50	50							
φ16	175,200	200	50	注2							
φ20											
φ25	50,75,100,125,150										
φ32	175,200,225,250		30	30							
φ40	275,300,325,350		30	注2							
φ50	375,400	400									
φ63											
	75,100,125,150,175										
φ80	200,225,250,275,300		55	55 注2							
	325,350,375,400			7.5							

注1:中間ストロークについては5mm毎に製作可能です。ただし、全長寸法はその上の標準ストロークと同じになります。

100

注2:スイッチ1個付、または2個付の場合です。

シリンダ スイッチ

巻末

530 **CKD** 理論推力表

(単位:N)

チューブ内径	作動					使用	I圧力 M	Pa				
(mm)	方向	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
φ20	Push	_	47.1	62.8	94.2	1.26×10 ²	1.57×10 ²	1.88×10 ²	2.20×10 ²	2.51×10^{2}	2.83×10 ²	3.14×10 ²
ΨΖΟ	Pull	_	35.3	47.1	70.7	94.2	1.18×10 ²	1.41×10 ²	1.65×10 ²	1.88×10 ²	2.12×10 ²	2.36×10 ²
φ25	Push	_	73.6	98.2	1.47×10 ²	1.96×10 ²	2.45×10 ²	2.95×10 ²	3.44×10 ²	3.93×10 ²	4.42×10 ²	4.91×10 ²
Ψ25	Pull	_	56.7	75.6	1.13×10 ²	1.51×10 ²	1.89×10 ²	2.27×10 ²	2.64×10 ²	3.02×10 ²	3.40×10 ²	3.78×10 ²
φ32	Push	80.4	1.21×10 ²	1.61×10 ²	2.41×10 ²	3.22×10 ²	4.02×10 ²	4.83×10 ²	5.63×10 ²	6.43×10 ²	7.24×10 ²	8.04×10 ²
ΨΟΖ	Pull	60.3	90.5	1.21×10 ²	1.81×10 ²	2.41×10 ²	3.02×10 ²	3.62×10 ²	4.22×10 ²	4.83×10 ²	5.43×10 ²	6.03×10 ²
φ40	Push	1.26×10 ²	1.88×10 ²	2.51×10^{2}	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²	1.01×10^{3}	1.13×10 ³	1.26×10 ³
Ψ40	Pull	1.06×10 ²	1.58×10 ²	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10 ²	7.39×10 ²	8.44×10 ²	9.50×10 ²	1.06×10 ³
φ50	Push	1.96×10 ²	2.95×10 ²	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³	1.57×10 ³	1.77×10 ³	1.96×10 ³
ψου	Pull	1.65×10 ²	2.47×10 ²	3.30×10 ²	4.95×10 ²	6.60×10 ²	8.25×10 ²	9.90×10 ²	1.15×10 ³	1.32×10 ³	1.48×10 ³	1.65×10 ³
460	Push	3.12×10 ²	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10 ³	2.18×10 ³	2.49×10 ³	2.81×10 ³	3.12×10 ³
φ63	Pull	2.80×10 ²	4.20×10 ²	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10 ³	2.52×10 ³	2.80×10 ³
400	Push	5.03×10 ²	7.54×10 ²	1.01×10 ³	1.51×10 ³	2.01×10 ³	2.51×10 ³	3.02×10 ³	3.52×10 ³	4.02×10 ³	4.52×10 ³	5.03×10 ³
φ80	Pull	4.54×10 ²	6.80×10 ²	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10 ³	2.72×10 ³	3.17×10 ³	3.63×10 ³	4.08×10 ³	4.54×10 ³

シリンダ質量については642ページ~645ページをご参照ください。

STG

STM

外形寸法図

複動・片ロッド形STS/STLシリーズと同じです。下記ページをご参照ください。

STS シリーズ: 486ページ (\$6~\$\phi 16)、487ページ (\$\phi 20 \, \$\phi 25)、488ページ (\$\phi 32 \~\$\phi 63)、489ページ (\$\phi 80) STL シリーズ: 491ページ (ゆ8~φ16)、492ページ (ゆ20、ゆ25)、493ページ (ゆ32~φ63)、494ページ (ゆ80)

STR2

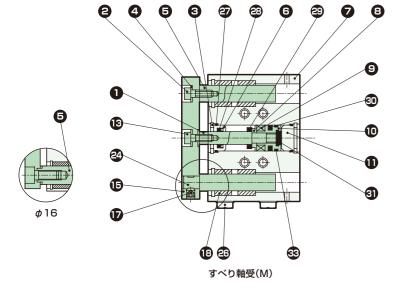
UCA2

シリンダ スイッチ

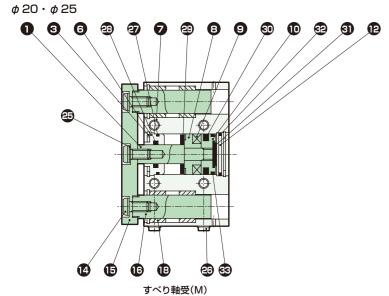
内部構造図・材質(チューブ内径: ϕ 12 \sim ϕ 63)

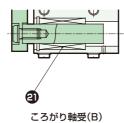
● パッキン材質フッ素ゴム STS-HT2

φ12·φ16

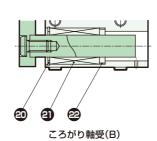

STM

STG

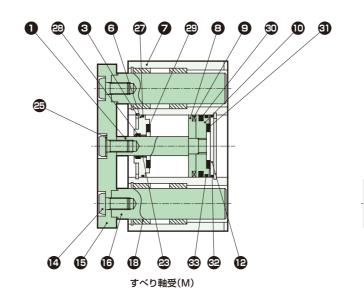

STS. STL

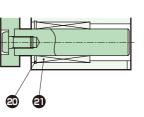

STR2

UCA2



ころがり軸受(B)




すべり軸受(M)

内部構造図・材質 (チューブ内径: φ80)

● パッキン材質フッ素ゴム STS-MT2

ころがり軸受(B)

品番	部品名称		材質	備考	品番	部品名称		材質	備考
	ピストンロッド		φ12~25: ステンレス鋼	工業用クロムめっき	17	六角穴付止めねじ		鋼	黒染(φ12のみ)
_ '			φ32~φ80:鋼		18	メタル		含油軸受合金	
2	六角穴付ボルト		鋼	亜鉛クロメート	19	平座金		鋼	黒染
3	C形止め輪		鋼	リン酸亜鉛	20	C形止め輪		鋼	リン酸亜鉛
4	平座金		鋼	黒染	21	ボールブシュ			
5	ガイドロッド (1)	М	ステンレス鋼	φ 12,16: 工業用クロムめっき	22	カラー		アルミニウム合金	
5	(φ12、φ16)	В	合金鋼	工業用クロムめっき	23	ブシュ		軸受合金	
6	ロッドメタル		アルミニウム合金	φ12~25: アルマイト	24	ガイドロッド (2)	M	ステンレス鋼	φ 12: 工業用クロムめっき
0				φ32~50 : クロメート	24	(φ12)	В	合金鋼	工業用クロムめっき
7	シリンダ本体		アルミニウム合金	硬質アルマイト	25	さらばね座金		鋼	
8	スペーサ		φ12、φ63、φ80:アルミニウム合金	φ12、φ63、φ80:クロメート	26	プラグ		φ12~φ25:-	φ12~φ25:FPL(CKD)
0			φ20~φ50:ポリアミド		20			φ32~φ63:鋼	φ32~φ63:亜鉛クロメート
9	磁石				27	メタルガスケット		フッ素ゴム	
10	ピストン		アルミニウム合金	φ20~φ80: クロメート	28	ロッドパッキン		フッ素ゴム	
11	カバー		アルミニウム合金		29	クッションゴム (R)	ウレタンゴム	
12	底板		φ20~φ63: アルミニウム合金	φ20~φ63: クロメート	30	ピストンパッキン		フッ素ゴム	
12			φ80:鋼	φ80: 亜鉛クロメート	31	クッションゴム(H)	ウレタンゴム	
13	六角穴付ボルト (φ12、φ	16)	鋼	亜鉛クロメート	32	Ο リング		フッ素ゴム	
14	六角穴付ボタンボル	<u>-</u>	鋼	亜鉛クロメート	33	ウェアリング		ポリアセタール	
15	エンドプレート		アルミニウム合金	アルマイト		_	•		
16	ガイドロッド	М	鋼	工業用クロムめっき					
-10	(φ20~φ80)	В	合金鋼	工業用クロムめっき					

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 シリンダ スイッチ

STG

STR2

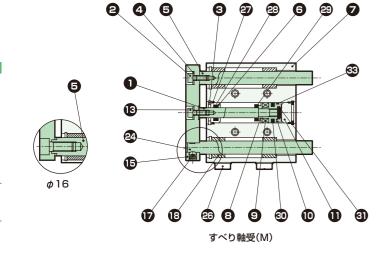
UCA2

巻末

532

CKD

CKD


533

_

内部構造図・材質 (チューブ内径: φ12~φ63)

● パッキン材質フッ素ゴム STSL-NT2

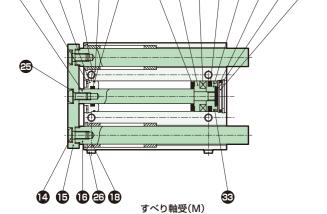
φ12·φ16

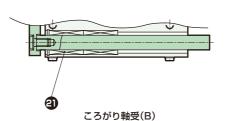
3 3 9 3 0 3 9 B

9 20 21

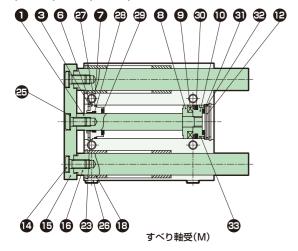
ころがり軸受(B)

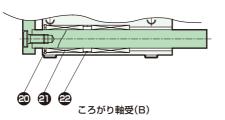
φ20 · φ25

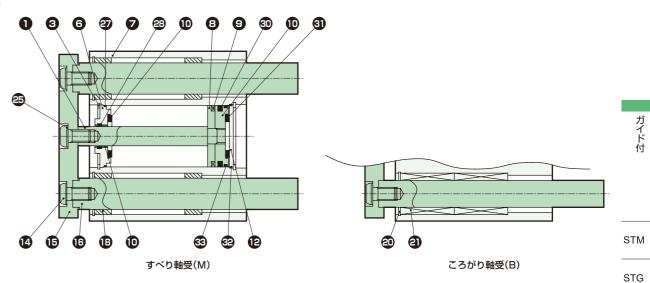

STR2 0 0 0 0 0 0


UCA2

STM


STG


STS. STL


 $\phi 32 \cdot \phi 40 \cdot \phi 50 \cdot \phi 63$

内部構造図・材質 (チューブ内径: φ80)

● パッキン材質フッ素ゴム STL-[™]T2

品番			材質	備考	番品	部品名称		材質	備考
1	ピストンロッド		φ12~25: ステンレス鋼	工業用クロムめっき	17	六角穴付止めねじ		鋼	黒染(φ12 のみ)
'			φ32~φ80:鋼		18	メタル		含油軸受合金	
2	六角穴付ボルト		鋼	亜鉛クロメート	19	平座金		鋼	黒染
3	C 形止め輪		鋼	リン酸亜鉛	20	C形止め輪		鋼	リン酸亜鉛
4	平座金		鋼	黒染	21	ボールブシュ			
5	ガイドロッド (1)	М	ステンレス鋼	φ 12,16: 工業用クロムめっき	22	カラー		アルミニウム合金	
	(φ12, φ16) B		合金鋼	工業用クロムめっき	23	ブシュ		軸受合金	
6	ロッドメタル		アルミニウム合金	φ12~25: アルマイト	24	ガイドロッド (2)	М	ステンレス鋼	φ 12: 工業用クロムめっき
- 0				φ32~50: クロメート	24	(φ12)	В	合金鋼	工業用クロムめっき
7	シリンダ本体		アルミニウム合金	硬質アルマイト	25	さらばね座金		鋼	
8	スペーサ		φ12、φ63、φ80:アルミニウム合金	φ12、φ63、φ80:クロメート	26	プラグ		φ12~φ25:-	φ12~φ25:FPL(CKD)
			φ20~φ50:ポリアミド		۵			φ32~φ63:鋼	φ32~φ63: 亜鉛クロメート
9	磁石				27	メタルガスケット		フッ素ゴム	
10	ピストン		アルミニウム合金	φ20~φ80: クロメート	28	ロッドパッキン		フッ素ゴム	
11	カバー		アルミニウム合金		29	クッションゴム(R)	ウレタンゴム	
12	底板		φ20~φ63: アルミニウム合金	φ20~φ63 : クロメ ー ト	30	ピストンパッキン		フッ素ゴム	
			<i>φ</i> 80:鋼	φ80: 亜鉛クロメート	31	クッションゴム(H)	ウレタンゴム	
13	六角穴付ボルト (φ12、φ16)		鋼	亜鉛クロメート	32	Ο リング		フッ素ゴム	
14	六角穴付ボタンボルト 卸		鋼	亜鉛クロメート	33	ウェアリング		ポリアセタール	
15	エンドプレート アルミ		アルミニウム合金	アルマイト					
16	ガイドロッド	М	鋼	工業用クロムめっき					
-10	(φ20~φ80)	В	合金鋼	工業用クロムめっき					

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→「メンテナンス用部品」をご覧ください。

シリンダ スイッチ

巻末

534

CKD

CKD

シリンダ スイッチ

STR2

UCA2

注6

無記号

3

内容

※リード線長さ、コネクタ仕様

1m(標準)

3m(オプション)

5m(オプション)

1PIN(+)4PIN(-)

STM

STG

STR2

UCA2

M8コネクタ、

リード線0.3m

注6: T2WLH、T2WLVのみ選定

可能です。

例) リード線長さ

1m TOH

3m TOH3

5m TOH5

STS·STL-M-**C Series

● チューブ内径: ø32・ø40・ø50・ø63・ø80

ガイド付シリンダ ゴムエアクッション付

回路図記号

形番表示方法

●ショートストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

(STS)-(32 8 3 0 機種形番

50 4 (STS)-(M

50

·(TOH

スイッチ付(注1) (スイッチ用磁石内蔵)

8 3 4 8 0 0 機種形番 2色表示、T1H/V、T8H/V、 STS - M - L1 - 40 C 50 8 3 6 4 **6** 7

オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

●ロングストローク

STM

STG

STS STL

STR2

UCA2

スイッチなし(注1) (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、

オフディレータイプスイッチ付

スイッチ付(注1) (スイッチ用磁石内蔵)

STL 0 機種形番

(STL)-(

機種形番

M

(STL)-(

8 40

軸受

8 3 チューブ 配管ねじ ゴムエア ストローク スイッチ スイッチ オプション

3

3

種類 クッション付

4

C - (100)

4

4

-(100)

C -(100)-(T1H)-(

8

-(T0H)

8

形番

0

0

注 1: ø80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

8

32

● 軸受方式

<u> </u>						
記号	内容					
M	すべり軸受					
В	ころがり軸受					

(スイッチ用磁石内蔵)(φ40以上) 機種形番

2 チューブ内径(mm)

記号	内容
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

3 配管ねじ種類

記号	内容
無記号	Rcねじ
N	NPTねじ(カスタム品)
G	Gねじ(カスタム品)

4 ストローク(mm)

シリ	ストローク	適用チューブ内径						
」	(mm)	φ32	φ40	φ50	φ63	φ80		
		25	•	•	•	•	•	
_S	 標準ストローク	50	•	•	•	•	•	
S	標準人下ローク	75					•	
S		100					•	
	中間ストローク	5mm毎						

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。 注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ことも可能です。(カスタム品)

シリーズ	ストローク	適用チューブ内径						
」 ズ	(mm)	φ32	φ40	φ50	φ63	φ80		
		50	•	•	•	•		
		75	•	•	•	•	•	
		100	•	•	•	•	•	
		125	•	•	•	•	•	
		150	•	•	•	•	•	
	標準ストローク	175	•	•	•	•	•	
		200	•	•	•	•	•	
ş		225	•	•	•	•	•	
S T L		250	•	•	•	•	•	
		275	•	•	•	•	•	
		300	•	•	•	•	•	
		325	•	•	•	•	•	
		350	•	•	•	•	•	
		375	•	•	•	•	•	
		400	•	•	•	•	•	
	中間ストローク	注1、注2			5mm毎			

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。 6 スイッチ形番 負荷電圧(V) 負荷電流(mA) リード線 注1 表示灯 点 特殊機能 (出力) AC DC AC DC ストレート L字 85~265 5~100 **T1H**% **T1V**% 2線 1色 10~30 5~20 注2 **T2H**※ **T2V**% _ 3線(NPN) **T3H**% **T3V**% 30以下 100以下 3線(PNP) T3PH% T3PV% 2線 24±10% 5~20 **T2WH**% **T2WV** 2色 3線(NPN) 30以下 50以下 | T3WH※ | T3WV % 2色 24±10% T2WLH※|T2WLV》 耐水性 向上 5~20 T2YD% _ 2色交流 24±10% 磁界用 _ _ T2YDT% 2線 1色 オフディレ 10~30 T2JH% T2JV% 5~20 タイプ 1色 注2 耐屈曲リード 10~30 T2HR3 T2VR3 線タイプ 7~20 TOV* 110 12/24 5~50 TOH* 1色 110 20以下 50以下 **T5H**% **T5V**% 表示灯なし 5/12/24 7~20/

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

12/24

注2:上記の負荷電流の最大値:20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、 20mAより低くなります。(60°Cのとき5~10mAとなります。)

7~10

5~50

T8H%

T8V%

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの 使用を推奨します。

注4: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、**①**と**②**の間に "L1" を入れて ーで結んでください。(ただし、T2WH/V、T3WH/Vは除く)

例) STS-M-L1-63C-50-T1H3-D-F

110/220

φ80は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。 この場合、 **①**と**②**の間に"L1" を入れた形番で手配してください。

例) STS-M-L1-80C-50-F 注5:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

③ スイッチ数

1色

ř	記号	内容
		ロッド側1個付
		ヘッド側1個付
	D	2個付

ロオプション

	記号	内容
	F	エンドプレート材質: 鋼
注1	М	耐食形 (ピストンロッド、ガイドロッド材質:SUS) (カスタム品)
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について

詳細は654ページをご参照ください。

記号 ポート対称形 形番例)

STS/L-M-%C-----

スイッチ単品形番表示方法

スイッチ

536

巻末

CKD

CKD

巻末

537

STS·STL-M-**C Series

仕様

項目	STS/L-M/B-%C									
チューブ内径	mm	φ32	φ40	φ50	φ63	φ80				
作動方式				複動形						
使用流体				圧縮空気						
最高使用圧力	MPa		1.0							
最低使用圧力	MPa			0.2						
耐圧力	MPa		1.6							
周囲温度	°C		− 10~	-60(ただし、凍結な	きこと)					
接続口径		Rc	1/8	Rc	1/4	Rc3/8				
ストローク許容差	mm			+2.0 0						
使用ピストン速度	mm/s		50~500		50~	·300				
クッション		ゴムエアクッション付								
給油		不要(給油時はタービン油1種ISOVG32を使用)								
許容吸収エネルギー	J	0.401	0.627	0.980	1.560	2.510				

STM

STG

ストローク

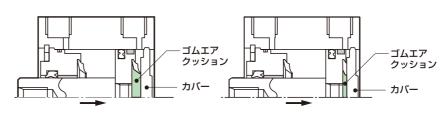
・ショートストローク STS

STS STL STR2 UCA2

・ チューフ内径(mm)	ストローク(mm)	最大人トローク(mm <i>)</i>	最小人トローク(mm)	人イッチ付最小人トローク(mm)				
φ32				_				
<i>ф</i> 40	25,50	50	5) 注1				
φ50		50						
φ63			10	10				
φ80	25,50,75,100	100	10	注 1				
<u>注1:スイッチ1個付または2個付の場合です。</u>								

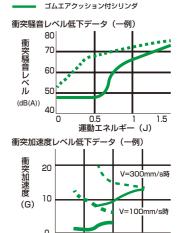
・ロングストローク STL

チューブ内径(mm)	ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)	
φ32	50,75,100,125,150				
φ40	175、200、225、250		30	30	
φ50	275、300、325、350		30	注2	
φ63	375、400	400			
	75、100、125、150、175			FF	
φ80	200、225、250、275、300		55	55 注2	
	325、350、375、400			<u> </u>	


注1:中間ストロークについては5mm毎に製作可能です。ただし、全長寸法はその上の標準ストロークと同じになります。 注2:スイッチ1個付または2個付の場合です。

理論推力表

理論推力表							(単位:N)			
チューブ内径	作動				使月	用圧力 M	Pa			
(mm)	方向	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
φ32	Push	1.61×10 ²	2.41×10 ²	3.22×10 ²	4.02×10 ²	4.83×10 ²	5.63×10 ²	6.43×10 ²	7.24×10 ²	8.04×10 ²
Ψ32	Pull	1.21×10 ²	1.81×10 ²	2.41×10 ²	3.02×10 ²	3.62×10 ²	4.22×10 ²	4.83×10 ²	5.43×10 ²	6.03×10 ²
φ40	Push	2.51 × 10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²	1.01×10 ³	1.13×10 ³	1.26×10 ³
Ψ40	Pull	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10 ²	7.39×10 ²	8.44×10 ²	9.50×10 ²	1.06×10 ³
φ50	Push	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³	1.57×10 ³	1.77×10 ³	1.96×10 ³
ψυυ	Pull	3.30×10 ²	4.95×10 ²	6.60×10 ²	8.25×10 ²	9.90×10 ²	1.15×10 ³	1.32×10 ³	1.48×10 ³	1.65×10 ³
φ63	Push	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10 ³	2.18×10 ³	2.49×10 ³	2.81×10 ³	3.12×10 ³
ψυσ	Pull	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10 ³	2.52×10 ³	2.80×10 ³
φ80	Push	1.01×10 ³	1.51×10 ³	2.01×10 ³	2.51×10^{3}	3.02×10 ³	3.52×10 ³	4.02×10 ³	4.52×10 ³	5.03×10 ³
Ψου	Pull	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10 ³	2.72×10 ³	3.17×10 ³	3.63×10 ³	4.08×10 ³	4.54×10 ³
	~~==		1040	- " -	4	- "	DT 4 4 4 4			


シリンダ質量については642ページ~645ページをご参照ください。

■ ゴムエアクッション機構

PULL時にて説明

ピストンが動作しゴムエアクッションとカバーが接触すると、■にエアーの密閉空間が形成されます。 この密閉空間のエアーは、ピストン作動に伴い圧縮されエネルギーを吸収します。 ストローク終端ではゴムエアクッションの圧縮歪みによるエネルギー吸収も加算されます。

■ ■ ■ ゴムクッション付シリンダ

外形寸法図

複動・片ロッド形STS/STLシリーズと同じです。下記ページをご参照ください。 $\mathsf{STS} \ni \mathsf{U} - \mathcal{I} : 486 ^\circ - \mathcal{I} (\phi 8 \sim \phi \, 16), 487 ^\circ - \mathcal{I} (\phi \, 20, \phi \, 25), 488 ^\circ - \mathcal{I} (\phi \, 32 \sim \phi \, 63), 489 ^\circ - \mathcal{I} (\phi \, 80)$ $STL \Rightarrow U - Z : 491 \% - U (\phi 8 \% 16), 492 \% - U (\phi 20, \phi 25), 493 \% - U (\phi 32 \% 63), 494 \% - U (\phi 80)$

シリンダ スイッチ

巻末

CKD

CKD

538

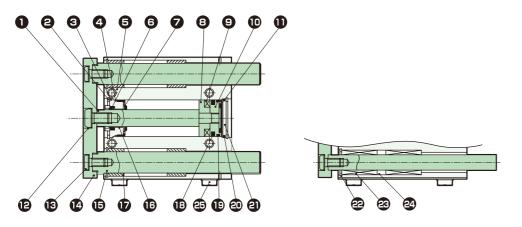
シリンダ スイッチ

巻末

539

STM

STG


STR2

UCA2

すべり軸受(M)

ころがり軸受(B)

● STL-^M-32C~80C (ロングストローク)

すべり軸受(M)

ころがり軸受 (B)

品番	部品名称	材 質	備考	品番	部品名称	材 質	備考
1	ピストンロッド	鋼	工業用クロムめっき	15	ガイドロッド	鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	16	ブシュ	軸受合金	
3	ロッドメタル	特殊アルミニウム合金	アルマイト	17	メタル	含油軸受合金	
4	メタルガスケット	ニトリルゴム		18	ピストンパッキン	ニトリルゴム	
5	シリンダ本体	アルミニウム合金	硬質アルマイト	19	ウェアリング	ポリアセタール	
6	ロッドパッキン	ニトリルゴム		20	ロリング	ニトリルゴム	
7	ゴムエアクッション(R)	ウレタンゴム		21	底板	φ32~φ63:アルミニウム合金	
8	スペーサ	アルミニウム合金				φ80:鋼	φ80:亜鉛クロメート
9	磁石	プラスチック		22	C形止め輪	鋼	リン酸亜鉛
10	ピストン	アルミニウム合金		23	ボールブシュ		
11	ゴムエアクッション(H)	特殊ゴム		24	カラー	アルミニウム合金	(φ80はなし)
12	さらばね座金	鋼		25	プラグ	φ8~φ25:-	φ8~φ25:FPL(CKD)
13	六角穴付ボタンボルト	鋼	亜鉛クロメート			φ32~φ63:鋼	φ32~φ63:亜鉛クロメート
14	エンドプレート	アルミニウム合金	アルマイト			_	_

シリンダ スイッチ

STM

STG

STS. STL

STR2

UCA2

巻末

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 MEMO

STG

STR2

UCA2

シリンダ スイッチ

STS·STL-M-**C Series

技術資料

ガイド付シリンダ選定ガイドは638ページをご参照ください。

[衝突騒音レベルの性能比較]

データは下記条件での比較例です。

架台剛性等により数値は変化しますので、保証値ではありません。

(試験条件)

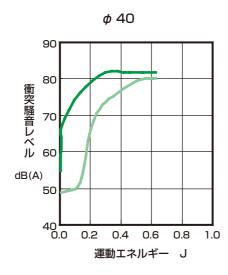
シリンダの種類 :STS/L

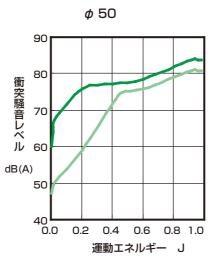
シリンダの取付方向:垂直ロッド上向き シリンダの供給圧力: 0.5MPa

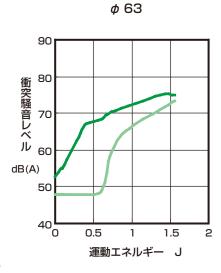
騒音計の計測位置 : 試料より1m

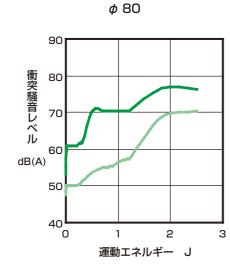
標準ゴムクッション品 ゴムエアクッション品

STM

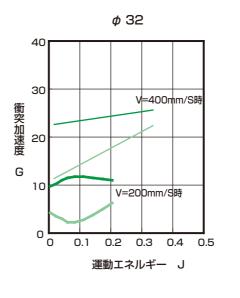

STG

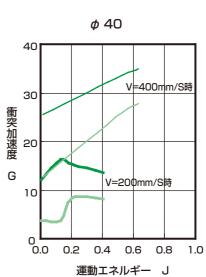

STS.

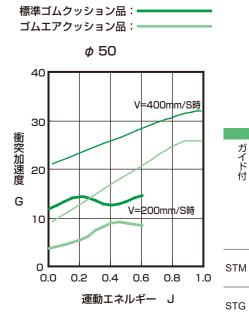

STR2

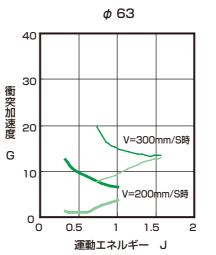

UCA2

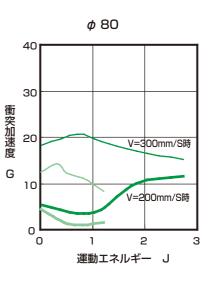
φ 32 80 ル 60 dB(A) 0.1 0.2 0.3 0.4 0.5 運動エネルギー J

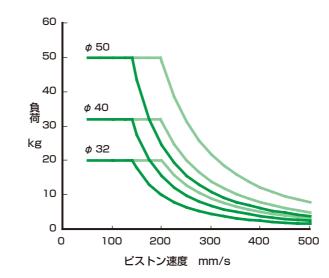


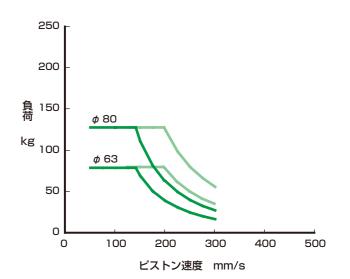

巻末


CKD 542


技術資料


[衝突加速度の性能比較]





[許容エネルギー値]

曲線より左下側が使用可能範囲です。

– 線で示す範囲においても使用は可能ですが、消音効果をより有効にだす為に実線の範囲内で使用することを推奨します。

巻末

シリンダ スイッチ

STR2

UCA2

CKD

543

形番表示方法

😉 スイッチ形番

RoHS

Ø

Ø

Ø

Ø

内容

NPTねじ(φ32以上)カスタム品 Gねじ(φ32以上)カスタム品 スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。

	717.	<i>///</i> 田	ヘイ ツノ は	校田に別り	ЈСШ 1111 О Ф	.9 .				_
接	表示灯	配線	負荷電	汪(V)	負荷電流	充(mA)	リード	泉注1		
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字		
		2線	85~265	_	5~100	_	тінж	T1V%		
	1色		_	10~30	_	5~20 注2	T2H%	T2V%		
		3線(NPN)	_	30以下	_	100以下	ТЗНЖ	T3V %	1 /	ı
		3線(PNP)	_	ואטט	_	ועטטגון	ТЗРНЖ	ГЗРН※ ТЗРУ※		l
	2	2線	_	24±10%	_	5~20	T2WH%	T2WV%		l
	2色	3線(NPN)	_	30以下	_	50以下	T3WH%	T3WV※		ı
無接点	2色 耐水性 向上		_	24±10%	_	5~20	T2WLH%	T2WLV%	1	 注3
	2色交流		_	24+100/	_	5~20	T2YD%	_	4	
ĺ	磁界用	O##	_	24±10%	_		T2YDT%	_	C. Carlo	ĺ
	1色 オフディレー タイプ	2線	_	10~30	_	5~20	т2ЈН※	T2JV※	6 m 6 m	
	1色 耐屈曲リード 線タイプ		_	10~30		注2	T2HR3	T2VR3	22500 2250	
	1色		110	12/24	7~20	5~50	TOH*	TOV*		ĺ
有接	表示灯なし		110	5/12/24	20以下	50以下	T5H%	T5V%	Children of Lines	
Ⅰ桜		2線							- //	1

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

注2: 上記の負荷電流の最大値: 20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、20mAより低くなります。(60℃のとき5~10mAとなります。)

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの使用を推奨します。

7~20/

7~10

注: 4: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、 ●と●の間に "L1" を入れて 一で結んでください。 (ただし、T2WH/V、T3WH/Vは除く)

ーで結んでください。(ただし、T2WH/V、T3WH/Vは除く) 例)STS-MC-L1-63-50-T1H3-D-F

φ80は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。 この場合、❶と❷の間に"L1" を入れた形番で手配してください。

この場合、●と●の間に"LT" を入れた形番で手配してくたさい。 例)STS-MC-L1-80-50-F

110/220 12/24

注5:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページをご参照ください。

〇 7 /… 千粉

1色

6 71	ソナ致
記号	内容
R	ロッド側1個付
Н	ヘッド側1個付
D	2個付
Т	3個付

7 オプション

5~50 **T8H**% **T8V**%

	U 4)	ソヨノ
	記号	内容
	F	エンドプレート材質(鋼)
注1	M	耐食形(ピストンロッド、ガイドロッド材質: SUS) (カスタム品)
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、

478ページ (すべり軸受 M)、480ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について 詳細は654ページをご参照ください。

記号	内容
-0	ポート対称形

番例)

STS/L-MC-----

スイッチ単品形番表示方法

※リード線長さ、コネクタ仕様

##記号 1m(標準)
3 3m(オプション)
5 5m(オプション)
M8コネクタ、
1PIN(+)4PIN(-)
リード線0.3m

注6: T2WLH、T2WLVのみ選定 可能です。

例) リード線長さ 1m TOH 3m TOH3 5m TOH5

STM

STG

STS. STL

STR2

UCA2

00/12

すべり軸受

ころがり軸受

内容

形番表示方法

●ショートストローク

スイッチなし(注1)

(スイッチ用磁石内蔵)

スイッチ付(注1)

2色表示、T1H/V、T8H/V、

オフディレータイプスイッチ付

●ロングストローク

スイッチなし(注1)

(スイッチ用磁石内蔵)

スイッチ付(注1)

2色表示、T1H/V、T8H/V、

オフディレータイプスイッチ付

(スイッチ用磁石内蔵)(φ40以上) 機種形番

(スイッチ用磁石内蔵)

● 軸受方式

記号

М

В

(スイッチ用磁石内蔵)(φ40以上) 機種形番

(スイッチ用磁石内蔵)

STM

STG


STS STL

STR2

UCA2

ストローク(m	m)														
ストローク			道	囲チュ	一ブ内征	圣									
(mm)		φ25	φ32	φ40	φ50	φ63	φ80								
	25	•	•	•	•	•	•								
	50	•	•	•	•	•	•								
信楽人トローク 	75						•								
	100						•								
中間ストローク	注1		1 mr	m毎(た	(カスタム品)										
	ストローク (mm) 標準ストローク	(mm) 25 標準ストローク 75 100	ストローク (mm) ゆ25 ● 50 ● 75 100	ストローク (mm) ゆ25 ゆ32	ストローク 適用チュ	ストローク 適用チューブ内バ φ25 φ32 φ40 φ50 を	ストローク (mm) 適用チューブ内径 φ25 φ32 φ40 φ50 φ63 標準ストローク 50 ● ● ● ● ● 75 100 ● ● ● ●								

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

ガイド付シリンダ 複動・エアクッション付

25

8

25

8

8

25

8

25

8

40

内径

② チューブ内径(mm)

*φ*25

ø32

φ40

*φ*50

φ63

φ80

内容

注 1: ø80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

記号

25

32

40

50

63

80

回路図記号

M

(STS)-(M) C-L1-(

M

軸受

方式

STS -

機種形番

(STS)-

(STL)-

機種形番

機種形番

(STL)-

機種形番

STS·STL-MC Series

3

3

3

3

3

3

種類

● チューブ内径: φ25・φ32・φ40・φ50・φ63・φ80

4

4

4

50

4

4

4

T2H

0

0

T2H

0

0

形番

記号

3 配管ねじ種類

 $M5(\phi 25)$

Rcねじ(ø32~ø80)

チューブ 配管ねじ ストローク スイッチ スイッチ オプション

0

0

0

シリンダ スイッチ

巻末

544 **CKD**

CKD

--

シリンダスイッチ

巻末 _____

(単位:N)

什糕

1 <u>1</u> 13K							
項目				STS-MC/BC.	STL-MC/BC		
チューブ内径	mm	φ25	φ32	φ40	φ50	φ63	φ80
作動方式				複動・エアク	フッション付		
使用流体				圧縮	空気		
最高使用圧力	MPa			1.	.0		
最低使用圧力	MPa	0.15			0.1		
耐圧力	MPa			1.	.6		
周囲温度	°C			-10~60 (ただし	」、凍結なきこと)		
接続口径		M5	Rc	1/8	Rc	1/4	Rc 3/8
ストローク許容差	i 動 mm			+2	2.0		
使用ピストン速度	mm/s		50~	·500		50~	·300
クッション				エアクッ	ション付		
有効クッション長	さ mm	8.1	8.	.6	13	3.4	15.4
給油			不要((給油時はタービン)	由1種ISOVG32を	使用)	
許容吸収エネルコ	ギー J	1.18	2.27	3.05	3.81	15.64	20.18

STM

STG

STR2

STS STL

UCA2

ス	 		_	ク
---	----------	--	---	---

・ショートストローク STS

チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)注1	スイッチ付最小ストローク(mm)注1
φ25				
φ32				
φ40	25,50	50	15	15
φ50			15	注2
φ63				
φ80	25,50,75,100	100		

注1:最小ストローク以下はクッション効果が得られませんので、基本形を選定してください。

注2:スイッチ1個付または2個付の場合です。

・ロングストローク STL

チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ25				
φ32	50,75,100,125,150			
φ40	175、200、225、250 275、300、325、350	400	30	30 注2
φ50	375,400			75
φ63]			
	75、100、125、150、175			55
φ80	200、225、250、275、300	375	55) 注2
	325,350,375			

注1:中間ストロークについては1mm毎に製作可能です。(カスタム品)

注2:スイッチ1個付または2個付の場合です。

理論推力表

チューブ内径 作動 使用圧力 MPa 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 方向 0.1 0.15

(mm) 98.2 | 1.47×10² | 1.96×10² | 2.45×10² | 2.95×10² | 3.44×10² | 3.93×10² | 4.42×10² | 4.91×10² Push 73.6 φ25 75.6 | 1.13×10² | 1.51×10² | 1.89×10² | 2.27×10² | 2.64×10² | 3.02×10² | 3.40×10² | 3.78×10² Pull _ $|1.21 \times 10^{2}|1.61 \times 10^{2}|2.41 \times 10^{2}|3.22 \times 10^{2}|4.02 \times 10^{2}|4.83 \times 10^{2}|5.63 \times 10^{2}|6.43 \times 10^{2}|7.24 \times 10^{2}|8.04 \times 10^{2}|$ 80.4 Push φ32 90.5 | 1.21×10² | 1.81×10² | 2.41×10² | 3.02×10² | 3.62×10² | 4.22×10² | 4.83×10² | 5.43×10² | 6.03×10² $1.26 \times 10^{2} | 1.88 \times 10^{2} | 2.51 \times 10^{2} | 3.77 \times 10^{2} | 5.03 \times 10^{2} | 6.28 \times 10^{2} | 7.54 \times 10^{2} | 8.80 \times 10^{2} | 1.01 \times 10^{3} | 1.13 \times 10^{3} | 1.26 \times 10^{3$ Push $\phi 40$ 1.06×10^{2} 1.58×10^{2} 2.11×10^{2} 3.17×10^{2} 4.22×10^{2} 5.28×10^{2} 6.33×10^{2} 7.39×10^{2} 8.44×10^{2} 9.50×10^{2} 1.06×10^{3} $1.96 \times 10^{2} | 2.95 \times 10^{2} | 3.93 \times 10^{2} | 5.89 \times 10^{2} | 7.85 \times 10^{2} | 9.82 \times 10^{2} | 1.18 \times 10^{3} | 1.37 \times 10^{3} | 1.57 \times 10^{3} | 1.77 \times 10^{3} | 1.96 \times 10^{3} | 1.96 \times 10^{3} | 1.18 \times 10^{3} | 1.37 \times 10^{3} | 1.57 \times 10^{3} | 1.77 \times 10^{3} | 1.96 \times 10^{3} | 1.96 \times 10^{3} | 1.18 \times 10^{3} | 1.37 \times 10^{3} | 1.57 \times 10^{3} | 1.77 \times 10^{3} | 1.96 \times 10^{3$ φ50 $|1.65\times10^{2}|2.47\times10^{2}|3.30\times10^{2}|4.95\times10^{2}|6.60\times10^{2}|8.25\times10^{2}|9.90\times10^{2}|1.15\times10^{3}|1.32\times10^{3}|1.48\times10^{3}|1.65\times10^{3}|$ $3.12 \times 10^{2} | 4.68 \times 10^{2} | 6.23 \times 10^{2} | 9.35 \times 10^{2} | 1.25 \times 10^{3} | 1.56 \times 10^{3} | 1.87 \times 10^{3} | 2.18 \times 10^{3} | 2.49 \times 10^{3} | 2.81 \times 10^{3} | 3.12 \times 10^{3} | 2.12 \times 10^{3$ φ63 Pull | 2.80×10² | 4.20×10² | 5.61×10² | 8.41×10² | 1.12×10³ | 1.40×10³ | 1.68×10³ | 1.96×10³ | 2.24×10³ | 2.52×10³ | 2.80×10³ Push |5.03×10²|7.54×10²|1.01×10³|1.51×10³|2.01×10³|2.51×10³|3.02×10³|3.52×10³|4.02×10³|4.52×10³|5.03×10³ Φ80 Pull |4.54×10²|6.80×10²|9.07×10²|1.36×10³|1.81×10³|2.27×10³|2.72×10³|3.17×10³|3.63×10³|4.08×10³|4.54×10³

シリンダ質量については642ページ~645ページをご参照ください。

STM

STG

STR2

UCA2

シリンダ スイッチ

巻末

XX部詳細

外形寸法図 (チューブ内径: ϕ 25・ ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● エアクッション付 STS-⊮C

STM

STG

STS ·

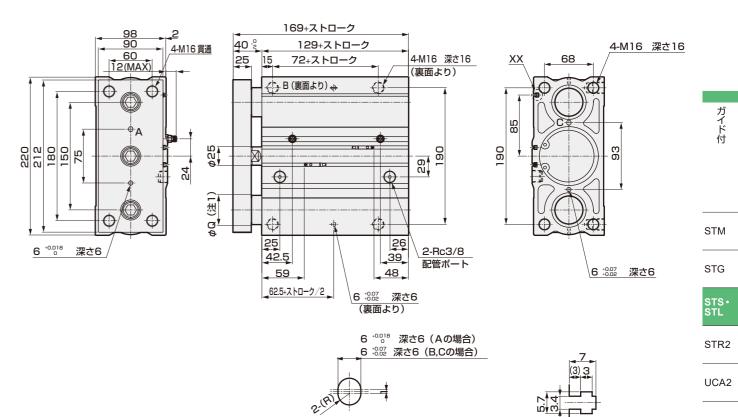
STR2

UCA2

A+ストローク CF(MAX) B+ストローク P+ストローク 4-KA 4-KC Φ B (裏面より) S 0 0 6 +0.018 深さ6 ₄R_ C D \6 ₺號 深さ6 4-EE 配管ポート CR CH ED 6 the 深さ6 (裏面より) 6 ^{+0.018} 深さ6 (Aの場合) 6 ^{+0.07} 深さ6 (B,Cの場合) A、B、C長穴部寸法 XX部詳細

STS-M/BC (φ25~φ63)

記 号 f1-jnE(mm)	A	В	С	D	E	E	EA	EC	EG	E	ם	F	G	н	ŀ	IH	1		Ju	J	К	К	Ά
φ25	79	66	12	9	M5	×0.8	32	35	37	27+ ²	<u>トローク</u> 2	42	86	38	M6%	₽さ12	8	4	M6深a	<u>†</u> 12	63	5.2	貫通
φ32	93	74	14	10.5	Rc	1/8	42	45	46	30+ ²	<u>トローク</u> 2	47	111	45	M8%	₽さ16	10	9	M8深a	±16	81	6.3	貫通
φ40	97	78	14.5	11.5	Rc	1/8	45	54	55	32+ ²	.トローク 2	54	120	50	M8%	₽さ16	11	18	M8深a	±16	90	6.3	貫通
φ50	102	80	16	12.5	Rc	1/4	55	66	69	32+ ²	<u>トローク</u> 2	66	147	64	M10	深さ20	0 14	15 N	W10深	さ20	110	8.6	貫通
φ63	108	86	12.5	17.5	Rc	1/4	62	79	82	35+ ²	.トローク 2	79	162	75	M10	深さ20	0 16	00	W10深	さ20	124	8.6	貫通
記 号 チューフ縮(mm)		кс		ММ	N	N	N	Р	PP	STS-M	STS-B	R	s	U	v	w	х	Υ	YY	CF	СН	CR	cs
φ25	9.5座	ぐり深	き5.4	12	26	M6	貫通	45	6	14	12	14	26	72	24	35	13.2	9	27	15	24.5	27	25
φ32	11座	ぐり深	さ6.5	16	29	M8	貫通	47	7	20	16	16	39	93	25	45	19.2	12	39	14	28	33	34
φ40	11座	ぐり深	さ6.5	16	34	M8	貫通	50	7	20	16	18	43	102	32	54	19.2	12	42	14	29	35	20
φ50	14座	ぐり深	さ8.6	20	44	M1C)貫通	51	8	25	20	22	49	125	38	66	22.2	16	45	17	29	36	23
φ63	14座	ぐり深	さ8.6	20	55	M1C)貫通	51	8	25	20	26	56	140	50	79	22.2	16	52	17	29	41.5	25


注1:中間ストロークについては1mm毎に製作可能です。(カスタム品)

注2: ϕ 25のポートの埋栓形状は六角のプラグになります。

注3: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

外形寸法図 (チューブ内径: φ80)

● エアクッション付 STS-MC

注1:寸法Qについては M (すべり軸受) の場合 ϕ 40、B (ころがり軸受) の場合 ϕ 35 となります。

注2:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 ϕ 80の標準ストロークは25・50・75・100mmの4種類です。

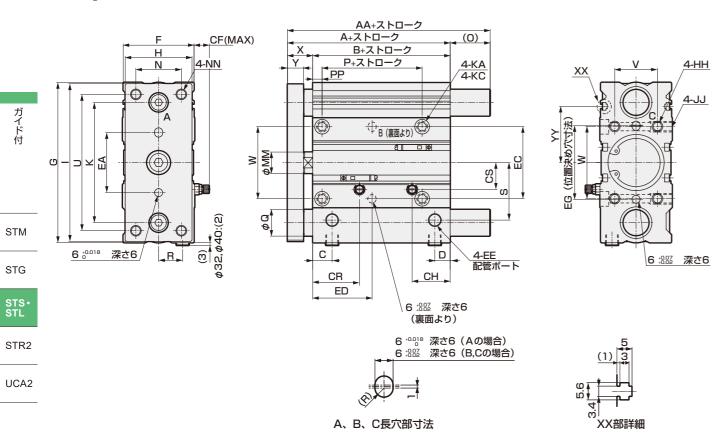
A、B、C長穴部寸法

注3: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ

巻末

548


CKD

シリンダ スイッチ

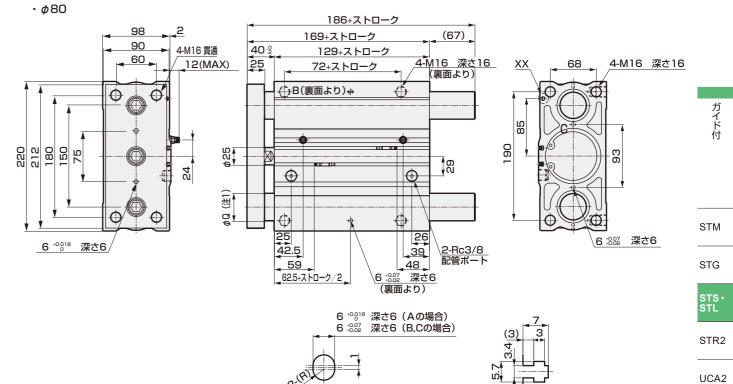
XX部詳細

外形寸法図 (チューブ内径: ϕ 25・ ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● エアクッション形 STL-MC

STL-M/BC (φ25~φ63)

記号 f1-7ME(mm)	A	AA	В	С	ם	EE	E	A EC	EC	3	ED	F	G	н		нн		ı	J	J	к	К	Α
φ25	79	79	66	12	9	M5×0.8	3 3	2 35	37	7 27	7+ ^{ストロー:}	42	86	38	Me	6深さ	12	84	M6深	さ12	63	5.2	貫通
φ32	93	102	74	14	10.5	Rc1/8	4	2 45	46	30)+	47	11	1 45	M	3深さ	16	109	M8深	さ16	81	6.3	貫通
φ40	97	102	78	14.5	11.5	Rc1/8	4	5 54	55	32	2+ ^{2 + 2}	54	120	50	M	3深さ	16	118	M8深	さ16	90	6.3	貫通
φ50	102	125	80	16	12.5	Rc1/4	5	5 66	69	32	2+ ^{2 + 2}	66	147	7 64	M1	0深さ	20	145	M10湯	にさ20	110	8.6	貫通
φ63	108	125	86	12.5	17.5	Rc1/4	6	2 79	82	2 35	5+ ^{ストロー:}	79	162	2 75	M1	0深さ	20	160	M10%	にさ20	124	8.6	貫通
記 号 f1-7ME(mm)		КС		ММ	N	NN	0	Р	PP		STL-B	R	s	U	v	w	х	Y	YY	CF	СН	CR	cs
φ25	9.5座	ぐり深	さ5.4	12	26	M6貫通	0	45	6	14	12	14	26	72	24	35	13	9	27	15	24.5	27	25
φ32	11座	ぐり深	さ6.5	16	29	M8貫通	9	47	7	20	16	16	39	93	25	45	19	12	39	14	28	33	34
φ40	11座	ぐり深	さ6.5	16	34	M8貫通	5	50	7	20	16	18	43	102	32	54	19	12	42	14	29	35	20
φ50	14座	ぐり深	さ8.6	20	44	M10貫通	23	51	8	25	20	22	49	125	38	66	22.	16	45	17	29	36	23
φ63	14座	ぐり深	එ.8 ව	20	55	M10貫通	17	51	8	25	20	26	56	140	50	79	22	16	52	17	29	41.5	25


注1:中間ストロークについては1mm毎に製作可能です。(カスタム品)

注2: φ25のポートの埋栓形状は六角プラグになります。

注3: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

外形寸法図 (チューブ内径: φ80)

● エアクッション形 STL-⊮C

注1:寸法Qについては M (すべり軸受) の場合 ϕ 40、B (ころがり軸受) の場合 ϕ 35 となります。

A、B、C長穴部寸法

シリンダ スイッチ

巻末

550

CKD

CKD

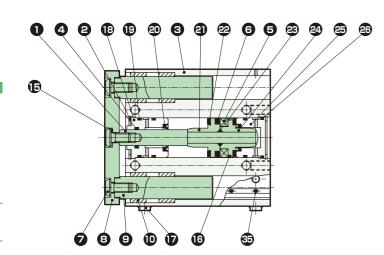
シリンダ スイッチ

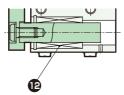
巻末

551

内部構造図・材質 (チューブ内径: φ25~φ63)

● エアクッション付 STS-MC

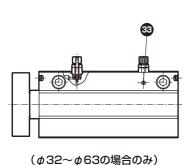

STM

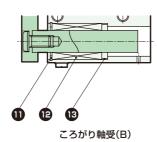

STG

STS.

STR2

UCA2

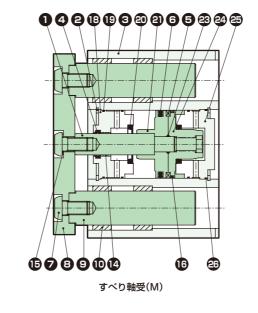


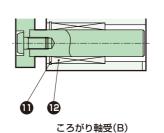


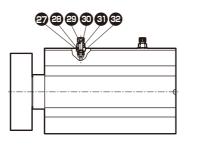
27 23 23 33 23 24

すべり軸受(M)

ころがり軸受(B)






(φ32~φ63の場合のみ)

内部構造図・材質 (チューブ内径: φ80)

● エアクッション付 STS-MC

品番	部品名称		材質	備考	番品	部品名称	材質	備考
1	ピストンロッド		φ 25 : ステンレス鋼	工業用クロムめっき	18	ロッドメタル	アルミニウム合金	アルマイト
1			φ 32~φ 80 : 鋼		19	メタルガスケット	ニトリルゴム	
2	C形止め輪		鋼	リン酸亜鉛	20	クッションパッキン	ニトリルゴム、鋼	
3	シリンダ本体		アルミニウム合金	硬質アルマイト	21	ピストンR	アルミニウム合金	
4	ロッドパッキン		ニトリルゴム		22	クッションゴム	ウレタンゴム	
5	磁石				23	Ο リング	ニトリルゴム	
6	ピストンパッキン		ニトリルゴム		24	ピストンH	アルミニウム合金	
7	六角穴付ボタンボル	٢	鋼	亜鉛クロメート	25	底板	アルミニウム合金	クロメート
8	エンドプレート		アルミニウム合金	アルマイト	26	Ο リング	ニトリルゴム	
9	ガイドロッド	М	鋼	工業用クロムめっき	27	Ο リング	ニトリルゴム	
9		В	合金鋼	工業用クロムめっき	28	ニードルホルダ	アルミニウム合金	
10	メタル		含油軸受合金		29	ニードル	ステンレス鋼	
11	C形止め輪		鋼	リン酸亜鉛	30	ツマミ	アルミニウム合金	
12	ボールブシュ				31	ロックナット	鋼	ニッケルめっき
13	カラー		アルミニウム合金		32	Ο リング	ニトリルゴム	
14	ブシュ		軸受合金		33	鋼球	鋼	
15	皿ばね座金		鋼		34	六角穴付止めねじ	ステンレス鋼	
16	ウェアリング		ポリアセタール		35	六角穴付止めねじ	合金鋼	黒染
17	プラグ		φ 25 : –	φ 25 : FPL(CKD)				
1/			φ 32 ~ φ 63 : 鋼	∅ 32 ~ ∅ 63 : 亜鉛クロメート				

メンテナンス用部品については、CKD機器商品サイト
(https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

シリンダ スイッチ

巻末

CKD

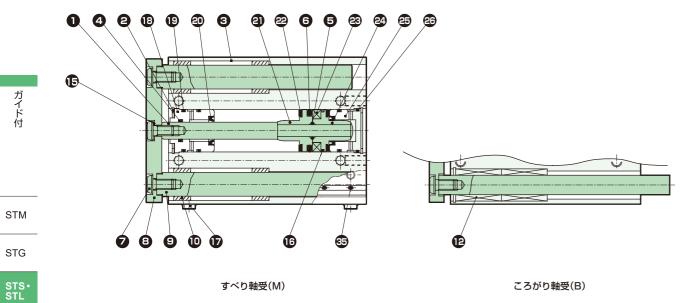
CKD

553

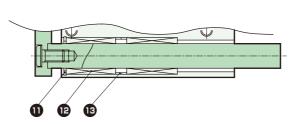
:

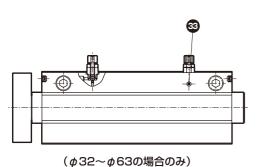
552

シリンダ スイッチ


STG

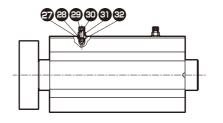
STR2


UCA2


内部構造図・材質 (チューブ内径: φ25~φ63)

● エアクッション付 STL-MC

29 29 39 39 52



ころがり軸受(B) (φ32~φ63の場合) 内部構造図・材質 (チューブ内径: φ80)

● エアクッション付 STL-MC

番品	部品名称		材質	備考	番品	部品名称	材質	備考
,	ピストンロッド		φ 25 : ステンレス鋼	工業用クロムめっき	18	ロッドメタル	アルミニウム合金	アルマイト
1			φ 32 ~ φ 80 : 鋼		19	メタルガスケット	ニトリルゴム	
2	C形止め輪		鋼	リン酸亜鉛	20	クッションパッキン	ニトリルゴム、鋼	
3	シリンダ本体		アルミニウム合金	硬質アルマイト	21	ピストンR	アルミニウム合金	
4	ロッドパッキン		ニトリルゴム		22	クッションゴム	ウレタンゴム	
5	磁石				23	Ο リング	ニトリルゴム	
6	ピストンパッキン		ニトリルゴム		24	ピストンH	アルミニウム合金	
7	六角穴付ボタンボルト		鋼	亜鉛クロメート	25	底板	アルミニウム合金	クロメート
8	エンドプレート		アルミニウム合金	アルマイト	26	Ο リング	ニトリルゴム	
9			鋼	工業用クロムめっき	27	Ο リング	ニトリルゴム	
9			合金鋼	工業用クロムめっき	28	ニードルホルダ	アルミニウム合金	
10	メタル		含油軸受合金		29	ニードル	ステンレス鋼	
11	C形止め輪		鋼	リン酸亜鉛	30	ツマミ	アルミニウム合金	
12	ボールブシュ				31	ロックナット	鋼	ニッケルめっき
13	カラー		アルミニウム合金		32	Ο リング	ニトリルゴム	
14	ブシュ		軸受合金		33	鋼球	鋼	
15	皿ばね座金		鋼		34	六角穴付止めねじ	ステンレス鋼	
16	ウェアリング		ポリアセタール		35	六角穴付止めねじ	合金鋼	黒染
17	プラグ		φ 25 : –	φ 25 : FPL(CKD)				
17			φ 32 ~ φ 63 : 鋼	φ 32 ~ φ 63 : 亜鉛クロメート				

STR2

UCA2

巻末

554

CKD

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

CKD

シリンダ スイッチ

STM

STG

STR2

UCA2

STS·STL-MQ Series

25

● チューブ内径:φ20・φ25・φ32・φ40・φ50・φ63・φ80

回路図記号

3

3

3

3

3

20

ガイド付シリンダ 複動・落下防止形

8

8

形番表示方法

●ショートストローク

スイッチなし(注1) STS - M (スイッチ用磁石内蔵) 機種形番

スイッチ付(注1) STS - M Q-(スイッチ用磁石内蔵) 機種形番

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

●ロングストローク スイッチなし(注1) STL -(スイッチ用磁石内蔵)

STM

STG

STS STL

STR2

UCA2

スイッチ付(注1) (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、

オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

機種形番

(STL)

機種形番

(STL) Q-L1-(軸受

M

STS - M Q-L1- 40

Q-

8 内径

20

8

3 4

4

0

機構

0

0

ፅ

8

0

0

6

0

0 チューブ 配管ねじ ストローク 落下防止 スイッチ スイッチ オプション

注 1: ø80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

● 軸受方式

O THEOTOPY						
記号	内容					
M	すべり軸受					
В	ころがり軸受					

2 チューブ内径(mm)

記号	内容
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

② 配管ねじ種類

<u> </u>						
記号	内容					
# =1□	M5(φ20、φ25)					
無記号	Rcねじ(ø32~ø80)					
NN	NPTねじ(ø32以上)カスタム品					
GN	Gねじ(ø32以上)カスタム品					

介 ストローク(mm)

シリ	ストローク (mm)		適用チューブ内径							
Ļ			φ20	φ25	φ32	φ40	φ50	φ63	φ80	
		25	•							
	標準	50	•							
\$	ストローク	75								
STS		100								
	中間ストローク	注1 注2	5mm毎							

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する

ことも可能です。(カスタム品)

CKD

2.										
シリーズ	ストローク		適用チューブ内径							
攴	(mn	1)	φ20	φ25	φ32	φ40	φ50	φ63	φ80	
		50			•	•				
		75			•	•	•	•	•	
		100	•	•	•	•	0 0 0		•	
		125	•	•	•	•			•	
İ		150	•	•	•	•	•			
		175	•	•	•	•	0 0			
İ	標準 ストローク	200	•	•	•	•	•	•	•	
١		225	•	•	•	•	•	•	•	
S		250	•	•	•	•	•	•	•	
ᆫ		275	•	•	•	•	•	•	•	
		300	•	•	•	•	•		•	
İ		325	•	•	•	•	•			
		350	•	•	•	•	•	•	•	
		375	•	•	•	•	•	•		
		400	•	•	•					
	中間 ストローク	注1 注2				5mm毎				

⑤ 落下防止機構

記号	内容	
н	ヘッド側落下防止機構	No.
R	ロッド側落下防止機構	

6 スイッチ形悉

スイッチ詳細については、753ページをご参照ください。

Θ	スイツ:	アル田	スイッチは	製品に添付し	して出荷しま	す。			
接	表示灯	配線	負荷電	圧(V)	負荷電流	流(mA)	リード	泉注1	
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字	
		2線	85~265	_	5~100	_	тінж	T1V*	*
	1色		_	10~30	_	5~20 注2	T2H%	T2V%	
		3線(NPN)	_	2017	_	1000	тзнж	T3V%	
		3線(PNP)	_	30以下	_	100以下	ТЗРН※	T3PV%	STATE STATE
 	04	2線	_	24±10%	_	5~20	T2WH%	T2WV※	
無接点	2色	3線(NPN)	_	30以下	_	50以下	T3WH%	T3WV※	
"	2色交流		_	24±10%	_	5~20	T2YD%	_	
	磁界用		_	24110%	_	3.920	T2YDT%	_	C. Carlotte
	1色 オフディレー タイプ	2線	_	10~30	_	5~20	т2ЈН※	T2JV※	2 3
	1色 耐屈曲リード 線タイプ		_	10~30	_	注2	T2HR3	T2VR3	THE STATE OF
有	1色表示灯なし	の始	110	12/24	7~20	5~50	TOH*	TOV*	- (
点	表示灯なし	2線	110	5/12/24	20以下	50以下	T5H%	T5V%	Children Children
注 1	:スイッチ	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ı±. Γ %11—	ド線長さ!夫	にて選択し	た記号を入っ	わてください	_	

※リード線長さ

記号	内容
無記号	1m(標準)
3	3m(オプション)
5	5m(オプション)

例)リード線長さ 1m TOH 3m T0H3 5m TOH5

STG

STR2

UCA2

|注1:スイッチ形番の"※"には、「※リード線長さ」表にて選択した記号を入れてください。

注2:上記の負荷電流の最大値:20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、 20mAより低くなります。(60℃のとき5~10mAとなります。)

注3:φ40以上の2色表示、T1H/V、オフディレータイプについては、ΦとΦの間に "L1" を入れてーで結んでください。(ただし、T2WH/V、T3WH/Vは除く)

例) STS-MQ-L1-63-50-T1H3-D-F φ80は標準品購入後、T1H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。

この場合、 ●と ②の間に"L1" を入れた形番で手配してください。

例) STS-MQ-L1-80-50-F

注4: ヘッド側落下防止で25st以下の場合、ロッド側からスイッチが挿入できない場合があります。

この場合、一時的にエンドプレートを取りはずして装着してください。

エンドプレートの取りはずし、組立方法に関しては、当社までお問い合せください。

注5:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページをご参照ください。

2 スイッチ数

記号	内容
R	ロッド側1個付
Н	ヘッド側1個付
D	2個付
Т	3個付

	⊕ ₹ 79∃ 7								
	記号	内容							
	F	エンドプレート材質:鋼							
注1	М	耐食形 (ピストンロッド、ガイドロッド 材質:SUS) カスタム品							
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) カスタム品							

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478ページ(すべり軸受 M)、480ページ(ころがり軸受 B)をご参照ください。

スイッチ単品形番表示方法

シリンダ スイッチ

巻末

556

スイッチ

(単位:N)

什様

			STS-M	Q/BQ、STL-	MQ/BQ			
nm	φ20	φ25	φ32	φ40	φ50	φ63	φ80	
			複動·落下防止形					
		圧縮空気						
Pa		1.0						
Pa	0	.2			0.15			
Pa				1.6				
C								
	M	15	Rc1/8 Rc			1/4	Rc3/8	
nm				+2.0 0				
/s			50~500		50~300			
				ゴムクッション付				
落下防止機構 ロッド側またはヘッド側								
N		最大推力×0.7						
		不要(給油時はタービン油1種ISOVG32を使用)						
J	0.157	0.157	0.401	0.627	0.980	1.560	2.510	
F	Pa Pa Pa PC Mm /s	Pa O Pa O M M M N	Pa 0.2 Pa 0.2 Pa	m	m	複動・落下防止形 圧縮空気 1.0 Pa 0.2 0.15 Pa 1.6 Pa	m	

STM

STG

STS STL

STR2

UCA2

ストローク

・ショートストローク STS

チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ20				
φ25				
φ32	25,50	50		_
φ40	25,50	50	5	5 注1
φ50				
φ63				
φ80	25,50,75,100	100		

注1:スイッチ1個付または2個付の場合です。

・ロングストローク STI

・ロングストローグ SIL				
チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ20	50,75,100,125,150,175			
φ25	200,225,250,275,300	400		
φ32	325、350、375、400		30	30
φ40	50,75,100,125,150,175		30	注2
φ50	200,225,250,275,300	375		
φ63	325,350,375			
φ80	75,100,125,150,175 200,225,250,275,300 325,350	350	55	55 注2

注1:中間ストロークについては5mm毎に製作可能です。

ただし、全長寸法はその上の標準ストロークと同じになります。

注2:スイッチ1個付または2個付の場合です。

▲で使用前に必ず「使用上の注意事項」(落下防止形)656ページ、659ページをお読みください。

シリンダ スイッチ

巻末

CKD 558

理論推力表

チューブ 内径 使用圧力 MPa 作動方向 0.2 0.5 0.6 0.7 0.15 0.3 0.4 0.8 0.9 (mm) 1.57×10² | 1.88×10² 2.20×10² 2.51×10² 2.83×10² 3.14×10² Push 62.8 94.2 1.26×10² φ20 70.7 1.18×10² | 1.41×10² 1.65×10² 1.88×10^2 | 2.12×10^2 98.2 1.96×10² 2.45×10² 2.95×10² 3.44×10² 3.93×10² 4.42×10² 4.91×10² 1.47×10^{2} φ25 75.6 1.13×10² 1.89×10^{2} | 2.27×10^{2} | 2.64×10^{2} | 3.02×10^{2} | 3.40×10^{2} 3.78×10² Pull 1.51×10² Push 1.21×10² 1.61×10² 2.41×10² 3.22×10² 4.02×10² 4.83×10² 5.63×10² | 6.43×10² | 7.24×10² 8.04×10² φ32 $1.21 \times 10^2 | 1.81 \times 10^2 | 2.41 \times 10^2$ 4.83×10² 5.43×10² 3.02×10² 3.62×10² 4.22×10² 6.03×10² $2.51 \times 10^2 \mid 3.77 \times 10^2$ 5.03×10² 6.28×10² 7.54×10² 8.80×10² 1.01×10³ | 1.13×10³ 1.26×10³ 1.88×10² φ40 $1.58 \times 10^{2} | 2.11 \times 10^{2} | 3.17 \times 10^{2} | 4.22 \times 10^{2} | 5.28 \times 10^{2} | 6.33 \times 10^{2} | 7.39 \times 10^{2} | 8.44 \times 10^{2} | 9.50 \times 10^{2} | 6.33 \times 10^{2} | 7.39 \times 10^{2} | 8.44 \times 10^{2} | 9.50 \times 10^{2} | 8.44 \times 10^{2} | 9.50 \times 10^{2} | 8.44 \times 10^{2} | 9.50 \times 10^{2$ 1.06×10^{3} 2.95×10² $3.93 \times 10^2 \mid 5.89 \times 10^2$ 7.85×10² 9.82×10² 1.18×10³ 1.37×10^{3} 1.57×10³ 1.77×10³ 1.96×10^{3} φ50 3.30×10^2 | 4.95×10^2 | 6.60×10^2 8.25×10² 9.90×10² 1.15×10³ 1.32×10³ 1.48×10³ 6.23×10² 9.35×10² 1.25×10³ 1.56×10³ | 1.87×10³ 2.18×10³ 2.49×10³ 2.81×10³ 3.12×10³ 4.68×10² ϕ 63 4.20×10^{2} | 5.61×10² | 8.41×10² | 1.12×10³ | 1.40×10³ | 1.68×10³ | 1.96×10³ | 2.24×10³ | 2.52×10³ | 2.80×10³ $7.54 \times 10^{2} | 1.01 \times 10^{3} | 1.51 \times 10^{3} | 2.01 \times 10^{3} | 2.51 \times 10^{3} | 3.02 \times 10^{3} | 3.52 \times 10^{3} | 4.02 \times 10^{3} | 4.52 \times 10^{3} | 5.03 \times 10^{3} | 4.02 \times 10^{3$ φ80 6.80×10^{2} | 9.07×10^{2} | 1.36×10^{3} | 1.81×10^{3} | 2.27×10^{3} | 2.72×10^{3} | 3.17×10^{3} | 3.63×10^{3} | 4.08×10^{3} | 4.54×10^{3} | $4.54 \times 10^$

シリンダ質量については642ページ~645ページをご参照ください。

STG

STR2

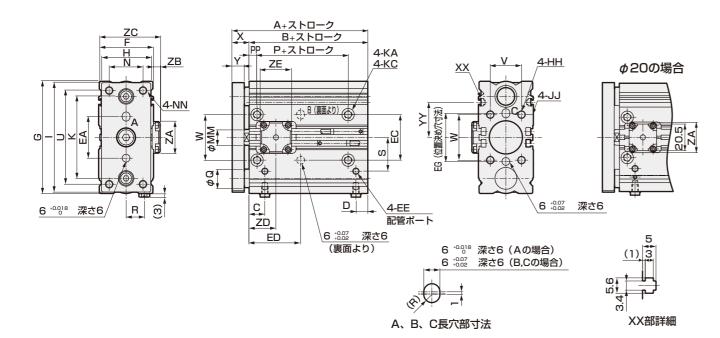
UCA2

複動・落下防止形

外形寸法図(チューブ内径: φ20·φ25)

● 落下防止形・ヘッド側 STS-^MQ-H

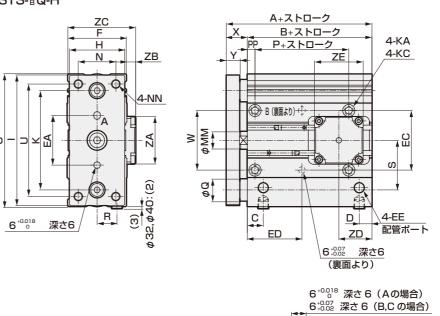
A+ストローク B+ストローク P+ストローク 4-KC φ20の場合 ZD 6 +0.07 深さ6 C 4-EE 6 +0.018 深さ6/ 配管ポート ED \6 ^{+0.07} 深さ6 (裏面より) 6 ^{+0.0}18 深さ6 (Aの場合) (1) 3 6 +0.07 深さ6 (B,Cの場合) XX部詳細 A、B、C長穴部寸法


UCA2 ● 落下防止形・ロッド側 STS-^MQ-R

STM

STG

STS STL


STR2

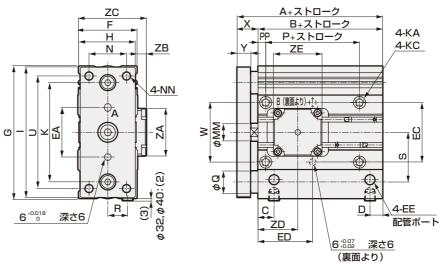
記号	Λ	В	EA	EC	EG	ED	ь	DD	w	ZA	ZB	70	ZE	STS-MQ-H	STS-MQ-R
チューブ内径(mm)	А		EA	EC	EG	ED		PP	VV	ZA	26	26	ZE	ZD	ZD
φ20	78	65	30	31	33	26.5+ ² / ₂	45	6	31	23.2	6	44	21	18	20
φ25	79	66	32	35	37	27 + ^{3,50-2}	45	6	35	24	5	47	24	16.5	20.5

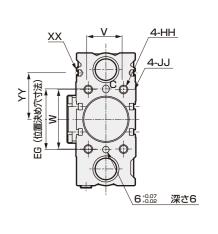
注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。 外形寸法図 (チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● 落下防止形・ヘッド側(下記寸法以外は複動・片ロッド形と同一です) STS-^MQ-H

6+0.07 深さ6

STM


STG


STR2

UCA2

XX部詳細

● 落下防止形・ロッド側(下記寸法以外は複動・片ロッド形と同一です) STS-MQ-R

6^{+0.018} 深さ6 (Aの場合) 6+0.02 深さ6 (B,C の場合)

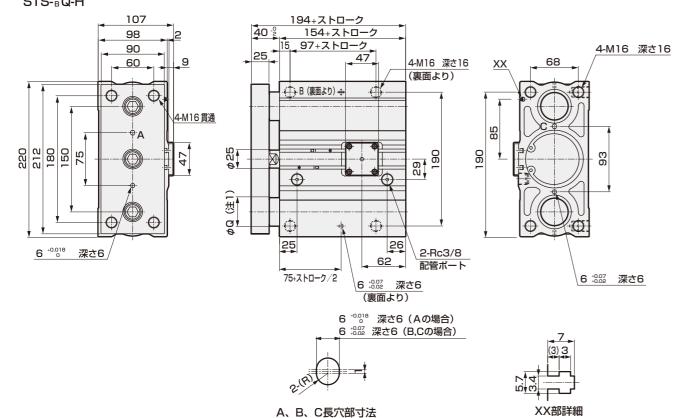
XX部詳細

A、B、C長穴部寸法

A、B、C長穴部寸法

記号	Α	В	EA	EC	EG	ED	Р	PP	w	ZA	ZB	zc	ZE	STS-MQ-H	STS-MQ-R
チューブ内径(mm)	^	-	EA						W	ZA	26	20	26	ZD	ZD
φ32	93	74	42	45	46	30 + ^{ストローク} 2	47	7	45	32	6.5	53.5	24	21	25
φ40	122	103	45	54	55	44.5+ ²	75	7	54	43	8	62	44	30	36
φ50	127	105	55	66	69	44.5+ 310-2	76	8	66	43	7.5	73.5	44	33	40
φ63	133	111	62	79	82	47.5+ ^{3,50-2}	76	8	79	47	7.5	86.5	47	35	40

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。


シリンダ スイッチ

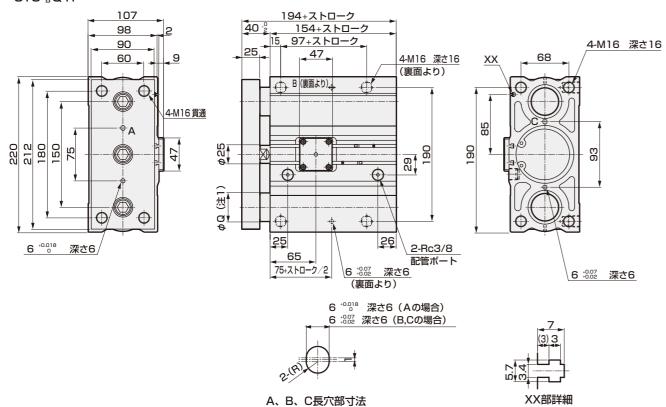
560

シリンダ スイッチ

外形寸法図 (チューブ内径: *φ*80)

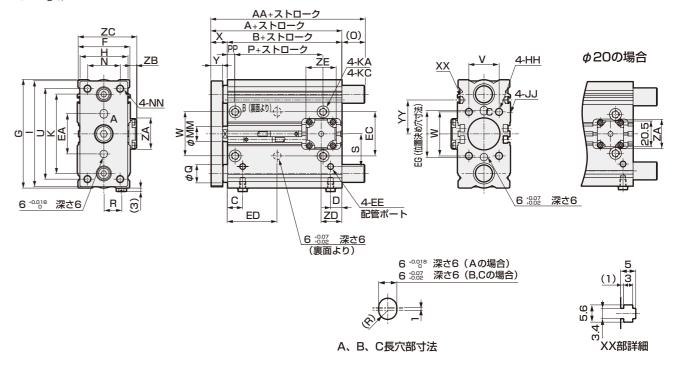
● 落下防止形・ヘッド側 STS-MQ-H

● 落下防止形・ロッド側 STS-MQ-R

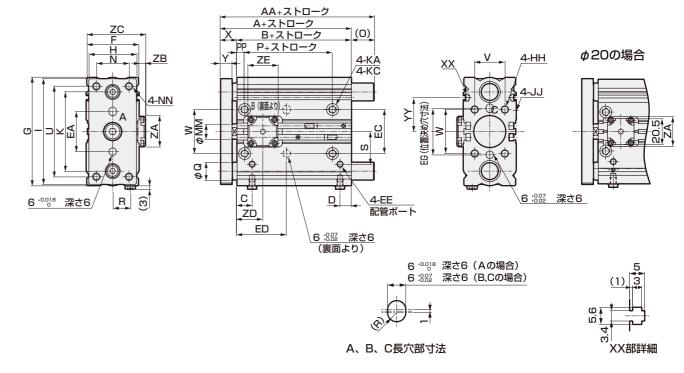

STM

STG

STS ·


STR2

UCA2



注1: 寸法 Q については M (すべり軸受) の場合 ϕ 40、B (ころがり軸受) の場合 ϕ 35 となります。注2: 中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注3: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。 外形寸法図 (チューブ内径: φ20・φ25)

● 落下防止形・ヘッド側 STL-^MQ-H

● 落下防止形・ロッド側 STL-^MQ-R

記号	Δ	AA	FΔ	EC	FG	ED	В	ь	PP	w	ZA	7B	ZC	7F	STL-MQ-H	STL-MQ-R
チューブ内径(mm) 🔪		^^							• •	- "					ZD	ZD
φ20	78	97	30	31	33	26.5+ ³¹⁻²	65	45	6	31	23.2	6	44	21	18	20
φ25	79	97	32	35	37	27 + ^{ストローク} 2	66	45	6	35	24	5	47	24	16.5	20.5

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

巻末

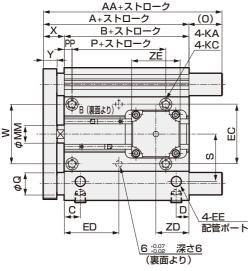
シリンダ スイッチ

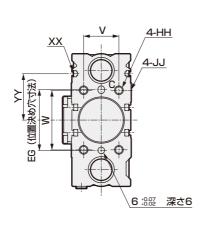
STM

STG

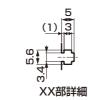
STR2

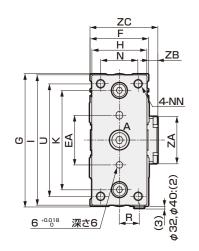
UCA2

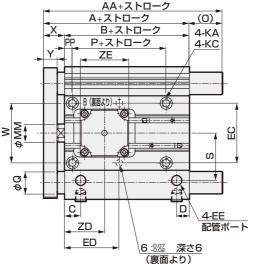

シリンダ スイッチ

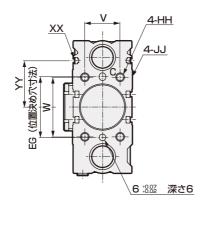

巻末

外形寸法図(チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

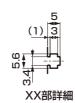

● 落下防止形・ヘッド側 STL-MQ-H

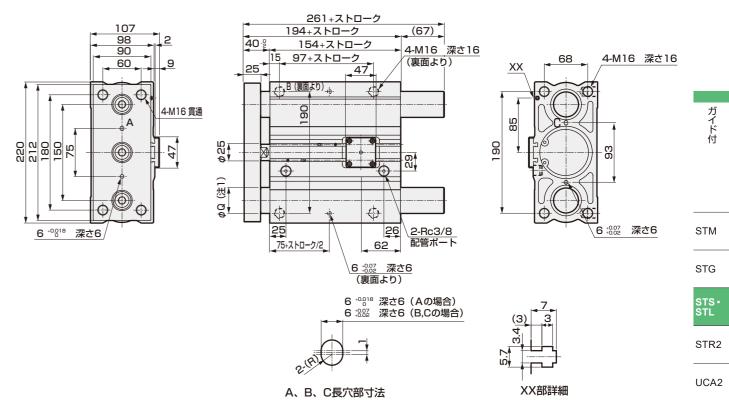

UCA2 ● 落下防止形・ロッド側 STL-MQ-R


STM

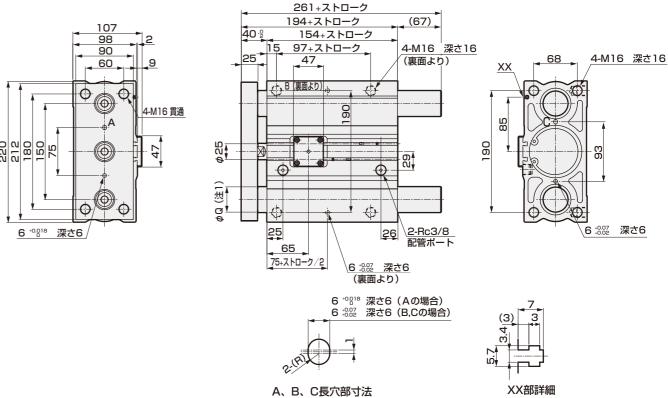

STG

STS STL


STR2


A、B、C長穴部寸法

记号	А	ΛΛ	EA	EC	EG	ED	В	ь	PP	w	74	70	ZC	75	STL-MQ-H	STL-MQ-R
ューブ内径(mm)		AA	EA							W	ZA		26	ZE	ZD	ZD
φ32	93	127	42	45	46	30 + ^{3\10-2}	74	47	7	45	32	6.5	53.5	24	21	25
φ40	122	152	45	54	55	44.5 + 310-2	103	75	7	54	43	8	62	44	30	36
φ50	127	175	55	66	69	44.5 + 310-2	105	76	8	66	43	7.5	73.5	44	33	40
φ63	133	175	62	79	82	47.5 + ^{2 \ 2}	111	76	8	79	47	7.5	86.5	47	35	40


注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

外形寸法図(チューブ内径: ø80)

● 落下防止形・ヘッド側 STL-^MQ-H

● 落下防止形・ロッド側 STL-MQ-R

注1: 寸法 Q については M (すべり軸受) の場合 ϕ 40、B (ころがり軸受) の場合 ϕ 35 となります。注2: 中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注3: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。 シリンダ スイッチ

巻末

苍木

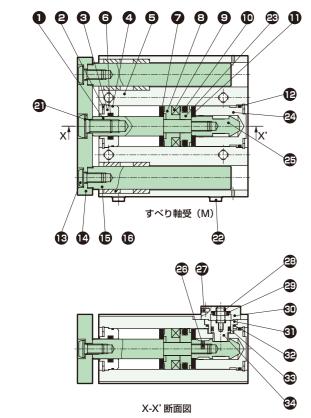
564 **CK**

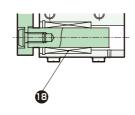
シリンダ スイッチ

内部構造図・材質

内部構造図・材質 (チューブ内径: φ20~φ63)

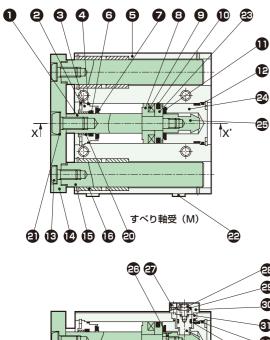
● 落下防止形・ヘッド側 STS-[™]Q-H

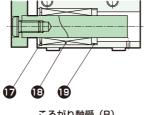

φ 20 · φ 25

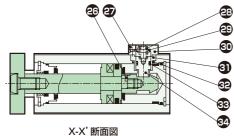

STG

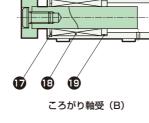
STS.

STR2

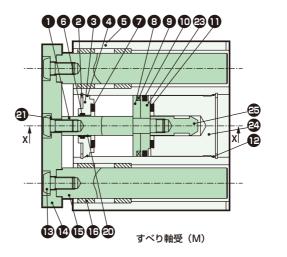

UCA2

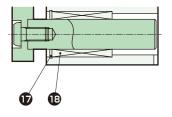





ころがり軸受 (B)

 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63





内部構造図・材質 (チューブ内径: φ80)

● 落下防止形・ヘッド側 STS-⊮Q-H

@@@@ 3 3 3 3 X-X' 断面図

ころがり軸受(B)

番品	部品名称		材質	備考	品番	部品名称	材質	備考
	Ida Laranis		φ20,25:ステンレス鋼	工業用クロムめっき	17	C形止め輪	鋼	リン酸亜鉛
- 1	ピストンロッド		φ32~φ80:鋼		18	ボールブシュ		
2	C形止め輪		鋼	リン酸亜鉛	19	カラー	アルミニウム合金	
3	ロッドメカル		アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト	20	ブシュ	軸受合金	
3	ロッドメタル		アルミーソムロ並	φ32~φ50:クロメート	21	皿ばね座金	鋼	
4	メタルガスケット		ニトリルゴム		22	プラグ	φ8~φ25:-	φ8~φ25:FPL(CKD)
5	シリンダ本体		アルミニウム合金	硬質アルマイト	حد		<i>φ</i> 32~ <i>φ</i> 63:鋼	φ32~φ63:亜鉛クロメート
6	ロッドパッキン		ニトリルゴム		23	ピストン	アルミニウム合金	クロメート
7	クッションゴム(R)		ウレタンゴム		24	ヘッドカバー	アルミニウム合金	
8	スペーサ		φ20~φ50:ポリアミド		25	スリーブ	鋼	窒化処理
0	\ \ \ - 9	φ63、φ80:アルミニウム合金		φ63、φ80:クロメート	26	スプリングピン	鋼	黒染
9	磁石				27	六角穴付ボルト	合金鋼	亜鉛クロメート
10	ピストンパッキン		ニトリルゴム		28	円筒ばね	鋼	電着塗装
11	クッションゴム(H)		ウレタンゴム		29	クッションゴム	ウレタンゴム	
12	ロリング		ニトリルゴム		30	ストッパカバー	アルミニウム合金	アルマイト
13	六角穴付ボタンボルト	-	鋼	亜鉛クロメート	31	ストッパハウジング	アルミニウム合金	アルマイト
14	エンドプレート		アルミニウム合金	アルマイト	32	ロリング	ニトリルゴム	
15	#ZKOwk		鋼	工業用クロムめっき		ストッパパッキン ニトリルゴム		
10	ガイドロッド B		合金鋼	工業用クロムめっき	34	ストッパピストン	鋼	窒化処理
16	メタル		含油軸受合金					

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 シリンダ スイッチ

STG

STR2

UCA2

566

巻末

CKD

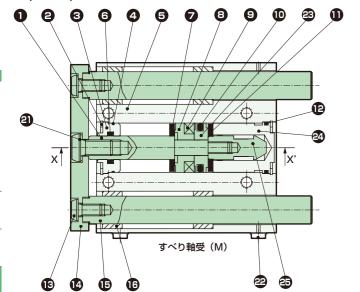
CKD

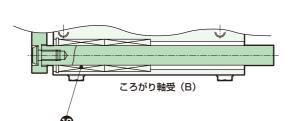
567

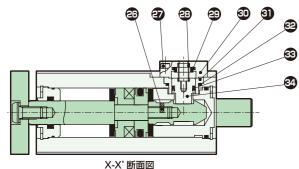
内部構造図・材質 (チューブ内径: φ20~φ63)

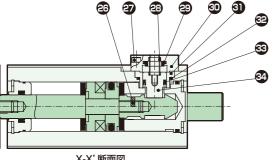
● 落下防止形・ヘッド側 STL-⊮Q-H

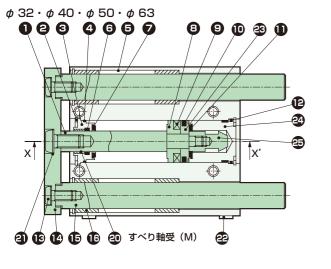
 ϕ 20 · ϕ 25

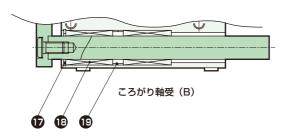

STM

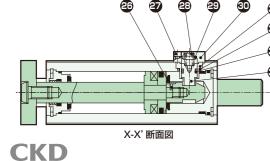

STG

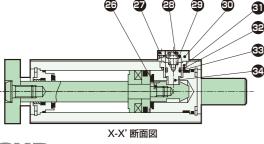

STS.

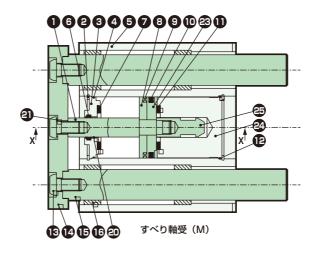

STR2

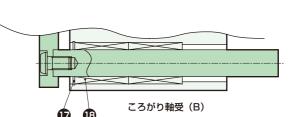

UCA2

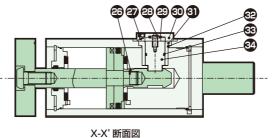


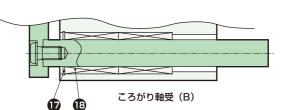











内部構造図・材質 (チューブ内径: φ80)

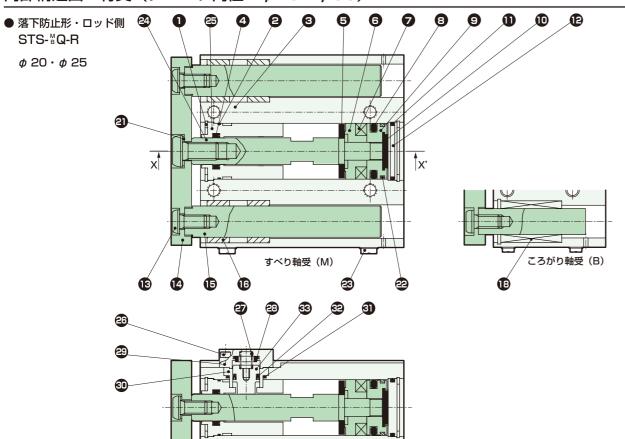
● 落下防止形・ヘッド側 STL-⊪Q-H

品番	部品名称		材質	備考	番品	部品名称	材質	備考
1	ピストンロッド		φ20,25:ステンレス鋼	工業用クロムめっき	17	C形止め輪	鋼	リン酸亜鉛
'	レストンロット		φ32~φ80:鋼		18	ボールブシュ		
2	C形止め輪		鋼	リン酸亜鉛	19	カラー	アルミニウム合金	
3	ロッドメタル		アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト	20	ブシュ	軸受合金	
3	ロットメタル		アルミーラムロ並	φ32~φ50:クロメート	21	皿ばね座金	鋼	
4	メタルガスケット		ニトリルゴム		22	→= #	400 400·	φ8~φ25:FPL(CKD)
5	シリンダ本体		アルミニウム合金	硬質アルマイト	22	プラグ	φ32~φ63:鋼 	φ32~φ63:亜鉛クロメート
6	ロッドパッキン		ニトリルゴム		23	ピストン	アルミニウム合金	クロメート
7	クッションゴム(R)		ウレタンゴム		24	ヘッドカバー	アルミニウム合金	
8	スペーサ		φ20~φ50:ポリアミド		25	スリーブ	鋼	窒化処理
0	X-1-9		φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	26	スプリングピン	鋼	黒染
9	磁石				27	六角穴付ボルト	合金鋼	亜鉛クロメート
10	ピストンパッキン		ニトリルゴム		28	円筒ばね	鋼	電着塗装
11	クッションゴム(H)		ウレタンゴム		29	クッションゴム	ウレタンゴム	
12	ロリング		ニトリルゴム		30	ストッパカバー	アルミニウム合金	アルマイト
13	六角穴付ボタンボル	 	鋼	亜鉛クロメート	31	ストッパハウジング	アルミニウム合金	アルマイト
14	エンドプレート		アルミニウム合金	アルマイト	32	ロリング	ニトリルゴム	
15	ガイドロッド	М	鋼	工業用クロムめっき	33	ストッパパッキン	ニトリルゴム	
15	אלים ארני	В	合金鋼	工業用クロムめっき	34	ストッパピストン	鋼	窒化処理
16	メタル		含油軸受合金			_	_	

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 シリンダ スイッチ

STG

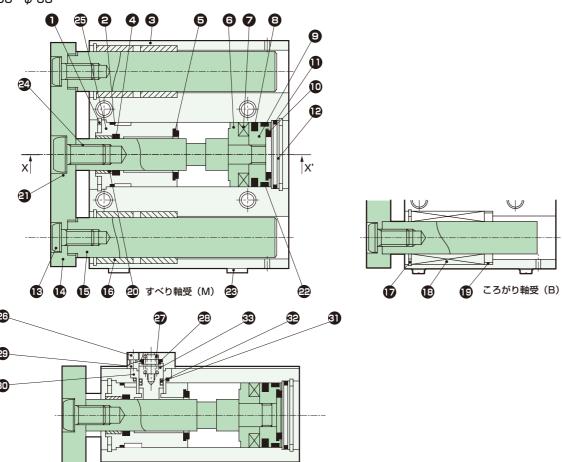
STR2


UCA2

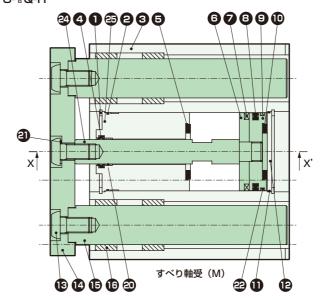
シリンダ スイッチ

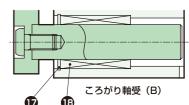
巻末

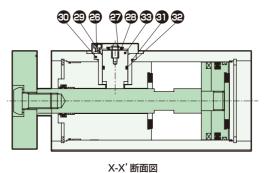
内部構造図・材質

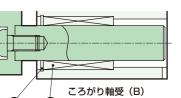

内部構造図・材質(チューブ内径: ϕ 20 \sim ϕ 63)

X-X' 断面図


X-X' 断面図


 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63




内部構造図・材質 (チューブ内径: φ80)

● 落下防止形・ロッド側 STS-⊮Q-R

品番	部品名称	材質	備考	番品	部品名称	材質	備考
1	C形止め輪	鋼	リン酸亜鉛	18	ボールブシュ		
2	メタルガスケット	ニトリルゴム		19	カラー	アルミニウム合金	
3	シリンダ本体	アルミニウム合金	硬質アルマイト	20	ブシュ	軸受合金	
4	ロッドパッキン	ニトリルゴム		21	皿ばね座金	鋼	
5	クッションゴム(R)	ウレタンゴム		22	ウェアリング	ポリアセタール	
6	スペーサ	φ20~φ50:ポリアミド		23	プラグ	φ8~φ25:-	φ8~φ25:FPL(CKD)
0	_9	φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	23		<i>φ</i> 32~ <i>φ</i> 63:鋼	φ32~φ63:亜鉛クロメート
7	磁石			24	ピストンロッド	φ20,25:ステンレス鋼	工業用クロムめっき
8	ピストンパッキン	ニトリルゴム		24	ピストンロット	φ32~φ80:鋼	
9	ピストン	アルミニウム合金	クロメート	25	ロッドメタル	アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト
10	クッションゴム(H)	ウレタンゴム	יו – געט כ	20	עללאלו	アルミークムロ亜	φ32~φ50:クロメート
11	ロリング	ニトリルゴム		26	六角穴付ボルト	合金鋼	亜鉛クロメート
12	底板	φ20~φ63:アルミニウム合金	φ20~φ63:クロメート	27	円筒ばね	鋼	電着塗装
	IEQUIX	φ80:鋼	φ80:亜鉛クロメート	28	クッションゴム	ウレタンゴム	
13	六角穴付ボタンボルト	鋼	亜鉛クロメート	29	ストッパカバー	アルミニウム合金	アルマイト
14	エンドプレート	アルミニウム合金	アルマイト	30	ストッパハウジング	アルミニウム合金	アルマイト
15	ガイドロッド	鋼	工業用クロムめっき	31	ロリング	ニトリルゴム	
15	В	合金鋼	工業用クロムめっき	32	ストッパパッキン	ニトリルゴム	
16	メタル	含油軸受合金		33	ストッパピストン	鋼	窒化処理
17	C形止め輪	鋼	リン酸亜鉛				

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。 シリンダ スイッチ

STG

STR2

UCA2

570

CKD

巻末

STM

STG

STS.

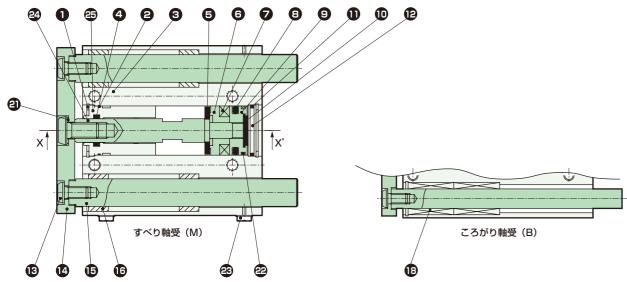
STR2

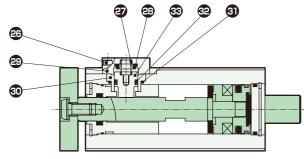
UCA2

内部構造図・材質(チューブ内径: ϕ 20 \sim ϕ 63)

● 落下防止形 STL-^MQ-R

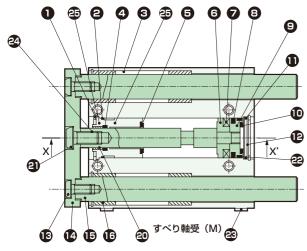
STM

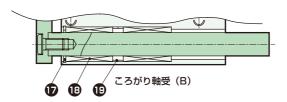

STG

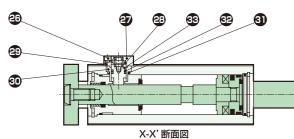

STS.

STR2

UCA2

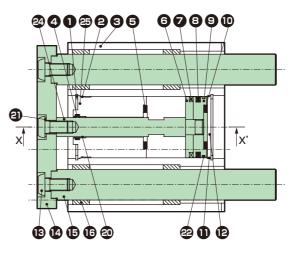

 ϕ 20 · ϕ 25

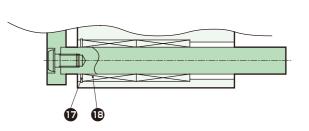




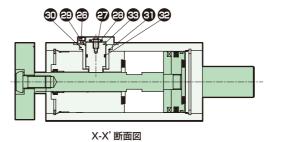
X-X' 断面図

 ϕ 32 · ϕ 40 · ϕ 50 · ϕ 63





内部構造図・材質 (チューブ内径: φ80)


● 落下防止形 STL-^MQ-R

すべり軸受(M)

ころがり軸受(B)

	STR2

UCA2

STM

STG

品番	部品名称		材質	備考	番品	部品名称	材質	備考
1	C形止め輪		鋼	リン酸亜鉛	18	ボールブシュ		
2	メタルガスケット		ニトリルゴム		19	カラー	アルミニウム合金	
3	シリンダ本体		アルミニウム合金	硬質アルマイト	20	ブシュ	軸受合金	
4	ロッドパッキン		ニトリルゴム		21	皿ばね座金	鋼	
5	クッションゴム(R)		ウレタンゴム		22	ウェアリング	ポリアセタール	
6	スペーサ		φ20~φ50:ポリアミド		23	プラグ	φ8~φ25:-	φ8~φ25:FPL(CKD)
O	\\\-\\		φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	23		<i>φ</i> 32~ <i>φ</i> 63:鋼	φ32~φ63:亜鉛クロメート
7	磁石				24	ピストンロッド	φ20,25:ステンレス鋼	工業用クロムめっき
8	ピストンパッキン		ニトリルゴム		24	ピストンロット	φ32~φ80:鋼	
9	ピストン		アルミニウム合金	クロメート	25	ロッドメタル	アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト
10	クッションゴム(H)		ウレタンゴム		25		アルミークムロ並	φ32~φ50:クロメート
11	ロリング		ニトリルゴム		26	六角穴付ボルト	合金鋼	亜鉛クロメート
12	底板		φ20~φ63:アルミニウム合金	φ20~φ63:クロメート	27	円筒ばね	鋼	電着塗装
12	I LEVIX		φ80:鋼	φ80:亜鉛クロメート	28	クッションゴム	ウレタンゴム	
13	六角穴付ボタンボルト	,	鋼	亜鉛クロメート	29	ストッパカバー	アルミニウム合金	アルマイト
14	エンドプレート		アルミニウム合金	アルマイト	30	ストッパハウジング	アルミニウム合金	アルマイト
15	ガイドロッド	М	鋼	工業用クロムめっき	31	ロリング	ニトリルゴム	
15	אלים ארני	В	合金鋼	工業用クロムめっき	32	ストッパパッキン	ニトリルゴム	
16	メタル		含油軸受合金		33	ストッパピストン	鋼	窒化処理
17	C形止め輪		鋼	リン酸亜鉛				

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→「メンテナンス用部品」をご覧ください。 シリンダ スイッチ

** -

572

シリンダ スイッチ

ガイド付シリンダ・微速形

STS · STL-MF Series

● チューブ内径 φ8、φ12、φ16、φ20、φ25、φ32、 $\phi 40, \phi 50, \phi 63, \phi 80$

回路図記号

形番表示方法

●ショートストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

STS ø 3 4 機種形番

スイッチ付(注1) (スイッチ用磁石内蔵)

STM

STG

STS STL

STR2

UCA2

スイッチ

巻末

574

T2H 8 ➌ 4 0 0 Ø 機種形番

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

(STS)-M F-L1-3 4 0 8 0 Ø

●ロングストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

STL 8 3 4 機種形番

スイッチ付(注1) (スイッチ用磁石内蔵)

8 3 4 0 0 Ø 機種形番

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

(STL)-軸受

4

チューブ 配管ねじ ストローク スイッチ スイッチ オプション 内径 種類 形番

注 1: ø80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

② チューブ内径(mm)

● 軸受方式

- 1.1.2		
記号		内容
M	すべり軸受	
В	ころがり軸受	

記号	内容
8	φ8
12	φ12
16	φ16
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	<i>φ</i> 63

80 φ80

② 配管ねじ種類

記号	内容
無記号	M5(φ8~φ25)
無記写	Rcねじ(ø32~ø80)
NN	NPTねじ(<i>φ</i> 32以上)カスタム品
GN	Gねじ(ø32以上)カスタム品

♠ ストローク(mm)

_			,	,								
シリーズ	ストロ	ーク		適用チューブ内径								
ļ	(mn	1)	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80
		10	•		•							
		20	•		•							
		25				•	•	•	•	•	•	•
	標準 ストローク	30	•		•							
Ş		40	•	•	•							
STS		50	•	•	•	•	•	•	•	•	•	•
		75										•
		100										•
	帽	注1	5mm毎									
	ストローク	注2										

適用チューブ内径 ストローク (mm) φ8 φ12 φ16 φ20 φ25 φ32 φ40 φ50 φ63 φ80 100 • • • 標準 Sストローク 175 • • • • • • • • • • 200 • • • • • • • • • 帽 ストローク 注2

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ことも可能です。(カスタム品)

STS·STL-MF Series

6 スイッチ形番

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。

J	ヘイツ	アル田	スイッチは	製品に添付し	ノく出何しま	.				_
妾	表示灯	配線	負荷電	Œ(V)	負荷電流	流(mA)	リード	泉注1		1
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字		
		2線	85~265	_	5~100	_	тінж	T1V%	20 20	
	1色		_	10~30	-	5~20 注2	T2H%	T2V%		
		3線(NPN)	_	30以下	_	100以下	ТЗНЖ	T3V%	- 1	
		3線(PNP)	_	30121	_	ועטטון	ТЗРН※	T3PV%	Chillian Child	
	2色	2線	_	24±10%	-	5~20	T2WH%	T2WV ※		
	28	3線(NPN)	_	30以下	_	50以下	T3WH %	T3WV %		
無妾点	2色 耐水性 向上		_	24±10%	-	5~20	T2WLH%	T2WLV%] 注
	2色交流		_	041100/	_	3 -20	T2YD*	_		
	磁界用	O	_	24±10%	_		T2YDT%	_	C. Sales	ĺ
	1色 オフディレー タイプ	2線	_	10~30	_	5~20	T2JH%	T2JV※	6 m	
	1色 耐屈曲リード 線タイプ		_	10~30	ı	注2	T2HR3	T2VR3	1775	
	1色		110	12/24	7~20	5~50	TOH*	TOV*		
負	表示灯なし	O##	110	5/12/24	20以下	50以下	T5H%	T5V%	Children of Lines	
有妾点	1色	2線	110/220	12/24	7~20/ 7~10	5~50	твнж	твуж	6 m 6 m	 注

※リード線長さ、コネクタ仕様

記号	内容
無記号	1m(標準)
з	3m(オプション)
5	5m(オプション)
w	M8コネクタ、 1PIN(+)4PIN(ー) リード線0.3m
	無記号 3 5

注7: T2WLH、T2WLVのみ選定 可能です。

リード線長さ 1m TOH 3m TOH3 5m TOH5

STM

STG

STR2

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。 注2:上記の負荷電流の最大値:20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、20mAより低くなります。(60℃のとき5~10mAとなります。)

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの使用を推奨します。

注4: ϕ 8 \sim ϕ 16はT8H/Vを搭載できません。

注5: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、Φと❷の間に "L1" を入れて一で結んでください。(但し、T2WH/V、T3WH/Vは除く)

例) STS-MF-L1-80-50-F

注6:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページをご参照ください。

③ スイッチ数

記号	内容
R	ロッド側1個付
Н	ヘッド側 1 個付
D	2個付
Т	3個付

7 オプション

	記号	内容
	F	エンドプレート材質:鋼
注1	М	耐食形 (ピストンロッド、ガイドロッド 材質:SUS)(カスタム品)
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478ページ (すべり軸受 M)、480ページ (ころがり軸受 B) をご参照ください。


カスタム品の仕様について

詳細は654ページをご参照ください。

記号	内容			
-0	ポート対称形			
形悉例)				

STS/L-MF-----O

スイッチ単品形番表示方法

スイッチ

STS·STL-MF Series

仕様

1— 1757											
項目		ST	S-MF、S	TS-BF (ショートス	(トローク)	• STL-M	IF、STL-	BF(ロン	グストロー	ク)
チューブ内径	mm	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80
作動方式						複動	助形				
使用流体						圧縮	空気				
最高使用圧力	MPa					1.	.0				
最低使用圧力	MPa			0.15					0.1		
耐圧力	MPa					1.	.6				
周囲温度	°C					5~	60				
接続口径				M5			Rc	1/8	Rc	1/4	Rc 3/8
ストローク許容差	mm					+2	2.0 0				
使用ピストン速度	mm/s					1~	200				
クッション		ゴムクッション									
給油		不可									
許容吸収エネル	ギー J	0.029	0.056	0.088	0.157	0.157	0.401	0.627	0.980	0.1560	2.510

注:理論推力表は485ページをご参照ください。

ストローク

STM

STG

STS ·

STR2

UCA2

● ショートストロークSTS

チューブ内径	標準ストローク	最大ストローク	最小ストローク	スイッチ付最小ストローク(mm)		
テューフ内性	(mm)	(mm)	(mm)	T2WL	その他スイッチ	
φ8	10,20,30			25		
φ12	40.50			15		
φ16	40,50	50	5	25		
φ20					5	
φ25						
φ32	25.50			5	注1	
φ40	25,50					
φ50				注1		
φ63						
φ80	25,50,75,100	100				

注1:スイッチ1個付、または2個付の場合です。

● ロングストロークSTL

チューブ内径	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ8	50,75,100			FO
φ12	125,150	200	50	50 注2
φ16	175,200			/ <u>/</u>
φ20				
φ25	50,75,100		30	30
φ32	125,150,175	200		
φ40	200			注2
φ50	200			
φ63				
φ80	75,100,125,150,175,200		55	55 注2

注1:中間ストロークについては5mm毎に製作可能です。

ただし、全長寸法はその上の標準ストロークと同じになります。

注2:スイッチ1個付、または2個付の場合です。

シリンダ質量については 642 ページ~ 645 ページをご参照ください。

技術資料

測定寸法の技術資料については、測定方法(空気圧シリンダ②(カタログNo.RJ-003)のSSD-F・SSD-KF)をご参照ください。

シリンダ スイッチ

巻末

外形寸法図

複動・片ロッド形 STS/STL シリーズと同じです。

 $\begin{array}{l} \text{STS} \ni \text{U} - \vec{x} : 486 \% - \vec{y} \; (\phi 8 \sim \phi 16), \; 487 \% - \vec{y} \; (\phi 20, \; \phi 25), \; 488 \% - \vec{y} \; (\phi 32 \sim \phi 63), \; 489 \% - \vec{y} \; (\phi 80) \\ \text{STL} \ni \text{U} - \vec{x} : 491 \% - \vec{y} \; (\phi 8 \sim \phi 16), \; 492 \% - \vec{y} \; (\phi 20, \; \phi 25), \; 493 \% - \vec{y} \; (\phi 32 \sim \phi 63), \; 494 \% - \vec{y} \; (\phi 80) \end{array}$

MEMO

STM

STG

STR2

UCA2

シリンダ スイッチ

記号

無記号

3

5

可能です。

例) リード線長さ

1m TOH

3m TOH3 5m TOH5

内容

※リード線長さ、コネクタ仕様

1m(標準)

3m(オプション)

5m(オプション)

M8コネクタ、 1PIN(+)4PIN(-)

リード線0.3m 注7: T2WLH、T2WLVのみ選定

STM

STG

STR2

UCA2

STS · STL-MO Series

● チューブ内径: φ8・φ12・φ16・φ20・φ25・φ32・φ40・ φ50.φ63.φ80

4

4

4

4

4

T2H

0

6

T2H

6

0

0

6

Ø

7

2

回路図記号

M 0-

0

0

0

(STS)-(M)O-L1-(

8

8

8

40

8

8

8

8

40

3

3

3

3

3

ガイド付シリンダ 複動・低速形

形番表示方法

●ショートストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

(スイッチ用磁石内蔵)

機種形番 スイッチ付(注1) (STS)-(M 機種形番

STS -

(STL)-

機種形番

機種形番

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

●ロングストローク

STM

STG

STS STL

STR2

UCA2

スイッチなし(注1) (スイッチ用磁石内蔵)

スイッチ付(注1) (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付

(スイッチ用磁石内蔵)(φ40以上) 機種形番

軸受

(STL)-0-L1-(

方式

3 内径

4

0

形番

チューブ 配管ねじ ストローク スイッチ スイッチ オプション 種類

注 1: φ80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、❶と❷の間に"L1"を入れた形番で手配してください。

● 軸受方式

記号	内容
M	すべり軸受
В	ころがり軸受

② チューブ内径(mm)

記号	内容
8	φ8
12	φ12
16	φ16
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

② 配管ねじ種類

記号	内容
無記号	M5(φ8~φ25)
無記ち	Rcねじ(<i>ϕ</i> 32~ <i>ϕ</i> 80)
NN	NPTねじ(<i>ф</i> 32以上)カスタム品
GN	Gねじ(ø32以上)カスタム品

4 7 トローク(mm)

シリ	ストロ	ーク				適用	用チュ	ーブ内]径				
J	(mm)		φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80	
		10	•	•	•								
İ		20	•	•	•								
	標準 ストローク	25				•	•	•	•	•	•	•	
		30	•	•	•								
STS		40	•	•	•								
s		50	•	•	•	•	•	•	•	•	•	•	
		75										•	
		100										•	
	中間 ストローク	注1 注2					5m	m毎					

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ストローク 注2 ことも可能です。(カスタム品)

	, , , , , , , , , , , , , , , , , , , ,											
シリ	ストロ	ーク				適用	用チュ	ーブダ	怪			
シリーズ	(mn	1)	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80
		50		•		•		•		•		
		75		•		•		•		•		•
		100								•		•
	標準ストローク	125		•		•		•		•		•
		150		•				•		•		•
s		175					•		•			•
S	71.0 7	200					•		•		•	
ᆫ		225					•		•			
		250										•
		275					•		•			
		300										
	中間 ストローク	注1 注2					5m	m毎				

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。 6 スイッチ形番

										_
接	表示灯	配線	負荷電	Œ(V)	負荷電流	流(mA)	リード約	泉注1		
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字		
		2線	85~265	_	5~100	_	T1H*	T1V*	-	
	1色		_	10~30	_	5~20 注2	T2H%	T2V%		1
		3線(NPN)	_	30以下	_	100以下	ТЗНЖ	T3V%	- 1	
		3線(PNP)	_	3012 1	_	ין ענטטו	T3PH%	T3PV%	The state of	
	2色	2線	_	24±10%	_	5~20	T2WH%	T2WV ※		
_		3線(NPN)	_	30以下	_	50以下	T3WH%	T3WV ※		
無接点	2色 耐水性 向上		_	24±10%	_	5~20	T2WLH%	T2WLV%		 注
	2色交流		_	24±10%	_	5~20	T2YD%	_		1
	磁界用	Oé	_	24±10%	_		T2YDT%	_	56	l
	1色 オフディレー タイプ	2線	_	10~30	_	5~20	T2JH%	T2JV※	6 m	
	1色 耐屈曲リード 線タイプ		_	10~30	_	注2	T2HR3	T2VR3	1775	
	1色		110	12/24	7~20	5~50	TOH*	TOV%		
有	表示灯なし	Oé	110	5/12/24	20以下	50以下	T5H%	T5V%	4750	
有接点	1色	2線	110/220	12/24	7~20/ 7~10	5~50	T8H%	*VST	67 67	注

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

注2: 上記の負荷電流の最大値: 20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、 20mAより低くなります。(60℃のとき5~10mAとなります。)

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの 使用を推奨します。

注4: φ8~φ16はT8H/Vを搭載できません。

注5: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、
●と❷の間に "L1" を入れてーで 結んでください。(ただし、T2WH/V、T3WH/Vは除く)

例) STS-MO-L1-63-50-T1H3-D-F

φ80は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。 この場合、**①**と**②**の間に"L1" を入れた形番で手配してください。 例) STS-MO-L1-80-50-F

注6:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

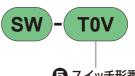
6 スイッチ数

_									
I	2号	内容							
	R	ロッド側1個付							
	Н	ヘッド側1個付							
	D	2個付							
	Т	3個付							

の オプション

	6 3 7	
	記号	内容
	F	エンドプレート材質:鋼
注1	M	耐食形 (ピストンロッド、ガイドロッド 材質:SUS)(カスタム品)
注1	М1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。


バリエーション・オプションの組合せについては、 478ページ (すべり軸受 M)、480ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について

ртидного с	P C C P MK T/C C V · 0
記号	内容
-0	ポート対称形

STS/L- BO------

スイッチ単品形番表示方法

5 スイッチ形番

スイッチ

巻末

578

シリンダ スイッチ

STM

STG

STR2

UCA2

仕様

	- r-·												
項目			STS-MO/BO、STL-MO/BO										
チューブ内径	mm	φ8	φ12	φ16	φ20	φ25	φ32	φ40	φ50	φ63	φ80		
作動方式						複動・	低速形						
使用流体						圧縮	空気						
最高使用圧力	MPa					1.	.0						
最低使用圧力	MPa			0.15			0.1						
耐圧力	MPa		1.6										
周囲温度	C		────────────────────────────────────										
接続口径				M5			Rc	1/8	Rc 1/4		Rc 3/8		
ストローク許容差	mm						2.0 D						
使用ピストン速度	mm/s	10~200											
クッション		ゴムクッション付											
給油						不可							
許容吸収エネル	ギー J	0.029	0.056	0.088	0.157	0.157	0.401	0.627	0.980	0.1560	2.510		

STM

STG

STS · STR2

UCA2

ストローク

・ショートストローク STS

	チューブ内径(mm)	煙淮フトローク(mm)	最大ストローク(mm)	早小フトローク(mm)	スイッナリ取小人トローン(MM)		
	ナユーフrij主(IIIII)	惊牛人ドローク(IIIII) 	取入入下ローン(IIIIII) 	取小人ドローン(IIIII) 	T2WL	その他スイッチ	
	φ8				25		
	φ12	10、20、30、40、50			15		
	φ16				25		
_	φ20				5		
	φ25		50	5		5	
	φ32	25,50		3		注1	
	φ40	20,00			i		
	φ50				<u></u>		
	φ63						
	φ80	25,50,75,100	100				

注1:スイッチ1個付または2個付の場合です。

・ロングストローク STL

チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)	
φ 8					
φ12	50,75,100,125,150	150	50	50	
φ16					
φ20					
φ25	50、75、100、125、150				
φ32	175、200、225、250		30	30	
φ40	275、300] 30	注2	
φ50]	300			
φ63					
φ80	75、100、125、150、175 200、225、250、275、300		55	55 注2	

注1:中間ストロークについては5mm毎に製作可能です。

ただし、全長寸法はその上の標準ストロークと同じになります。

注2:スイッチ1個付または2個付の場合です。

シリンダ スイッチ

巻末

580 **CKD**

理論推	理論推力表													
チューブ内径	<i>作</i>		使用圧力 MPa											
(mm)	作動方向	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
40	Push	_	7.54	10.1	15.1	20.1	25.1	30.2	35.2	40.2	45.2	50.3		
φ8	Pull	_	5.65	7.54	11.3	15.1	18.8	22.6	26.4	30.2	33.9	37.7		
+10	Push	-	17.0	22.6	33.9	45.2	56.5	67.9	79.2	90.5	1.02×10 ²	1.13×10 ²		

(mm)		0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
φ8	Push	_	7.54	10.1	15.1	20.1	25.1	30.2	35.2	40.2	45.2	50.3
ΨΟ	Pull	_	5.65	7.54	11.3	15.1	18.8	22.6	26.4	30.2	33.9	37.7
410	Push	_	17.0	22.6	33.9	45.2	56.5	67.9	79.2	90.5	1.02×10 ²	1.13×10 ²
φ12	Pull	_	12.7	17.0	25.4	33.9	42.4	50.9	59.4	67.9	76.3	84.8
416	Push	_	30.2	40.2	60.3	80.4	1.01×10 ²	1.21×10 ²	1.41×10 ²	1.61×10 ²	1.81×10 ²	2.01×10 ²
φ16	Pull	_	22.6	30.2	45.2	60.3	75.4	90.5	1.06×10 ²	1.21×10 ²	1.36×10 ²	1.51×10 ²
420	Push	_	47.1	62.8	94.2	1.26×10 ²	1.57×10 ²	1.88×10 ²	2.20×10 ²	2.51×10 ²	2.83×10 ²	3.14×10 ²
φ20	Pull	_	35.3	47.1	70.7	94.2	1.18×10 ²	1.41×10 ²	1.65×10 ²	1.88×10 ²	2.12×10 ²	2.36×10 ²
φ25	Push	_	73.6	98.2	1.47×10 ²	1.96×10 ²	2.45×10 ²	2.95×10 ²	3.44×10 ²	3.93×10 ²	4.42×10 ²	4.91×10 ²
Ψ25	Pull	_	56.7	75.6	1.13×10 ²	1.51×10 ²	1.89×10 ²	2.27×10 ²	2.64×10 ²	3.02×10 ²	3.40×10 ²	3.78×10 ²
φ32	Push	80.4	1.21×10 ²	1.61×10 ²	2.41×10 ²	3.22×10 ²	4.02×10 ²	4.83×10 ²	5.63×10 ²	6.43×10 ²	7.24×10 ²	8.04×10 ²
Ψ3Ε	Pull	60.3	90.5	1.21×10 ²	1.81×10 ²	2.41×10 ²	3.02×10 ²	3.62×10 ²	4.22×10 ²	4.83×10 ²	5.43×10 ²	6.03×10 ²
440	Push	1.26×10 ²	1.88×10 ²	2.51×10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²	1.01×10 ³	1.13×10 ³	1.26×10 ³
φ40	Pull	1.06×10 ²	1.58×10 ²	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10 ²	7.39×10 ²	8.44×10 ²	9.50×10 ²	1.06×10 ³
4 E0	Push	1.96×10 ²	2.95×10 ²	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³	1.57×10 ³	1.77×10 ³	1.96×10 ³
φ50	Pull	1.65×10 ²	2.47×10 ²	3.30×10 ²	4.95×10 ²	6.60×10 ²	8.25×10 ²	9.90×10 ²	1.15×10 ³	1.32×10 ³	1.48×10 ³	1.65×10 ³
	Push	3.12×10 ²	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10 ³	2.18×10 ³	2.49×10 ³	2.81×10 ³	3.12×10 ³
φ63	Pull	2.80×10 ²	4.20×10 ²	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10 ³	2.52×10 ³	2.80×10 ³
400	Push	5.03×10 ²	7.54×10 ²	1.01×10 ³	1.51×10 ³	2.01×10 ³	2.51×10 ³	3.02×10 ³	3.52×10 ³	4.02×10 ³	4.52×10 ³	5.03×10 ³
φ80	Pull	4.54×10 ²	6.80×10 ²	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10 ³	2.72×10 ³	3.17×10 ³	3.63×10 ³	4.08×10 ³	4.54×10 ³

シリンダ質量については 642 ページ~ 645 ページをご参照ください。

外形寸法図

複動・片ロッド形STS/STLシリーズと同じです。下記ページをご参照ください。 $\begin{array}{l} {\rm STS} \ni \mathbb{J} - \mathbb{Z} : 486 \% - \mathbb{Y} \ (\phi 8 \sim \phi 16), \ 487 \% - \mathbb{Y} \ (\phi 20, \ \phi 25), \ 488 \% - \mathbb{Y} \ (\phi 32 \sim \phi 63), \ 489 \% - \mathbb{Y} \ (\phi 80) \\ {\rm STL} \ni \mathbb{J} - \mathbb{Z} : 491 \% - \mathbb{Y} \ (\phi 8 \sim \phi 16), \ 492 \% - \mathbb{Y} \ (\phi 20, \ \phi 25), \ 493 \% - \mathbb{Y} \ (\phi 32 \sim \phi 63), \ 494 \% - \mathbb{Y} \ (\phi 80) \end{array}$

内部構造図・材質

複動・片ロッド形と同一です。 496 ページ~ 501 ページをご参照ください。

シリンダ スイッチ

内容

※リード線長さ、コネクタ仕様

1m(標準)

3m(オプション) 5m(オプション)

M8コネクタ、 1PIN(+)4PIN(-)

リード線0.3m 注6: T2WLH、T2WLVのみ選定

記号

無記号

3

5

可能です。

例) リード線長さ

1m TOH

3m TOH3 5m TOH5

STM

STG

STR2

UCA2

STS·STL-MG Series

複動・コイルスクレーパ形

ガイド付シリンダ 複動・強力スクレーパ形

S·STL-MG1 Series

● チューブ内径: φ20·φ25·φ32·φ40·φ50·φ63·φ80

形番表示方法

●ショートストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

STS -M G 20 25 8 3 8 機種形番 (STS)-(·(T2H

4

3

(スイッチ用磁石内蔵)

STM

STG

STS STL

STR2

UCA2

スイッチ付(注1)

2色表示、T1H/V、T8H/V、 (STS)-(G)**-** L1 -(40 10 オフディレータイプスイッチ付 3 4 8 0 8 8 (スイッチ用磁石内蔵)(φ40以上) 機種形番

●ロングストローク

スイッチなし(注1) (スイッチ用磁石内蔵)

(STL)-G 20 50 8 ❸ **⑤** ₿ 0 機種形番

スイッチ付(注1) (スイッチ用磁石内蔵)

G 20 50 **T2H** 8 3 ፅ 0 4 8 機種形番

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

(STL)-

0

機種形番

8

G 8 機種 軸受 形番

3 4 内径 種類

8

0

0

0

8

0

チューブ 配管ねじ ストローク スイッチ スイッチ オプション 形番

注 1:φ80は購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けできません。この場合、¶と❷の間に"L1"を入れた形番で手配してください。

● 軸受方式

記号

GN

記号	内容
M	すべり軸受
В	ころがり軸受

 $M5(\phi 20, \phi 25)$ Rcねじ(φ32~φ80) NPTねじ(ø32以上)カスタム品

Gねじ(ø32以上)カスタム品

2 機種形番

• ···· :- · · · ·									
記号	内容								
G	強力スクレーパ形								
G1	コイルスクレーパ形								

日 チューブ内径(mm)

記号	内容
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

⑤ ストローク(mm)

4 配管ねじ種類

シリ	ストローク (mm)			適用チューブ内径							
亅			φ20	φ25	φ32	φ40	φ50	φ63	φ80		
	標準ストローク	25	•	•	•	•	•	•	•		
		50	•	•	•	•	•	•	•		
STS		75									
s		100							•		
	中間 ストローク	注1 注2				5mm毎					

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する

ことも可能です。(カスタム品)

シリーズ	ストロ	ストローク		適用チューブ内径							
붓	(mn	1)	φ20	φ25	φ32	φ40	φ50	φ63	φ80		
		50	•			•	•				
		75		•	•	•	•	•	•		
		100	•	•	•	•	•	•	•		
		125	•	•	•	•	•	•	•		
		150	•		•	•	•	•	•		
		175	•	•	•	•	•	•	•		
	↓ 邢 :##	200	•	•	•	•	•	•	•		
s	標準 ストローク	225	•	•	•	•	•	•	•		
S		250	•	•	•	•	•	•	•		
ᆫ		275	•	•	•	•	•	•	•		
		300	•	•	•	•	•	•	•		
		325	•	•	•	•	•	•	•		
		350	•	•	•	•	•	•	•		
		375	•	•	•	•	•	•	•		
		400	•	•	•	•	•	•	•		
	中間 注1					5mm毎					
	ストローク	注2									

6 スイッチ形番

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。

接	表示灯	配線	自荷雷	Œ(V)	自荷雷?	充(mA)	リード	 泉注1		
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字		
		2線	85~265	_	5~100	_	тінж	T1V*		
	1色		_	10~30	_	5~20 注2	T2H%	T2V%		
		3線(NPN)	_	30以下	_	100以下	ТЗНЖ	T3V%	-1	
		3線(PNP)	_	3012 1	_	ין אַנטטו	T3PH%	T3PV%	The state of	
	2色	2線	_	24±10%	_	5~20	T2WH%	T2WV%		
_	_ ==	3線(NPN)	_	30以下	_	50以下	T3WH%	T3WV ※		
無接点	無 2色 耐水性 向上		_	24±10%	_	5~20	T2WLH%	T2WLV%		注
	2色交流	O##	_	041100/	_		T2YD%	_		
ĺ	磁界用		_	24±10%	_		T2YDT%	_	- Sept.	
	1色 オフディレー タイプ	2線	_	10~30	_	5~20	т2ЈН※	T2JV※	2 22	
	1色 耐屈曲リード 線タイプ		_	10~30	ı	注2	T2HR3	T2VR3	125	
Г	1色		110	12/24	7~20	5~50	TOH%	TOV*		
摃	表示灯なし	O#	110	5/12/24	20以下	50以下	T5H%	T5V%	4755	
有接点	1色	2線	110/220	12/24	7~20/ 7~10	5~50	T8H%	T8V %	63 53	

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

注2: 上記の負荷電流の最大値: 20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、 20mAより低くなります。(60℃のとき5~10mAとなります。)

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの 使用を推奨します。

注4: φ40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、 **①**と**②**の間に "L1" を入れてーで 結んでください。(ただし、T2WH/V、T3WH/Vは除く)

例) STS-MG-L1-63-50-T1H3-D-F

φ80は標準品購入後、T1H/V、T8H/V、オフディレータイプ、交流磁界用スイッチを後付けすることはでき

この場合、❶と❷の間に"L1" を入れた形番を撰択してください。

例) STS-MG-L1-80-50-F

注5:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

2 スイッチ数

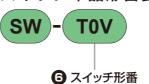
	• • • •	
	記号	内容
	R	ロッド側1個付
	Н	ヘッド側1個付
	D	2個付
	Т	3個付
Į	Т	3個付

おプション

	G 13 7 .	
	記号	内容
	F	エンドプレート材質: 鋼
注1	М	耐食形 (ピストンロッド、ガイドロッド 材質:SUS)(カスタム品)
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、


478ページ (すべり軸受 M)、480ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について

計画は004ペーンをと参照ください。							
記号	記号 内容						
-0	ポート対称形						

STS/L-MG·G1-·····-

スイッチ単品形番表示方法

スイッチ

巻末

582

スイッチ

巻末

CKD

583

STS·STL-MG·G1 Series

STS·STL-MG·G1 Series

仕様

仕様

1									
項目		:	STS-MG/BG	STS-MG1	BG1、STL-	MG/BG、ST	L-MG1/BG1		
チューブ内径	mm	φ20	φ25	φ32	φ40	φ50	φ63	φ80	
作動方式				袼	复動・スクレーパチ	8			
使用流体					圧縮空気				
最高使用圧力	MPa				1.0				
最低使用圧力	MPa	0.	.2			0.15			
耐圧力	MPa		1.6						
周囲温度	Ĉ			-10~6	80(ただし、凍結な	ょきこと)			
接続口径		M	15	Rc	Rc1/8 Rc1/4 Rc3/8				
ストローク許容差	∯ mm				+2.0 0				
使用ピストン速度	mm/s	50~500 50~300					300		
クッション	ゴムクッション付								
給油 不要(給油時はタービン油1種ISOVG32を使用)									
許容吸収エネル	/ギーJ	0.157	0.157	0.401	0.627	0.980	1.560	2.510	

STM

STG

ストローク

・ショートストローク STS

STS. STL

STR2

UCA2

チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)	
φ20					
φ25					
φ32	25,50	50		5	
φ40	25,50	50	5) 注1	
φ50				<u> </u>	
φ63					
φ80	25,50,75,100	100			

注1:スイッチ1個付または2個付の場合です。

・ロングストローク STL

チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ20]			
φ25	50,75,100,125,150			
φ32	175,200,225,250		30	30
φ40	275,300,325,350] 30	注2
φ50	375,400	400		
φ63				
	75,100,125,150,175			55
φ80	200,225,250,275,300		55	注2
	325,350,375,400			/±c

注1:中間ストロークについては5mm毎に製作可能です。

ただし、全長寸法はその上の標準ストロークと同じになります。

注2:スイッチ1個付または2個付の場合です。

理論推力表

(単位:N)

チューブ内径	<i>作</i> 新士白					使用圧力	MPa				
(mm)	作動方向	0.15	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
φ20	Push	_	62.8	94.2	1.26×10 ²	1.57×10 ²	1.88×10 ²	2.20×10 ²	2.51×10^{2}	2.83×10 ²	3.14×10 ²
ΨΖΟ	Pull	_	47.1	70.7	94.2	1.18×10 ²	1.41×10 ²	1.65×10 ²	1.88×10 ²	2.12×10 ²	2.36×10 ²
φ25	Push	_	98.2	1.47×10 ²	1.96×10 ²	2.45×10 ²	2.95×10 ²	3.44×10 ²	3.93×10 ²	4.42×10 ²	4.91×10 ²
ΨΕΟ	Pull	_	75.6	1.13×10 ²	1.51×10 ²	1.89×10 ²	2.27×10 ²	2.64×10 ²	3.02×10 ²	3.40×10 ²	3.78×10 ²
φ32	Push	1.21×10 ²	1.61×10 ²	2.41×10 ²	3.22×10 ²	4.02×10 ²	4.83×10 ²	5.63×10 ²	6.43×10 ²	7.24×10 ²	8.04×10 ²
ΨΟΖ	Pull	90.5	1.21×10 ²	1.81×10 ²	2.41×10 ²	3.02×10 ²	3.62×10 ²	4.22×10 ²	4.83×10 ²	5.43×10 ²	6.03×10 ²
φ40	Push	1.88×10 ²	2.51×10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²	1.01×10 ³	1.13×10 ³	1.26×10 ³
Ψ40	Pull	1.58×10 ²	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10 ²	7.39×10 ²	8.44×10 ²	9.50×10 ²	1.06×10 ³
450	Push	2.95×10 ²	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³	1.57×10 ³	1.77×10 ³	1.96×10 ³
φ50	Pull	2.47×10 ²	3.30×10 ²	4.95×10 ²	6.60×10 ²	8.25×10 ²	9.90×10 ²	1.15×10 ³	1.32×10 ³	1.48×10 ³	1.65×10 ³
φ63	Push	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10 ³	2.18×10 ³	2.49×10 ³	2.81×10 ³	3.12×10 ³
ψοσ	Pull	4.20×10 ²	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10 ³	2.52×10 ³	2.80×10 ³
400	Push	7.54×10 ²	1.01×10 ³	1.51×10 ³	2.01×10 ³	2.51×10^{3}	3.02×10 ³	3.52×10 ³	4.02×10 ³	4.52×10 ³	5.03×10 ³
φ80	Pull	6.80×10 ²	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10 ³	2.72×10 ³	3.17×10 ³	3.63×10 ³	4.08×10 ³	4.54×10 ³

シリンダ質量については 642 ページ~ 645 ページをご参照ください。

STG

STS.

STR2

UCA2

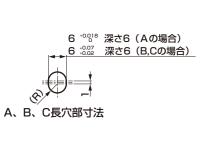
シリンダ スイッチ

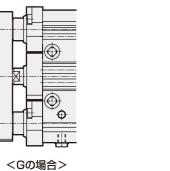
巻末

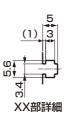
584 **CKD**

シリンダ スイッチ

STG

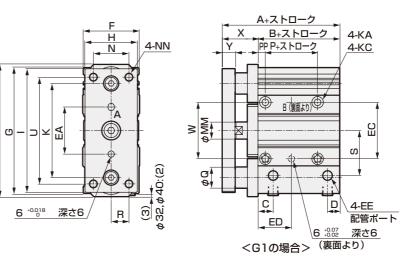

STR2

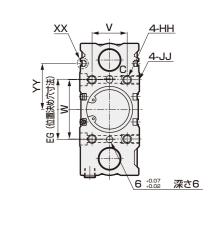

UCA2

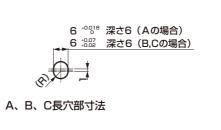

外形寸法図(チューブ内径: *φ*20・*φ*25)

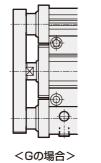
● コイルスクレーパ形 STS-MG1● 強力スクレーパ形 STS-MG

A+ストローク B+ストローク 4-KA 4-HH PP P+ストローク 4-KC ഗ J. 🕁 6 +0.018 深さ6/ D R 6 +0.07 深さ6 配管ポート ■ ED ■ 6 +0.07 深さ6 (裏面より) <G1の場合>




						_						_					_						
記号 チューブヤ経(mm)\	標準	まスト	ローク	7(mn	n)	A	В	С	D	EE	EΑ	E	С	EG		D		F	G	GD	н	Hŀ	1
φ20		21	5、50	1		68	40	12	8	M5	30	3	31	33	14+ 2	ストローク 2		38	83	87	36	M6深a	<u>†12</u>
φ25		2	5, 50	'		69	41	12	9	M5	32	3	35	37	14.5	ストロー 2	-2	42	86	91	38	M6深a	12
記号 チューフヤ経(mm)\	1		IJ	К		KA			ا	кс	N	1M	N		NN	Р	PF	, -	STS-	M		S-B	R
φ20	81	M6	架さ12	59	9 5	5.2貫	通	9	.5座く	:り深さ5.4	٠	10	24	- N	/16貫通	20	6		14	IVI		2	13
φ25	84	M6	架さ12	63	3 5	5.2貫	通	9	.5座く	り深さ5.4		12	26	N	/16貫通	20	6		14		1	2	14
記号 チューフ៊ME(mm)	s	U	V	w	х	Υ	YY																
φ20	24	69	20	31	28-2	9	25	_															
φ25	26	72	24	35	28-2	9	27																


注: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。


外形寸法図(チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● コイルスクレーパ形 STS-MG1● 強力スクレーパ形 STS-MG

記号 チューフែ梱(mm)\	標準	ストローク(m	m)	Α	В	С	D	EE	EA	EC	EG	ED		F	G	GD	н	НН	
φ32				83	49	14	10.5	Rc1/8	42	45	46	17.5+ ^{스타}	<u>ローク</u> 2	47	111	117	45	M8深さ	16
φ40	1	25 50		87	53	14.5	12	Rc1/8	45	54	55	19.5+ 스타	<u>ローク</u> 2	54	120	126	50	M8深さ	16
φ50		25、50		92	55	16	12.5	Rc1/4	55	66	69		<u>ローク</u> 2	66	147	152	64	M10深さ	±20
φ63					61	17.5	17.5	Rc1/4	62	79	82	22.5+ ^{조단}	<u>ローク</u> 2	79	162	166	75	M10深さ	520
記号		1																	
		JJ K KA				VC.		БИБИ	N	NINI	ь				Q		Ь		
チューブ内径(mm)	1	JJ	K		KA			KC		ММ	N	NN	Р	PP	ST	S-M		STS-B	R
	1 109	JJ M8深さ16	K 81		KA 3貫通		11屆	KC Eぐり深さ6.	5	MM 16	N 29	NN M8貫通	P 22	PP -				16	R
チューブ内径(mm)				6.		_							-		2	S-M			
チューブ内径(mm) ゆ 32	109	M8深さ16	81	6. 6.	3貫通		11層	座ぐり深さ6.	5	16	29	M8貫通	22	7	2	S-M 20		16	16
チューブ内径(mm) φ32 φ40	109 118	M8深さ16 M8深さ16	81 90	6. 6. 8.	3貫通 3貫通		11屆	座ぐり深さ6. 座ぐり深さ6.	5 6	16 16	29	M8貫通 M8貫通	22 25	7	2	S-M 20 20		16 16	16 18

記号 チューファ経(mm)\	s				Х		
φ32	39	93	25	45	34 -2	12	39
φ40	43	102	32	54	34-2	12	42
φ50	49	125	38	66	37 -2	16	45
φ63	56	140	50	79	37-2	16	52

注: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ

STG

STS.

STR2

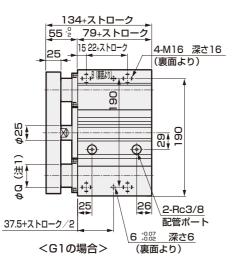
UCA2

巻末

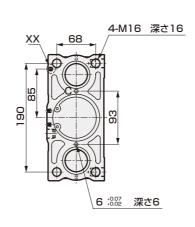
586

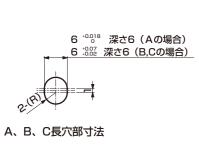
CKD

巻末


シリンダ スイッチ

STS-M-G·G1 Series


外形寸法図 (チューブ内径: *φ*80)


● コイルスクレーパ形

STS-MG1 ● 強力スクレーパ形 STS-MG

<Gの場合>

注 1: 寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

MEMO

STM

STG

STR2

UCA2

シリンダ スイッチ

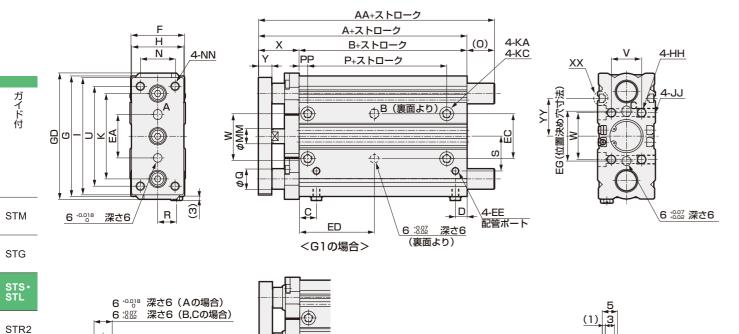
STM

STG

STS.

STR2

UCA2


巻末

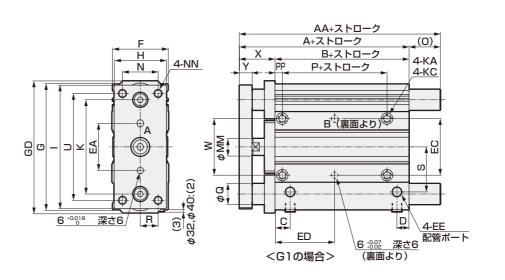
巻末

シリンダ スイッチ

外形寸法図(チューブ内径: φ20·φ25)

STL-MG1 ● コイルスクレーパ形 STL-MG ● 強力スクレーパ形

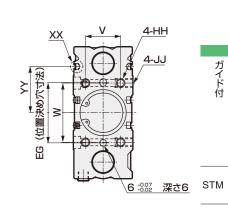
記号 チューフヤ経(mm)		標準に	ストロ	ーク	(mm)		A	AA	В	С	D		EE	E	Α	EC	EG		ED		F	G	GD	н
φ20	50、75	5、100	. 125、	150、	175、20	0, 22	25、	68	87	40	12	8		М5	3	80	31	33		اک +0.		38	83	87	36
φ25	250	. 275.	300,	325、	350、37	5、40	0 [69	87	41	12	9		M5	3	32	35	37	14.	.5+ ⁻²¹	<u>ローク</u> 2	42	86	91	38
記号 チューブ内径(mm)	ŀ	1Н			JJ		K		KA		K	C		ММ	N		NN		0	Р	PP	STL-	M S	TL-B	R
φ20	M6	深さ12	2 8	1 N	//6深さ	12	59	5	.2貫選	<u>i</u> 9	9.5座ぐ	り深さ	5.4	10	24	Т	M6貫	通	19	20	6	14		12	13
φ25	M6	深さ12	2 8	4 N	//6深さ	12	63	5	.2貫通	į (S	9.5座ぐ	り深さ	5.4	12	26	Т	M6貫	通	18	20	6	14	.	12	14
記号 チューブ内径(mm)	s	U	V	w	х	Υ	Y	Υ																	
φ20	24	69	20	31	28-2	9	2	5																	
<i>φ</i> 25	26	72	24	35	28-2	9	2	7																	


´XX部詳細

注:各スイッチ付の寸法は、636ページ、637ページをご参照ください。

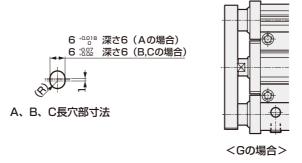
<Gの場合>

外形寸法図 (チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)


STL-MG1 ● コイルスクレーパ形 STL-MG ● 強力スクレーパ形

| 109 | M8深さ16 | 81 | 6.3貫通 | 11座ぐり深さ6.5 | 16 | 29 | M8貫通 | 34 | 22 | 7 |

118 M8深さ16 90 6.3貫通 11座ぐり深さ6.5 16 34 M8貫通 30 25 7


| 145 M10深さ20 | 110 8.6貫通 | 14座ぐり深さ8.6 | 20 | 44 M10貫通 | 48 | 26 | 8 |

STG

STR2

UCA2

標準ストローク(mm)

50, 75, 100, 125, 150,

175、200、225、250、275、

300、325、350、375、400

				" ш"													
	Α	A	В	С	D	EE		EA	EC	EG	ED	F	G	GD	н	Hŀ	1
	83	11	7 49	14	10.5	Rc1/	8	42	45	46	17.5+ ^{ストローク}	47	111	117	45	M8深a	16
	87	11	7 53	14.5	12	Rc1/	8	45	54	55	19.5+ ^{ストローク} 2	54	120	126	50	M8深a	<u>†</u> 16
ĺ	92	14	55	16	12.5	Rc1/	4	55	66	69	19.5+ ^{ストローク}	66	147	152	64	M10深	さ20
	98	14	0 61	17.5	17.5	Rc1/	4	62	79	82	22.5+ ^{ストローク} 2	79	162	166	75	M10深	さ20
	KA		k	C	MN	N	1	NN	0	Р	PP STL-M	·	B R	s	L	ı V	w

16

20

25

16 39 93 25 45

18 43 102 32 54

20 | 22 | 49 | 125 | 38 | 66

φ63	160	M1C	深さ20	124	8.6貫通	14座ぐり深さ8.6	20	55	M10貫通	42	26	8	25	20	26	56	140	50	79
記号 チューフnk(mm)\	х	Υ	YY																
φ32	34-2	12	39																
φ40	34.2	12	42																
φ50	37-2	16	45																
φ63	37 ₋₂	16	52																

φ32

φ40

φ50

φ63

注: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

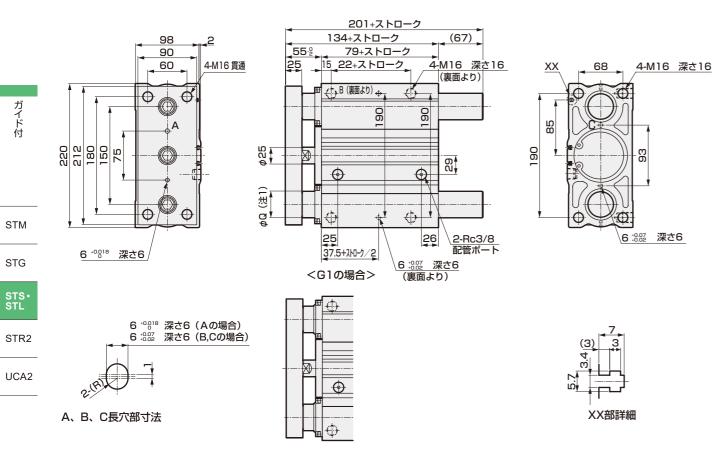
UCA2

A、B、C長穴部寸法

巻末

CKD 590

シリンダ スイッチ


STL-MG·G1 Series

外形寸法図 (チューブ内径: *φ*80)

● コイルスクレーパ形

STL-MG1

STL-MG ● 強力スクレーパ形

注 1: 寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

<Gの場合>

MEMO

STM

STG

STR2

UCA2

シリンダ スイッチ

巻末

592

CKD

巻末

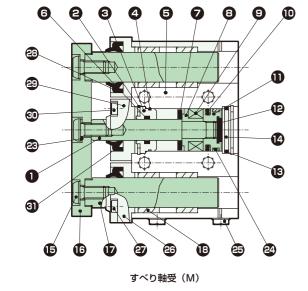
シリンダ スイッチ

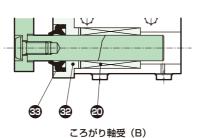
内部構造図・材質

内部構造図・材質(チューブ内径: ϕ 20 \sim ϕ 63)

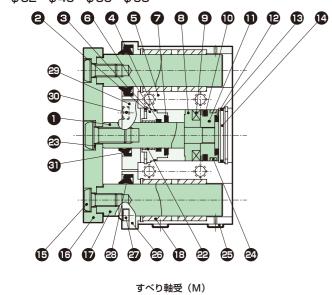
● 強力スクレーパ形 STS-MG

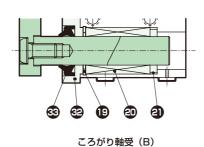
 $\phi 20 \cdot \phi 25$

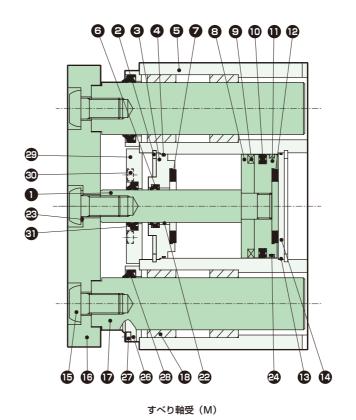

STM

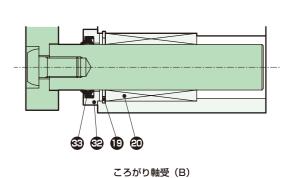

STG

STS.


STR2


UCA2


 $\phi 32 \cdot \phi 40 \cdot \phi 50 \cdot \phi 63$



内部構造図・材質 (チューブ内径: φ80)

● 強力スクレーパ形 STS-MG

材質 備考 品番 部品名称 材質 材質

品番	部品名称	材質	備考	番品	部品名称		材質	備考
-	ピストンロッド	φ20,25: ステンレス鋼	工業用クロムめっき	17	ガイドロッド	М	鋼	工業用クロムめっき
'		φ32~φ80:鋼		' /		В	合金鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	18	メタル		含油軸受合金	
3	ロッドメタル	アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト	19	C形止め輪		鋼	リン酸亜鉛
3			φ32~φ50: クロメート	20	ボールブシュ			
4	メタルガスケット	ニトリルゴム		21	カラー		アルミニウム合金	
5	シリンダ本体	アルミニウム合金	硬質アルマイト	22	ブシュ		軸受合金	
6	ロッドパッキン	ニトリルゴム		23	皿ばね座金		鋼	
7	クッションゴム(R)	ウレタンゴム		24	ウェアリング		ポリアセタール	
8	スペーサ	φ20~φ50: ポリアミド		25	プラグ		φ32~φ63:鋼	φ8~φ25:FPL(CKD)
0		φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	25				φ32~φ63:亜鉛クロメート
9	磁石			26	アダプタB		アルミニウム合金	アルマイト
10	ピストンパッキン	ニトリルゴム		27	六角穴付ボルト		合金鋼	亜鉛クロメート
11	ピストン	アルミニウム合金	クロメート	28	強力スクレーパ		ニトリルゴム,鋼	
12	クッションゴム(H)	ウレタンゴム		29	アダプタA		アルミニウム合金	アルマイト
13	0リング	ニトリルゴム		30	六角穴付ボルト		合金鋼	亜鉛クロメート
14	底板	φ20~φ63:アルミニウム合金	φ20~φ63 : クロメート	31	強力スクレーパ		ニトリルゴム,鋼	
14		φ80:鋼	φ80: 亜鉛クロメート	32	アダプタC		アルミニウム合金	アルマイト
15	六角穴付ボタンボルト	鋼	亜鉛クロメート	33	強力スクレーパ		ニトリルゴム,鋼	
16	エンドプレート	アルミニウム合金	アルマイト		_			

シリンダ スイッチ

巻末

594

CKD

メンテナンス用部品については、CKD機器商品サイト
(https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品をご覧ください。

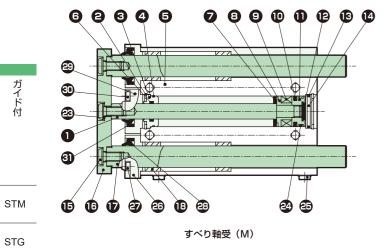
シリンダ スイッチ

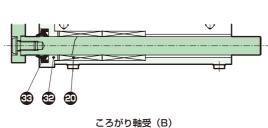
STG

STR2

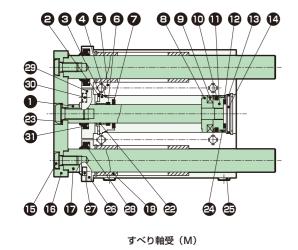
UCA2

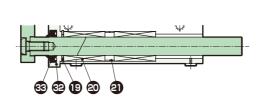
STR2


UCA2

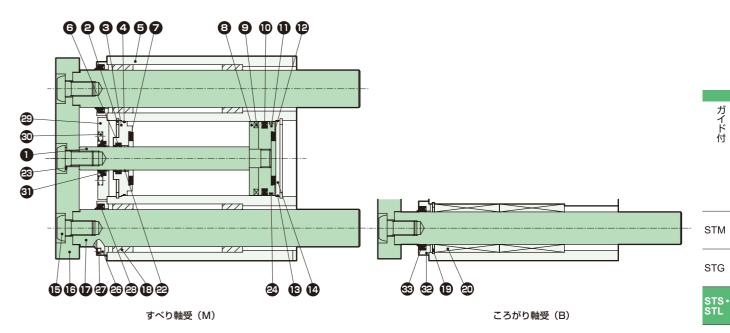

シリンダ スイッチ

597


内部構造図・材質 (チューブ内径: φ20~φ63)


● 強力スクレーパ形 STL-MG ϕ 20 · ϕ 25

 $\phi 32 \cdot \phi 40 \cdot \phi 50 \cdot \phi 63$



ころがり軸受 (B)

内部構造図・材質 (チューブ内径: φ80)

● 強力スクレーパ形 STL-MG

番品	部品名称	材質	備考	番品	部品名称		材質	備考
	ピストンロッド	φ20,25: ステンレス鋼	工業用クロムめっき	17	ガイドロッド	М	鋼	工業用クロムめっき
		φ32~φ80 : 鋼		17		В	合金鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	18	メタル		含油軸受合金	
3	ロッドメタル	アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト	19	C形止め輪		鋼	リン酸亜鉛
			φ32~φ50: クロメート	20	ボールブシュ			
4	メタルガスケット	ニトリルゴム		21	カラー		アルミニウム合金	
5	シリンダ本体	アルミニウム合金	硬質アルマイト	22	ブシュ		軸受合金	
6	ロッドパッキン	ニトリルゴム		23	皿ばね座金		鋼	
7	クッションゴム(R)	ウレタンゴム		24	ウェアリング		ポリアセタール	
8	スペーサ	φ20~φ50: ポリアミド		25	プラグ		φ32~φ63 : 鋼	φ8~φ25:FPL(CKD)
0		φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	23				φ32~φ63:亜鉛クロメート
9	磁石			26	アダプタB		アルミニウム合金	アルマイト
10	ピストンパッキン	ニトリルゴム		27	六角穴付ボルト		合金鋼	亜鉛クロメート
11	ピストン	アルミニウム合金	クロメート	28	強力スクレーパ		ニトリルゴム,鋼	
12	クッションゴム(H)	ウレタンゴム		29	アダプタA		アルミニウム合金	アルマイト
13	ロリング	ニトリルゴム		30	六角穴付ボルト		合金鋼	亜鉛クロメート
14	底板	φ20~φ63:アルミニウム合金	φ20~φ63: クロメート	31	強力スクレーパ		ニトリルゴム,鋼	
14		φ80:鋼	φ80: 亜鉛クロメート	32	アダプタC		アルミニウム合金	アルマイト
15	六角穴付ボタンボルト	鋼	亜鉛クロメート	33	強力スクレーパ		ニトリルゴム,鋼	
16	エンドプレート	アルミニウム合金	アルマイト					

STS.

STR2

UCA2

巻末

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

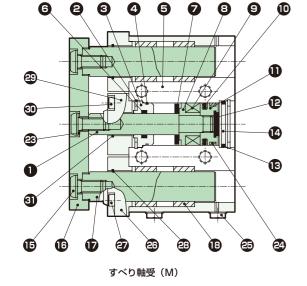
CKD

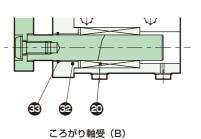
596

内部構造図・材質 (チューブ内径: φ20~φ63)

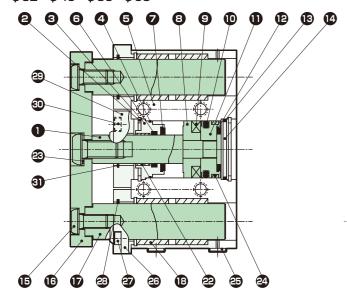
● コイルスクレーパ形 STS-MG1

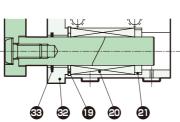
φ20 · φ25


STM

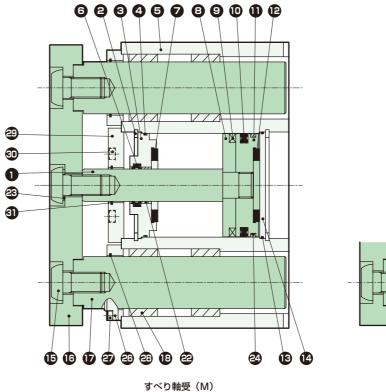

STG

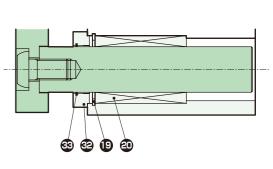
STS.


STR2


UCA2

φ32 · φ40 · φ50 · φ63




すべり軸受(M)

ころがり軸受 (B)

内部構造図・材質 (チューブ内径: φ80)

● コイルスクレーパ形 STS-MG1

-	ス	が	h	軸受	(B)	1

品番	部品名称	材質	備考	番品	部品名称		材質	備考
-	ピストンロッド	φ20,25: ステンレス鋼	工業用クロムめっき	17	ガイドロッド	М	鋼	工業用クロムめっき
'		φ32~φ80:鋼		' /		В	合金鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	18	メタル		含油軸受合金	
3	ロッドメタル	アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト	19	C形止め輪		鋼	リン酸亜鉛
3			φ32~φ50: クロメート	20	ボールブシュ			
4	メタルガスケット	ニトリルゴム		21	カラー		アルミニウム合金	
5	シリンダ本体	アルミニウム合金	硬質アルマイト	22	ブシュ		軸受合金	
6	ロッドパッキン	ニトリルゴム		23	皿ばね座金		鋼	
7	クッションゴム(R)	ウレタンゴム		24	ウェアリング		ポリアセタール	
8	スペーサ	φ20~φ50: ポリアミド		25	プラグ		φ20~φ25:-	φ20~φ25:FPL(CKD)
0		φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	25			φ32~φ63:鋼	φ32~φ63:亜鉛クロメート
9	磁石			26	アダプタB		アルミニウム合金	アルマイト
10	ピストンパッキン	ニトリルゴム		27	六角穴付ボルト		合金鋼	亜鉛クロメート
11	ピストン	アルミニウム合金	クロメート	28	コイルスクレーパ		リン青銅	
12	クッションゴム(H)	ウレタンゴム		29	アダプタA		アルミニウム合金	アルマイト
13	ロリング	ニトリルゴム		30	六角穴付ボルト		合金鋼	亜鉛クロメート
14	底板	φ20~φ63:アルミニウム合金	φ20~φ63: クロメート	31	コイルスクレーパ		リン青銅	
14		φ80:鋼	φ80: 亜鉛クロメート	32	アダプタC		アルミニウム合金	アルマイト
15	六角穴付ボタンボルト	鋼	亜鉛クロメート	33	コイルスクレーパ		リン青銅	
16	エンドプレート	アルミニウム合金	アルマイト					

シリンダ スイッチ

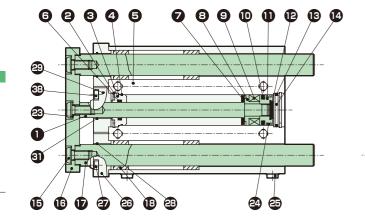
巻末

メンテナンス用部品については、CKD機器商品サイト
(https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

シリンダ スイッチ

CKD

STG


STS. STL

STR2

UCA2

内部構造図・材質(チューブ内径: ϕ 20 \sim ϕ 63)

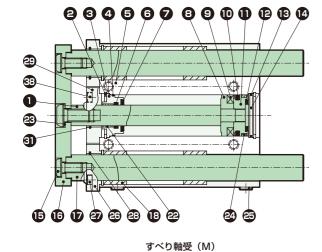
■ コイルスクレーパ形 STL-MG-1 φ20・φ25

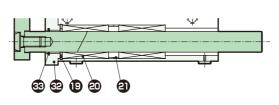
3 2

すべり軸受(M)

ころがり軸受(B)

φ32 · φ40 · φ50 · φ63

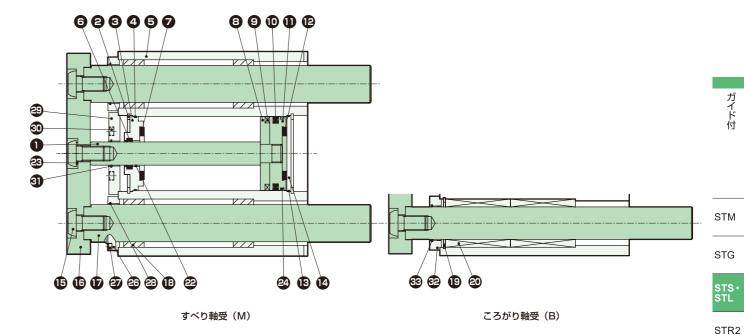

STM


STG

STS.

STR2

UCA2



ころがり軸受 (B)

内部構造図・材質 (チューブ内径: φ80)

● コイルスクレーパ形 STL-MG-1

番品	部品名称	材質	備考	番品	部品名称		材質	備考
1	ピストンロッド	φ20,25: ステンレス鋼	工業用クロムめっき	17	ガイドロッド	М	鋼	工業用クロムめっき
'		φ32~φ80 : 鋼		' /		В	合金鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	18	メタル		含油軸受合金	
3	ロッドメタル	アルミニウム合金	φ20,φ25,φ63,φ80:アルマイト	19	C形止め輪		鋼	リン酸亜鉛
3			φ32~φ50: クロメート	20	ボールブシュ			
4	メタルガスケット	ニトリルゴム		21	カラー		アルミニウム合金	
5	シリンダ本体	アルミニウム合金	硬質アルマイト	22	ブシュ		軸受合金	
6	ロッドパッキン	ニトリルゴム		23	皿ばね座金		鋼	
7	クッションゴム(R)	ウレタンゴム		24	ウェアリング		ポリアセタール	
8	スペーサ	φ20~φ50: ポリアミド		25	プラグ		φ8~φ25:-	φ20~φ25:FPL(CKD)
0		φ63、φ80:アルミニウム合金	φ63、φ80:クロメート	25			φ32~φ63:鋼	φ32~φ63:亜鉛クロメート
9	磁石			26	アダプタB		アルミニウム合金	アルマイト
10	ピストンパッキン	ニトリルゴム		27	六角穴付ボルト		合金鋼	亜鉛クロメート
11	ピストン	アルミニウム合金	クロメート	28	コイルスクレーパ		リン青銅	
12	クッションゴム(H)	ウレタンゴム		29	アダプタA		アルミニウム合金	アルマイト
13	ロリング	ニトリルゴム		30	六角穴付ボルト		合金鋼	亜鉛クロメート
14	底板	φ20~φ63:アルミニウム合金	φ20~φ63: クロメート	31	コイルスクレーパ		リン青銅	
14		φ80:鋼	φ80: 亜鉛クロメート	32	アダプタC		アルミニウム合金	アルマイト
15	六角穴付ボタンボルト	鋼	亜鉛クロメート	33	コイルスクレーパ		リン青銅	
16	エンドプレート	アルミニウム合金	アルマイト					

シリンダ スイッチ

巻末

600 **CKD**

メンテナンス用部品については、CKD機器商品サイト
(https://www.ckd.co.jp/kiki/jp/)→「形番」→「メンテナンス用部品」をご覧ください。

シリンダスイッチ

UCA2

巻末

機種形番

S·STL-MG² Series

ガイド付シリンダ 複動・耐切削油形

● チューブ内径: φ20・φ25・φ32・φ40・φ50・φ63・φ80

回路図記号

RoHS

形番表示方法

●ショートストローク

スイッチなし STS **G2**)-(20 (スイッチ用磁石内蔵) 8 ፅ 3 機種形番 スイッチ付 G2 20 **50** T2YLH (スイッチ用磁石内蔵) 6 (3) 8 3 4 8

●ロングストローク

STM

STG

STS ·

STR2

UCA2

スイッチなし STL G2 20 50 (スイッチ用磁石内蔵) 8 3 4 0 機種形番 スイッチ付 G2 T2YLH (スイッチ用磁石内蔵) 機種形番 2 保護構造 **4** 配管 6 スイッチ形番 3 オプション レベル ねじ種類 軸受方式チューブ **⑤** ストローク 7 スイッチ数

● 軸受方式

● TM2/J≠V					
記号	内容				
M	すべり軸受				
В	ころがり軸受				

2 保護構造レベル

記号	内容
G2	耐切削油スクレーパ+パッキンNBR
G3	耐切削油スクレーパ+パッキンFKM

❸ チューブ内径(mm)

	V 1 31= ()
記号	内容
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63
80	φ80

4 配管ねじ種類

記号	内容					
無記号	M5(φ20、φ25)					
無記写	Rcねじ(<i>ϕ</i> 32~ <i>ϕ</i> 80)					
NN	NN NPTねじ(φ32以上)カスタム品					
GN	Gねじ(φ32以上)カスタム品					

⑤ ストローク(mm)

シリ	ストローク (mm)		適用チューブ内径							
Ļ			φ20	φ25	φ32	φ40	φ50	φ63	φ80	
	標準ストローク	25	•	•	•	•	•	•	•	
		50	•	•	•	•	•	•	•	
ş		75							•	
ls		100							•	
	中間 ストローク	注1				5mm毎				

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ことも可能です。(カスタム品)

シリ	ストローク (mm)		適用チューブ内径							
シリーズ			φ20	φ25	φ32	φ40	φ50	φ63	φ80	
		50	•	•	•	•	•	•		
		75	•	•	•	•	•	•	•	
		100	•	•	•	•	•	•	•	
		125	•	•	•	•	•	•	•	
		150	•	•	•	•	•	•	•	
	標準ストローク	175	•	•	•	•	•	•	•	
		200	•	•	•	•	•	•	•	
s		225	•	•	•	•	•	•	•	
S		250	•	•	•	•	•	•	•	
L		275	•	•	•	•	•	•	•	
		300	•	•	•	•	•	•	•	
		325	•	•	•	•	•	•	•	
		350	•	•	•	•	•	•	•	
		375	•	•	•	•		•	•	
		400	•	•	•	•	•	•	•	
	中間 ストローク	注1 注2								

スイッチ詳細については、753ページをご覧ください。 6 スイッチ形番 スイッチは製品に添付して出荷します。 負荷電圧(V) 負荷電流(mA) リード線 注1 接表示灯 配線 点 特殊機能 (出力) DC ストレート L字 AC DC AC 2線 注2 耐水性 向上 24±10% 5~20 T2WLH% T2WLV 2線 10~30 5~20 **T2YLH**% **T2YLV**% 2色 切削油用 3線 50以下 | T3YLH※ | T3YLV ※ 30以下

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。 注2:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上 シリンダの使用を推奨します。

注3:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

※リード線長さ、コネクタ仕様

	記号	内容
	無記号	1m(標準)
	3m(オプション)	
	5	5m(オプション)
注4	W	M8コネクタ、 1PIN(+)4PIN(ー) リード線0.3m
	÷4. TOW	

注4: T2WLH、T2WLVのみ選定 可能です。

例)リード線長さ 1m T2WLH 3m T2WLH3 5m T2WLH5

2 スイッチ数

₩ X 1 7 7 3X					
記号	内容				
R	ロッド側1個付				
Н	ヘッド側1個付				
D	2個付				

③ オプション

_		
	記号	内容
	M1	耐食形 (ピストンロッド、ガイドロッド、エンドブレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

スイッチ単品形番表示方法

シリンダ スイッチ

STM

STG

STR2

UCA2

巻末

602

CKD

CKD

巻末

603

什样

φ80								
複動・耐切削油形								
1.6								
Rc3/8								
00								
ゴムクッション付 (ウレタンゴム)								
不要(給油時はタービン油1種 ISO VG32を使用)								
2.510								

STM

STG

STS STL

STR2

UCA2

ストローク

● スクレーパ形

・ショートストロークSTS

チューブ内径 (mm)	標準ストローク (mm)	最大ストローク (mm)	最小ストローク (mm)	スイッチ付最小ストローク (mm)
φ20				
φ25				
φ32	25、50	50	5	5 注1
φ40	25, 50			
φ50				<u> </u>
φ63				
φ80	25、50、75、100	100		

・ロングストロークSTL

チューブ内径 (mm)	標準ストローク (mm)	最大ストローク (mm)	最小ストローク (mm)	スイッチ付最小ストローク (mm)
φ20				
φ25	50、75、100、125、150			
φ32	175、200、225、250		30	30
φ40	275、300、325、350		30	注3
φ50	375、400	400		
φ63				
φ80	75、100、125、150、175 200、225、250、275、300 325、350、375、400		55	55 注3

注1:中間ストロークについては、5mm毎に製作可能です。

ただし全長寸法はその上の標準ストロークの寸法と同じになります。 注2:標準ストロークを超え最大ストロークまでは、25とびに製作可能です。 注3:スイッチ1個付、または2個付の場合です。

理論推力表

(単位:N)

扫-ブ内径	作動方向		使用圧力 MPa														
(mm)	1F劉刀叫	0.15 0.2		0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0						
φ20	Push	_	62.8	94.2	1.26×10 ²		1.88×10 ²										
Ψ20	Pull	_	47.1	70.7	94.2						2.36×10 ²						
φ25	Push	_	98.2	1.47×10 ²			2.95×10 ²										
ΨΕΟ	Pull	_	75.6				2.27×10 ²										
φ32	Push	1.21×10 ²					4.83×10 ²										
Ψ32	Pull	90.5					3.62×10 ²										
φ40	Push	1.88×10 ²	2.51×10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²	1.01×10 ³	1.13×10 ³	1.26×10 ³						
Ψ40	Pull						6.33×10 ²										
φ50							1.18×10 ³										
ψυυ	Pull						9.90×10 ²										
460	Push	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10 ³	2.18×10 ³	2.49×10 ³	2.81×10 ³	3.12×10 ³						
φ63	Pull	4.20×10 ²	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10 ³	2.52×10 ³	2.80×10^{3}						
φ80	Push						3.02×10 ³										
	Pull	6.80×10 ²	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10^{3}	2.72×10 ³	3.17×10 ³	3.63×10^{3}	4.08×10^{3}	4.54×10^{3}						

シリンダ質量については 642 ページ~ 645 ページをご参照ください。

STM

STG

STR2

UCA2

シリンダ スイッチ

カバー等を設けて、保護できるようにしてください。

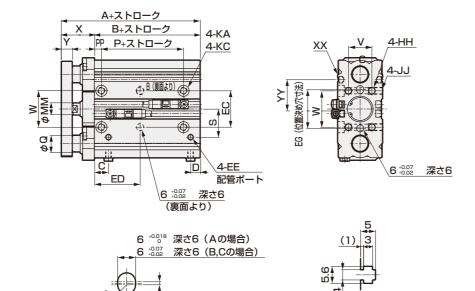
シリンダ スイッチ

巻末

注意:ロッド側にはスクレーパが入っており、耐切削油構造となっていますが、ヘッド側にはスクレーパが入っていません。

外形寸法図(チューブ内径: *φ*20・*φ*25)

● 耐切削油形 STS-MG2 · G3


STM

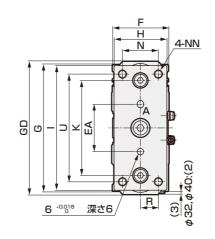
STG

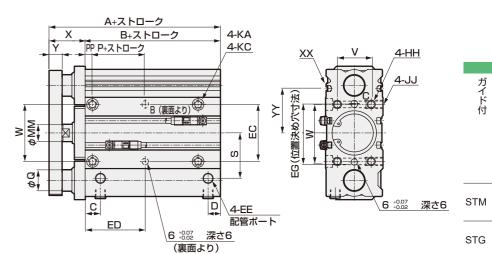
STS.

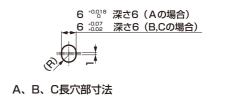
STR2

UCA2

XX部詳細


A、B、C長穴部寸法


記号 チューブヤ経(mm)\	標準ストローク(mm)		n)	A	В	С	D	EE	EA	EC	E	G	E	D		F	G	GD	н	Н	1										
φ20		21	= =0	١		68	40	12	12 8 M5		30	31	1 3	33 14+2		ストローク 2		38	83	87	36	M6深a	<u>†</u> 12								
φ25	25、50					69	41	12	9	M5	32	35	5 3	37	14.5	<u>ストローク</u> + 2		42	86	91	38 M6深		<u>†</u> 12								
記号							-1-1		.1.1		JJ			KA				KC	М	м	N		NN	Р	PP			Q	!		R
チューブ内径(mm)	•	,	JU	K		NΑ				N.C	IVI	IVI	IV	ININ			FF	5	STS-	M	STS-B		п								
φ20	81	M6%	深さ12	59	9 !	5.2貫	通	9	.5座く	り深さ5.4	1	0	24	M	16貫通	20	6		14		1	2	13								
φ25	84	M6%	深さ12	63	3 !	5.2貫	通	9	.5座く	じ深さ5.4	1	2	26	M	16貫通 20 6		6	14			12		14								
記号 チューブヤ経(mm)	S	U	V	W	х	Υ	YY	′																							
φ20	24	69	20	31	28-2	9	25	i																							
φ25	26	72	24	35	28-2	9	27	,																							


注:各スイッチ付の寸法は、636ページ、637ページをご参照ください。

外形寸法図 (チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● 耐切削油形 STS-MG2 · G3

<u>記号</u> チューフ搾k(mm)\	標準ストローク(mm)			n)	Α	В	С	D	EE	EA	EC	EG	ED		F	G	GD	Н	НН		
φ32						83	49	14	10.5	Rc1/8	42	45	46	17.5+ ²¹	47	111	117	45	M8深さ	16	
φ40		25	5 50			87	53	14.5	12	Rc1/8	45	54	55	19.5+ ²¹	<u>トローク</u> 2	54	120	126	50	M8深さ	16
φ50	25, 50					92 55 16		16	12.5 Rc1/4 55		55	66	69	19.5+ ^{ストローク}		66 147 152		152	64	M10深さ	220
φ63	1					98	61	17.5	17.5	Rc1/4	62	79	82	22.5+ ²¹	<u>トローク</u> 2	79	162	166	75	M10深さ	220
記号	لل ا			К		KA			КС		ММ	N	NN	Р	PP			Q	Q		
チューブ内径(mm)	<u>'</u>		<u> </u>				NA .			KC .		IVIIVI	IV.	ININ P		FF	STS-M		5	STS-B	R
φ32	109	M8	深さ1	6	81	6.	3貫通	i	11座ぐり深さ6.5				29	M8貫通	22	7	20			16	16
φ40	118	M8	深さ1	6	90	6.	3貫通		11座ぐり深さ6.5			16	34	M8貫通	M8貫通 25		2	20		16	18
φ50	145	M10	D深さ2	20	110	8.	6貫通	<u> </u>	14區	14座ぐり深さ8.6			44	M10貫通	26	8	2	25		20	22
φ63	160	M10	D深さ2	20	124	8.	6貫通	<u> </u>	14座ぐり深さ8.6			20	55	M10貫通	26	8	2	25		20	26
記号	s	u	v	w	x	Ιv	Y	,													
チューブ内径(mm)					^			<u> </u>													
φ32	39	93	25	45	34-	2 12	2 3	9_													
φ40	43	102	32	54	34.	2 12	2 4	2													
φ50	49	125	38	66	37-	2 16	3 4	5													
φ63	56	140	50	79	37-	2 16	5 5	2													

注:各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ

STR2

UCA2

巻末

606

シリンダ スイッチ

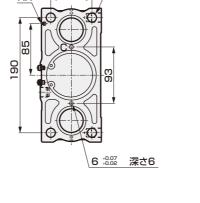
STS-MG2·G3 Series

外形寸法図 (チューブ内径: *φ*80)

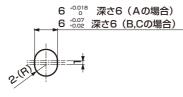
● 耐切削油形 STS-⊮G2 · G3

90 60 4-M16 貫通 6^{+0.018} 深さ6/

STM


STG

STS.


STR2

UCA2

134+ストローク 79+ストローク 15 22+ストローク 4-M16 深さ16 (裏面より) **(に出)** の 26 \2-Rc3/8 37.5+ストローク/2 6 治炎 深さ6 (裏面より)

4-M16 深さ16

A、B、C長穴部寸法

注 1: 寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

MEMO

STM

STG

STR2

UCA2

シリンダ スイッチ

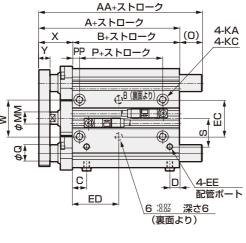
巻末

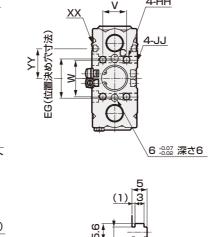
608

CKD

シリンダ スイッチ

巻末


CKD


609

外形寸法図(チューブ内径: φ20·φ25)

● 耐切削油形 STL-MG2 · G3

> N **4-NN** 6 +0.018 深さ6/

XX部詳細

14

13

12

A、B、C長穴部寸法

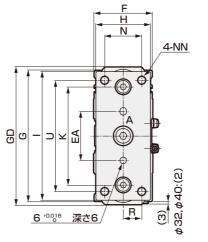
6 +00018 深さ6 (Aの場合)

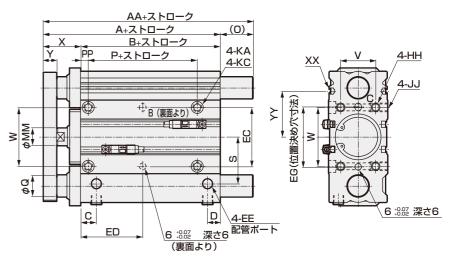
STR2

UCA2

STM

STG


標準ストローク(mm) В C EA EC EG 68 87 40 12 8 φ20 50、75、100、125、150、175、200、225、 M5 φ25 250、275、300、325、350、375、400 69 87 41 12 9 M5 KC M6深さ12 81 M6深さ12 59 5.2貫通 9.5座ぐり深さ5.4 10 24 M6貫通 19 20 6 M6深さ12 84 M6深さ12 63 5.2貫通 9.5座ぐり深さ5.4 12 26 M6貫通 18 20 6 14 12 14 φ25 24 69 20 31 28-2 9 25


注: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

26 72 24 35 28-9 9 27

外形寸法図 (チューブ内径: ϕ 32・ ϕ 40・ ϕ 50・ ϕ 63)

● 耐切削油形 STL-MG2 · G3

チューブ内径(mm)	│ 標準ストローク(mm)				A	AA	В	C	D	EE		A	EC	EG	ED		F	G	GD	Н	H	H
φ32	E0 .	7E 10	00、125、	150	83	117 49 14		10.5	Rc1/	8 4	12	45	46	17.5+ ^{ストローク} 2		47	111	117	45	M8深	<u>*</u> 16	
φ40	ı		225、250 225		87	117	17 53 14.		12	Rc1/	8 4	15	54	55	19.5	19.5+ ^{ストローク} 2		120	126	50	M8深	<u>*</u> 16
φ50			350、37		92	140	55	16	12.5 Rc1/4		4 5	55 (69		5+ ^{ストローク} 2	66	147	152	64	M10深	さ20
φ63	0000	0201	000, 07,	J. 700	98	140	0 61 17.5 1		17.5	Rc1/	4 6	32	79	82	22.5	5+ ^{ストローク} 2	79	162	166	75	M10深	さ20
記号 チューフヤ醛(mm)\	1		JJ	к	KA		K	C	ММ	N	NI	N	0	Р	PP	STL-M	•	B R	s	U	V	w
φ32	109	9 M8深さ16 8		81	6.3貫	貫通 11座ぐり深さ6		深さ6.5	16	29	M8貫通		34	22	7	20	16	16	39	9:	3 25	45
φ40	118	M8	深さ16	90	6.3貫	通 11座ぐり深さ6.8		深さ6.5	16	34	M8貨	夏通	30	25	7	20	16	18	3 43	3 10	2 32	54
φ50	145	M10	深さ20	110	8.6貫	6貫通 14座ぐり深さ8.6		深さ8.6	20	44	M10貫通		48	26	8 25		20	22	2 49	12	5 38	66
φ63	160	M10	深さ20	124	8.6貫	通 1	4座ぐり	深さ8.6	20	55	M10	貫通	42	26	8	25	20	26	5 56	140	50	79
記号 チューフnæ(mm)\	х	Υ	YY																			
φ32	34.2	12	39																			
φ40	34.2	12	42																			

注: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

37-2 16 45

φ63 | 37-⁰ | 16 | 52

φ50

シリンダ スイッチ

STG

STR2

UCA2

巻末

シリンダ スイッチ

CKD

610

CKD

611

STL-MG2·G3 Series

外形寸法図 (チューブ内径: *φ*80)

● 耐切削油形 STL-⊮G2 · G3

STM

STG

STS.

STR2

UCA2

201+ストローク 90 134+ストローク (67) 55½ 79+ストローク 25 15 22+ストローク 60 79+ストローク 4-M16 深さ16 (裏面より) 4-M16 深さ16 4-M16 貫通 000 ----**(** Ю/ 26 \2-Rc3/8 配管ポート 6 +0.07 深さ6 6 ^{+0.018} 深さ6/ <u>6 +0.07 深さ6</u> (裏面より) 37.5+ストローク/2 6 +0.018 深さ6 (Aの場合) 6 +0.02 深さ6 (B,Cの場合)

A、B、C長穴部寸法

XX部詳細

注 1: 寸法QについてはM(すべり軸受)の場合 ϕ 40、B(転がり軸受)の場合 ϕ 35となります。 注2: 各スイッチ付の寸法は、636 ページ、637 ページをご参照ください。

MEMO

STM

STG

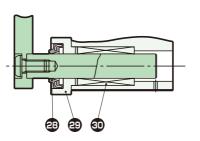
STR2

UCA2

シリンダ スイッチ

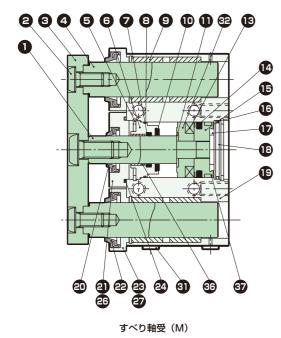
巻末

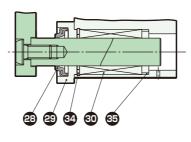
612


巻末

シリンダ スイッチ

内部構造図・材質 (チューブ内径: φ20~φ63)


● 保護構造レベル: パッキン NBR・FKM STS-MG2 STS-MG3


φ20 · φ25

ころがり軸受(B)

φ32·φ40·φ50·φ63

ころがり軸受 (B)

内部構造図・材質 (チューブ内径: φ80)

● 保護構造レベル: パッキン NBR・FKM STS-MG2 STS-MG3

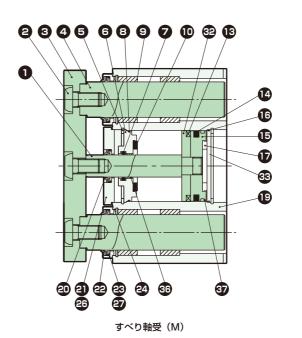
部品名称

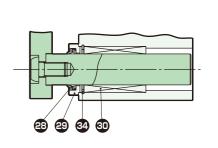
ステンレス鋼

G3 フッ素ゴム

ウレタンゴム

アルミニウム合金


アルミニウム合金


1 ピストンロッド

17 クッションゴム(H)

18 底板

19 チューブ本体

ころがり軸受(B)

G2 ニトリルゴム

アルミニウム合金

ポリアセタール

軸受合金

2	六角穴付ボタンボ	レト	ステンレス鋼				G3	フッ素ゴム		
3	エンドプレート		アルミニウム合金	アルマイト	21	アタプタA		アルミニウム合金	アルマイト	
4	ガイドロッド		ステンレス鋼	工業用クロムめっき	22	スクレーパ	G2	ニトリルゴム		
5	穴用C形止め輪		ステンレス鋼					フッ素ゴム		
6	ロッドメタル		アルミニウム合金	アルマイト	23	アダプタB		アルミニウム合金	アルマイト	
7	ロッドパッキン	G2	ニトリルゴム		24	ロリング	G2	ニトリルゴム		
		G3	フッ素ゴム				G3	フッ素ゴム		
8	メタルガスケット	G2	ニトリルゴム		25	プラグ		_	FPL (CKD)	
		G3	フッ素ゴム		26	六角穴付ボルト		ステンレス鋼		
9	メタル		含油軸受合金		27	六角穴付ボルト		ステンレス鋼		
10	クッションゴム(R)	ウレタンゴム		28	スクレーパ	G2	ニトリルゴム		
11	スペーサ座金		ステンレス鋼	φ20∼φ50のみ				フッ素ゴム		
12	スペーサ		ポリアミド	φ20~φ50のみ	29	アダプタC		アルミニウム合金	アルマイト	
13	磁石				30	ベアリング		ステンレス鋼		
14	ピストンパッキン	G2	ニトリルゴム		31	六角穴付沈みプラ:	グ	ステンレス鋼	φ32~φ63の 	
		G3	フッ素ゴム		32	スペーサ		アルミニウム合金	φ63.φ80のみ	
15	5 ピストン		アルミニウム合金	クロメート	33	底板		鋼	亜鉛クロメート (φ80のみ)	
16	ロリング	G2	ニトリルゴム		34	穴用C形止め輪		ステンレス鋼	φ32~φ80のみ	

35 カラー

36 ブシュ

37 ウェアリング

工業用クロムめっき 20 スクレーパ

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→「メンテナンス用部品」をご覧ください。

φ20∼φ63のみ

硬質アルマイト

シリンダ スイッチ

巻末

CKD

φ32~φ63のみ

φ32~φ80のみ

STM

STG

STG

STM

STS · STL

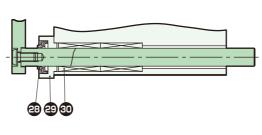
STR2

UCA2

UCA2

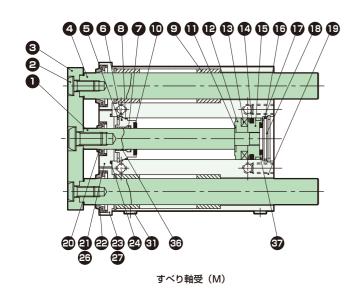
備考

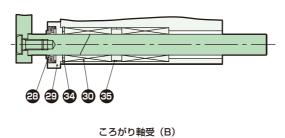
STR2


シリンダスイッチ

内部構造図・材質 (チューブ内径: φ20~φ63)

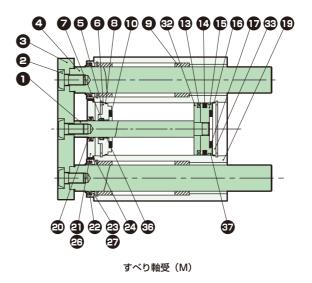
● 保護構造レベル:パッキン NBR・FKM STL-⊮G2 STL-MG3

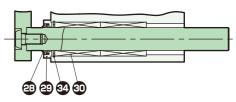

φ20 · φ25


45678 90008466978 8 **₩ 99999** すべり軸受(M)

ころがり軸受 (B)

 \bullet ϕ 32 \cdot ϕ 40 \cdot ϕ 50 \cdot ϕ 63





内部構造図・材質 (チューブ内径: φ80)

● 保護構造レベル:パッキン NBR・FKM STL-⊮G2 STL-MG3

• φ80

ころがり軸受 (B)

STR2 UCA2

STG

番品	部品名称		材 質	備考	番品	部品名称		材 質	備考
1	ピストンロッド		ステンレス鋼	工業用クロムめっき	20	スクレーパ	G2	ニトリルゴム	
2	六角穴付ボタンボル	レト	ステンレス鋼			G3		フッ素ゴム	
3	エンドプレート		アルミニウム合金	アルマイト	21	アダプタA		アルミニウム合金	アルマイト
4	ガイドロッド		ステンレス鋼	工業用クロムめっき	22	スクレーパ	G2	ニトリルゴム	
5	穴用C形止め輪		ステンレス鋼				G3	フッ素ゴム	
6	ロッドメタル		特殊アルミ	アルマイト	23	アダプタB		アルミニウム合金	アルマイト
7	ロッドパッキン	G2	ニトリルゴム		24	ロリング	G2	ニトリルゴム	
		G3	フッ素ゴム		1		G3	フッ素ゴム	
8	メタルガスケット	G2	ニトリルゴム		25	プラグ		_	FPL (CKD)
		G3	フッ素ゴム		26	六角穴付ボルト		ステンレス鋼	
9	メタル		含油軸受合金		27	六角穴付ボルト		ステンレス鋼	
10	クッションゴム(R))	ウレタンゴム		28	スクレーパ G2		ニトリルゴム	
11	スペーサ座金		ステンレス鋼	φ20~φ50の み	1		G3	フッ素ゴム	
12	スペーサ		ポリアミド	φ20∼φ50のみ	29	アダプタC		アルミニウム合金	アルマイト
13	磁石				30	ベアリング		ステンレス鋼	
14	ピストンパッキン	G2	ニトリルゴム		31	六角穴付沈みプラ:	グ	ステンレス鋼	φ32∼φ63の み
		G3	フッ素ゴム		32	スペーサ		アルミニウム合金	φ63.φ80のみ
15	ピストン		アルミニウム合金	クロメート	33	底板		鋼	亜鉛クロメート(φ80のみ)
16	ロリング	G2	ニトリルゴム		34	穴用C形止め輪		ステンレス鋼	φ32~φ80のみ
		G3	フッ素ゴム		35	カラー		アルミニウム合金	φ32∼φ63の み
17	クッションゴム(H)	ウレタンゴム		36	ブシュ		軸受合金	φ32~φ80のみ
18	底板		アルミニウム合金	φ20~φ63の み	37	ウェアリング		ポリアセタール	
19	チューブ本体		アルミニウム合金	硬質アルマイト					

STM

STG

STS.

STR2

UCA2

巻末

616

CKD

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

シリンダ スイッチ

ガイド付シリンダ スパッタ付着防止形

STS·STL-G4 Series

● チューブ内径: φ40・φ50・φ63・φ80

回路図記号

形番表示方法

●ショートストローク

スイッチなし STS G4 - L1 -(スイッチ用磁石内蔵) 8 機種形番 スイッチ付 STS G4 - L1 -(40 **50** T2YD (スイッチ用磁石内蔵) 0 8 3 0 7

●ロングストローク

STM

STG

STS ·

STR2

UCA2

● 軸受方式

記号	内容
M	すべり軸受
В	ころがり軸受

② チューブ内径(mm)

ねじ種類

	,
記号	内容
40	φ40
50	φ50
63	φ63
80	φ80

② 配管ねじ種類

記号	内容
無記号	Rcねじ
NN	NPTねじ (カスタム品)
GN	Gねじ (カスタム品)

4 ストローク(mm)

シリ	ストローク		適用チューブ内径					
붓	(mm)		φ40	φ50	φ63	φ80		
		25	•	•	•	•		
	標準	50	•	•	•	•		
S	S ストローク	75				•		
STS		100				•		
	中間 ストローク	注1 注2	5mm毎					

機種形番

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。 注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ことも可能です。(カスタム品)

_									
シリーズ	ストロー	ク		適用チューブ内径					
붓	(mm)		φ40	φ50	φ63	φ80			
		50	•	•	•				
		75	•	•	•	•			
		100	•	•	•	•			
		125	•	•	•	•			
		150	•	•	•	•			
		175	•	•	•	•			
		200	•	•	•	•			
s	標準 ストローク	225	•	•	•	•			
S T L	A 10-5	250	•	•	•	•			
┞┖		275	•	•	•	•			
		300	•	•	•	•			
		325	•	•	•	•			
		350	•	•	•	•			
		375	•	•	•	•			
		400	•	•	•	•			
	中間 ストローク	注1 注2							

STS·STL-G4 Series

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。 母 スイッチ形番

接	表示灯	配線	負荷電	涯(V)	負荷電流	荒(mA)	リード紡	注1	
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字	
無接点	2色交流	2線	-	24±10%	_	5~20	T2YD%	-	
汽	磁界用	△初	_	24110%	_	5.920	T2YDT%	_	THE STATE OF THE S

注1:スイッチ形番の"※"には、「※リード線長さ」表にて選択した記号を入れてください。

注2:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

※リード線長さ

記号	内容
無記号	1m(標準)
3	3m(オプション)
5	5m(オプション)

例)リード線長さ lm T2YD 3m T2YD3 5m T2YD5

⑥ スイッチ数

記号	内容
R	ロッド側1個付
Н	ヘッド側1個付
D	2個付
Т	3個付

オプション

	記号	内容
	F	エンドプレート材質:鋼
注1	М	耐食形 (ピストンロッド、ガイドロッド 材質:SUS)(カスタム品)
注1	M1	耐食形 (ピストンロッド、ガイドロッド、エンドプレート材質:SUS) (カスタム品)

注1:材質の詳細については502ページをご参照ください。

バリエーション・オプションの組合せについては、 478ページ(すべり軸受 M)、480ページ(ころがり軸受 B)をご参照ください。

カスタム品の仕様について

詳細は654ページをご参照ください。 記号 内容 ポート対称形 -0

STS/L-G4-------

スイッチ単品形番表示方法

巻末

618

スイッチ

CKD

CKD

STG

STM

STR2

UCA2

シリンダ スイッチ

STS·STL-G4 Series

<u>仕様</u>

項目			STS · STL-G4					
チューブ内径	mm	φ40	φ50	φ63	φ80			
作動方式			複動形					
使用流体			圧縮	空気				
最高使用圧力	MPa		1.0					
最低使用圧力	MPa	0.15						
耐圧力	MPa	1.6						
周囲温度	Ĉ		−10~60(ただ	し、凍結なきこと)				
接続口径		Rc1/8	Rc	1/4	Rc3/8			
ストローク許容差	mm		+2 C					
使用ピストン速度	mm/s	50~500 50~300			300			
クッション		ゴムクッション付						
給油		不要(給油時はタービン油1種ISO VG32を使用)						
許容吸収エネルギ・	_ J	0.627	0.980	1.560	2.510			

標準ストローク(mm) | 最大ストローク(mm)

25,50

25,50,75,100

STM

STG

ストローク

・ショートストロークSTS

φ40 φ50

φ63

STS · STR2

φ80 注1:スイッチ1個付、または2個付の場合です。

UCA2

・ロングストロークSTL

- U22771-231E				
チューブ内径(mm)	標準ストローク(mm)	最大ストローク(mm)	最小ストローク(mm)	スイッチ付最小ストローク(mm)
φ40	50,75,100,125,150			20
φ50	175、200、225、250、275、		30	30 注2
φ63	300、325、350、375、400	400		_
	75、100、125、150、175	400		
φ80	200,225,250,275,300		55	55
	325、350、375、400			注2

50

100

注1:中間ストロークについては、5mm毎に製作可能です。 ただし全長寸法はその上の標準ストロークの寸法と同じになります。 注2:スイッチ 1 個付、または 2 個付の場合です。

理論推力表

(単位:N)

最小ストローク(mm) スイッチ付最小ストローク(mm)

5

5

注1

チューブ内径	作動方向					使用圧力	J MPa				
(mm)	1 F当() / J [4]	0.15	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
φ40	Push	1.88×10 ²	2.51×10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²	1.01×10 ³	1.13×10 ³	1.26×10 ³
Ψ40	Pull	1.58×10 ²	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10 ²	7.39×10^{2}	8.44×10 ²	9.50×10^{2}	1.06×10 ³
φ50	Push	2.95×10 ²	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³	1.57×10 ³	1.77×10 ³	1.96×10 ³
Ψυυ	Pull	2.47×10 ²	3.30×10 ²	4.95×10 ²	6.60×10 ²	8.25×10 ²	9.90×10 ²	1.15×10 ³	1.32×10^{3}	1.48×10 ³	1.65×10^{3}
φ63	Push	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10 ³	2.18×10 ³	2.49×10^{3}	2.81×10^{3}	3.12×10 ³
Ψοσ	Pull	4.20×10 ²	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10^{3}	2.52×10 ³	2.80×10^{3}
φ80	Push	7.54×10 ²	1.01×10 ³	1.51×10 ³	2.01×10^{3}	2.51×10^{3}	3.02×10 ³	3.52×10 ³	4.02×10 ³	4.52×10^{3}	5.03×10^{3}
Ψου	Pull	6.80×10 ²	9.07×10 ²	1.36×10 ³	1.81×10^{3}	2.27×10^{3}	2.72×10^{3}	3.17×10 ³	3.63×10 ³	4.08×10^{3}	4.54×10^{3}

メリンダ ※シリンダ質量については 642 ページ~ 645 ページをご参照ください。

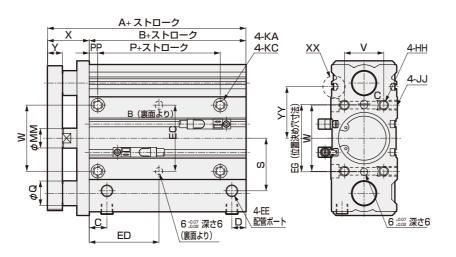
巻末

620 **CKD** MEMO

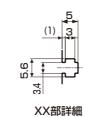
STM

STG

STR2


UCA2

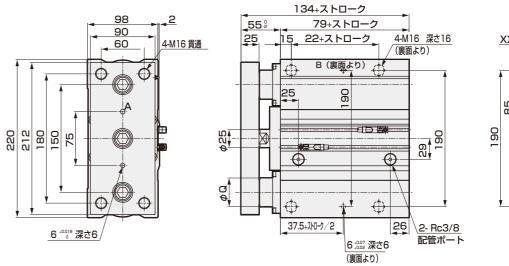
シリンダ スイッチ

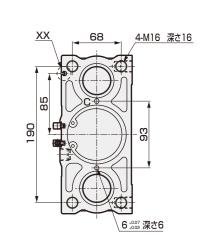

スパッタ付着防止形

外形寸法図(チューブ内径: ϕ 40・ ϕ 50・ ϕ 63)

● 複動・標準片ロッド形 STS-MG4

	A、B、	C長穴部寸法

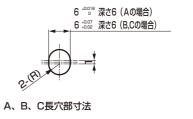

STS-M-G4	4																							
記号 チューフヤ醛(mm)	A	В	С	D	E	Е	E	EA	EC	EG	ا	ED		F	G	GD	н	Hŀ	1	1	JJ		К	KA
φ40	87	53	14.5	12	5.6	Rc1	/8	45	54		19.5			54	120	126	50	M8深さ	16	118	M8深さ	16	90	6.3貫通
φ50	92	55	16	12.5	5.6	Rc1	/4	55			19.5-			66	147	152	64	M10深	220	145	M10深る	20	110	8.6貫通
φ63	98	61	17.5	17.5	5.6	Rc1	/4	62	79	82	22.5-	+ スト ロ	<u>ーク</u>	79	162	166	75	M10深	20	160	M10深る	20	124	8.6貫通
STS-M-G4	4																							
記号 チューブ内径(mm)		KC		L	М	ММ	N	N	N	Р	PP	Q	R	s	Т	U	V	w	х	Υ	YY	z		

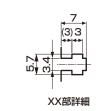

記号 チューブ内径(mm)	KC	L	M	ММ	N	NN	P	PP	Q	R	s	Т	U	V	w	х	Υ	ΥY	z
φ40	11座ぐり深さ6.5	1	3.4	16	34	M8貫通	25	7	20	18	43	5	102	32	54	34.2	12	42	3
φ50	14座ぐり深さ8.6	1	3.4	20	44	M10貫通	26	8	25	22	49	5	125	38	66	37.2	16	45	3
φ63	14座ぐり深さ8.6	1	3.4	20	55	M10貫通	26	8	25	26	56	5	140	50	79	37 .2º	16	52	3

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2:各スイッチ付の寸法は636ページ、637ページをご参照ください。

外形寸法図(チューブ内径: ϕ 80)

● 複動・標準片ロッド形 STS-MG4




STM

STG

STR2

UCA2

注 2: 中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 080の標準ストロークは25・50・75・100mmの4種類です。

注3: 各スイッチ付の寸法は636ページ、637ページをご参照ください。

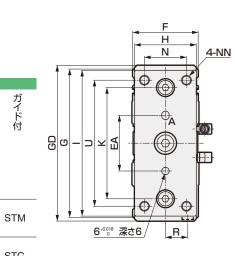
シリンダ スイッチ

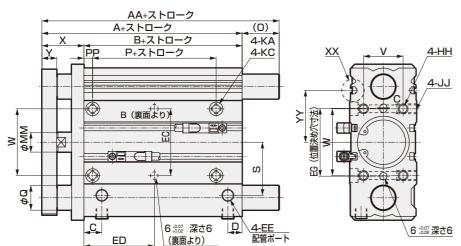
STM

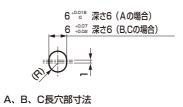
STG

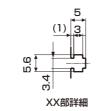
STS ·

STR2

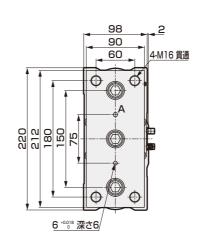

UCA2

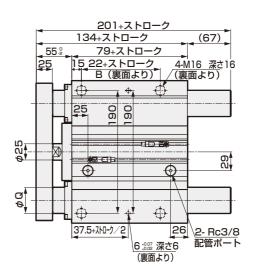

巻末

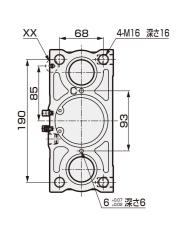

シリンダ スイッチ


外形寸法図 (チューブ内径: ϕ 40・ ϕ 50・ ϕ 63)

● 複動・標準片ロッド形 STL-MG4




STL-M-G	4																							
記号 チューブヤ経(mm)\	A	AA	В	С	D	E	E	E	EA	EC	EG		D	F	G	GD	н	ŀ	Н	ı	ل	IJ	К	KA
φ40	87	117	53	14.5	12	5.6	Rc	1/8	45	54	55	19.5+	ストローク 2	54	120	126	50	M8%	深さ16	118	M8%	ださ16	90	6.3貫通
φ50	92	140	55	16	12.5	5.6	Rc	1/4	55	66	69	19.5+	ストローク 2	66	147	152	64	M10	深さ20	145	M10	深さ20	110	8.6貫通
φ63	98	140	61	17.5	17.5	5.6	Rc	1/4	62	79	82	22.5+	ストローク 2	79	162	166	75	M10	深さ20	160	M10	深さ20	124	8.6貫通
STL- ^M -G	4																							
記号 チューフ៊n径(mm)		кс		L	М	ММ	N	N	N	0	Р	PP	Q	R	s	Т	U	V	w	х	Υ	ΥY	z	
φ40	11座	ぐり深	さ6.5	1	3.4	16	34	M8	貫通	30	25	7	20	18	43	5	102	32	54	34 .º	12	42	3	
φ50	14座	ぐり深	ර 8.6	1	3.4	20	44	M10	貫通	48	26	8	25	22	49	5	125	38	66	37 .₂	16	45	3	
φ63	14座	ぐり深	ර 8.6	1	3.4	20	55	M10	貫通	42	26	8	25	26	56	5	140	50	79	37 .2	16	52	3	


注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は636ページ、637ページをご参照ください。

外形寸法図 (チューブ内径: *φ*80)

● 複動・標準片ロッド形 STL-⊮G4

注 1: 寸法QについてはM(すべり軸受)の場合 ϕ 40、B(ころがり軸受)の場合 ϕ 35となります。 注2: 中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。

#80の標準ストロークは75~400mmのあいだで25mm毎です。 注3: 各スイッチ付の寸法は636ページ、637ページをご参照ください。

シリンダ スイッチ

STM

STG

STR2

UCA2

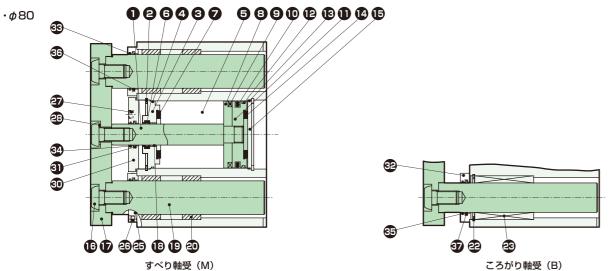
巻末

624

シリンダ スイッチ

STG

STS ·


STR2

UCA2

内部構造図・材質

内部構造図・材質

● 複動・標準片ロッド形 STS-MG4

							•
品番	部品名称	材質	備考	品番	部品名称	材質	備考
1	ピストンロッド	鋼	工業用クロムめっき	19	ガイドロッド	鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	20	メタル	含油軸受合金	
3	ロッドメタル	特殊アルミニウム合金	アルマイト	21	スペーサ座金	ステンレス鋼	
4	メタルガスケット	ニトリルゴム		22	C形止め輪	鋼	リン酸亜鉛
5	シリンダ本体	アルミニウム合金	硬質アルマイト	23	ボールブッシュ		
6	ロッドパッキン	ニトリルゴム		24	カラー	アルミニウム合金	
7	クッションゴム(R)	ウレタンゴム		25	アダプタB	アルミニウム合金	アルマイト
8	スペーサ	φ40・φ50:ポリアミド		26	六角穴付ボルト	鋼	亜鉛クロメート
0	\\\\-\y	φ63・φ80: アルミニウム合金	φ63・φ80:クロメート	27	六角穴付ボルト	鋼	亜鉛クロメート
9	磁石			28	皿ばね座金	鋼	
10	ピストンパッキン	ニトリルゴム		29	プラグ	鋼	亜鉛クロメート (φ40~φ63のみ)
11	ピストン	アルミニウム合金	クロメート	30	アダプタA	アルミニウム合金	アルマイト
12	ウェアリング	ポリアセタール		31	ルブキーパ	特殊ゴム	
13	Οリング	ニトリルゴム		32	アダプタC	アルミニウム合金	アルマイト
14	クッションゴム(H)	ウレタンゴム		33	コイルスクレーパ	リン青銅	
15	底板	φ40~φ63: アルミニウム合金	φ40~φ63: クロメート	34	コイルスクレーパ	リン青銅	
15	上文化文	φ80:鋼	φ80: 亜鉛クロメート	35	コイルスクレーパ	リン青銅	
16	六角穴付ボタンボルト	鋼	亜鉛クロメート	36	ルブキーパ	特殊ゴム	
17	エンドプレート	アルミニウム合金	アルマイト	37	ルブキーパ	特殊ゴム	
18	ブシュ	軸受合金					

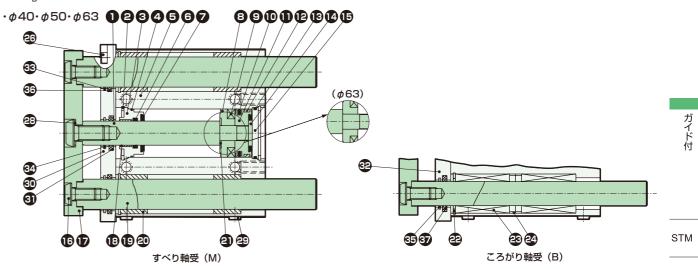
シリンダ スイッチ

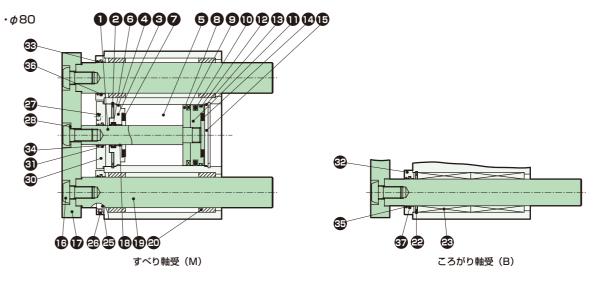
STM

STG

STS.

STR2


UCA2


巻末

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

内部構造図・材質

● 複動・標準片ロッド形 STL-MG4

品番	部品名称	材質	備考	田番	部品名称	材質	備考
1	ピストンロッド	鋼	工業用クロムめっき	19	ガイドロッド	鋼	工業用クロムめっき
2	C形止め輪	鋼	リン酸亜鉛	20	メタル	含油軸受合金	
3	ロッドメタル	特殊アルミニウム合金	アルマイト	21	スペーサ座金	ステンレス鋼	
4	メタルガスケット	ニトリルゴム		22	C形止め輪	鋼	リン酸亜鉛
5	シリンダ本体	アルミニウム合金	硬質アルマイト	23	ボールブッシュ		
6	ロッドパッキン	ニトリルゴム		24	カラー	アルミニウム合金	
7	クッションゴム(R)	ウレタンゴム		25	アダプタB	アルミニウム合金	アルマイト
8	スペーサ	φ40・φ50: ポリアミド		26	六角穴付ボルト	鋼	亜鉛クロメート
0	X/\-9	φ63・φ80: アルミニウム合金	φ63・φ80: クロメート	27	六角穴付ボルト	鋼	亜鉛クロメート
9	磁石			28	皿ばね座金	鋼	
10	ピストンパッキン	ニトリルゴム		29	プラグ	鋼	亜鉛クロメート (φ40~φ63のみ)
11	ピストン	アルミニウム合金	クロメート	30	アダプタA	アルミニウム合金	アルマイト
12	ウェアリング	アセタール樹脂		31	ルブキーパ	特殊ゴム	
13	ロリング	ニトリルゴム		32	アダプタC	アルミニウム合金	アルマイト
14	クッションゴム(H)	ウレタンゴム		33	コイルスクレーパ	リン青銅	
15	底板	φ40~φ63: アルミニウム合金	φ40~φ63: クロメート	34	コイルスクレーパ	リン青銅	
15	JET/IX	φ80:鋼	φ80: 亜鉛クロメート	35	コイルスクレーパ	リン青銅	
16	六角穴付ボタンボルト	鋼	亜鉛クロメート	36	ルブキーパ	特殊ゴム	
17	エンドプレート	アルミニウム合金	アルマイト	37	ルブキーパ	特殊ゴム	
18	ブシュ	軸受合金					

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→「メンテナンス用部品」をご覧ください。 シリンダ スイッチ

巻末

STG

STS• STL

STR2

UCA2

※リード線長さ、コネクタ仕様

1m(標準)

3m(オプション)

5m(オプション)

M8コネクタ、

注6: T2WLH、T2WLVのみ選定

3m TOH3

5m TOH5

可能です。

例) リード線長さ 1m TOH

1PIN(+)4PIN(-) リード線0.3m

STM

STG

STR2

UCA2

記号

無記号

3

5

注6

● チューブ内径: φ20·φ25·φ32·φ40·φ50·φ63

➌

8

6

0

6

4 チューブ **6** ストローク

🗗 配管ねじ

種類

4

内径

(a)

6

6

6

4

В

В

2

7 電線接続

8

8

8

8

8

8 定格電圧

-(50)-(B)-(1)-(T1H)-(R)-(F

-(T0H

9

0

·(TOH

0

● スイッチ数

9 スイッチ **11** オプション

回路図記号

8

8

8

8

)(**S**

3

3

S

3

取付方向

ガイド付シリンダ・バルブ搭載形

形番表示方法

●ショートストローク

スイッチなし (スイッチ用磁石内蔵)

(STS)-(M)(V1)(S 機種形番

(スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付 (スイッチ用磁石内蔵)(φ40以上) 機種形番

●ロングストローク スイッチなし (スイッチ用磁石内蔵)

STM

STG

STS STL

STR2

UCA2

スイッチ付 (スイッチ用磁石内蔵)

2色表示、T1H/V、T8H/V、 オフディレータイプスイッチ付

● 軸受方式

記号

В

スイッチ付

機種形番 (STS)-(M)(V1)(S)-L1-(40)

0 8 (STL)-(M)(V1)(S

0

0

0 機種形番

機種形番 STL)-(M)(V1)(S)-L1-(50)

内容

(スイッチ用磁石内蔵)(φ40以上) 機種形番

2 作動方向 ● 軸受方式 ③ バルブ

2 作動方向

記号 内容 通電時押出し形 V1 V2 通電時引込み形

4 チューブ内径(mm)

6 27-	- ノ内径 (MM)
記号	内容
20	φ20
25	φ25
32	φ32
40	φ40
50	φ50
63	φ63

すべり軸受

ころがり軸受

6 配管わじ種類

	はし性状
記号	内容
無記号	Rcねじ
NN	NPTねじ(ø32以上)カスタム品
GN	Gねじ(ø32以上)カスタム品

❸ バルブ取付方向

<u> </u>	> 4x1 1/1 1-1
記号	内容
無記号	バルブ正面付
S	バルブ側面付

注1:バルブ側面付でストローク25mm以下を 選択した場合、シリンダ全長(A+ストロー ク) よりバルブ取付寸法 (VC) が大きく なる場合があります。

外形寸法図にて寸法を確認してください。 注2: バルブ正面付にはT1H/V、T8H/V、オフ ディレータイプ、交流磁界スイッチは取付 できません。

⑥ ストローク(mm)

シリ	ストロー	 ク		j	適用チュ	一ブ内径	2	
亅攴	(mm)		φ20	φ25	φ32	φ40	φ50	φ63
	標準	25	•	•	•	•	•	•
S	ストローク	50	•	•	•	•	•	•
Ś	中間 ストローク	注1 注2			5m	m毎		

注1:全長寸法は、長い方の標準ストロークの寸法と同一になります。

注2:中間ストローク時の全長寸法を中間ストローク専用の長さで対応する ことも可能です。(カスタム品)

シリ	ストローク (mm)		適用チューブ内径						
Ļ			φ20	φ25	φ32	φ40	φ50	φ63	
STL	標準 ストローク	50	•	•	•	•	•	•	
		75	•	•	•	•	•	•	
		100	•	•	•	•	•	•	
	中間 ストローク	注1 注2	5mm毎						

2 電線接続

	記号	内容				
	##記号 グロメットリード線(300mm) B 小形端子箱、リード線なし					
	C C形コネクタ、リード線(300mm)					
	■ D形コネクタ、リード線(300mm					

8 定格電圧

記号	内容
1	AC100V
2	AC200V
з	DC24V

スイッチ詳細については、753ページをご参照ください。 スイッチは製品に添付して出荷します。 ② スイッチ形番

_	O TO TO THE TOTAL PROPERTY OF THE TOTAL PROP								
接	表示灯	配線	負荷電	注(V)	負荷電流	充(mA)	リード	泉注1	
点	特殊機能	(出力)	AC	DC	AC	DC	ストレート	L字	
		2線	85~265	_	5~100	_	тінж	T1V*	
	1色		_	10~30	-	5~20 注2	T2H%	T2V%	
		3線(NPN)	_	30以下	-	100以下	ТЗНЖ	T3V%	
l		3線(PNP)	_	ろし以下	_	ין געטטו	T3PH%	T3PV%	1775
	2色	2線	_	24±10%	_	5~20	T2WH%	T2WV%	
	28	3線(NPN)	_	30以下	ı	50以下	T3WH %	T3WV ※	
無接点	2色 耐水性 向上		_	24±10%	_	F 00	T2WLH%	T2WLV%	1
	2色交流] ————————————————————————————————————	_	041100/	_	5~20	T2YD%	_	
ĺ	磁界用		_	24±10%	_		T2YDT%	_	C. C.
	1色 オフディレー タイプ		_	10~30	_	5~20	T2JH%	T2JV※	67 67
	1色 耐屈曲リード 線タイプ		_	10~30	ı	注2	T2HR3	T2VR3	1775
	1色		110	12/24	7~20	5~50	TOH*	TOV*	
复	表示灯なし	O KÉ	110	5/12/24	20以下	50以下	T5H%	T5V%	4750
有接点	1色	2線	110/220	12/24	7~20/ 7~10	5~50	T8H%	т8V%	d 2

注1:スイッチ形番の"※"には、「※リード線長さ、コネクタ仕様」表にて選択した記号を入れてください。

注2:上記の負荷電流の最大値:20mAは、25℃でのものです。スイッチ使用周囲温度が25℃より高い場合は、 20mAより低くなります。(60°Cのとき5~10mAとなります。)

注3:シリンダの耐水性能を保証するものではありません。耐水環境下でのご使用時は、耐水性向上シリンダの 使用を推奨します。

注4: ø40以上の2色表示、T1H/V、T8H/V、オフディレータイプについては、**①**と❷の間に "L1" を入れて ーで結んでください。(ただし、T2WH/V、T3WH/Vは除く)

例) STS-MV1S-L1-50-50-B-1-T1H3-D-F 注5:上記スイッチ形番以外のスイッチも用意しております。(カスタム品)詳細については、753ページを ご参照ください。

⋒ フィッチ数

'	サスインノ奴						
	記号	内容					
	R	ロッド側1個付					
	Н	ヘッド側1個付					
	D	2個付					

1 オプション

記号	内容
F	エンドプレート材質:鋼

バリエーション・オプションの組合せについては、 478 ページ (すべり軸受 M)、480 ページ (ころがり軸受 B) をご参照ください。

カスタム品の仕様について 詳細は654ページをご参昭ください

記号	内容
-0	ポート対称形

STS/L-MV ------O

スイッチ単品形番表示方法

シリンダ スイッチ

巻末

628

スイッチ

STG

UCA2

仕様

項目		STS-MV.ST	「S-BV (ショー	-トストローク)	•STL-MV•S	STL-BV (ロン	グストローク)	
チューブ内径	mm	φ20	φ25	φ32	φ40	φ50	φ63	
作動方式			複動形					
使用流体			圧縮空気					
最高使用圧力	MPa		0.7					
最低使用圧力	MPa		0.15					
耐圧力	MPa		1.0					
周囲温度	C		-	-5~50 (ただし	, 凍結なきこと)		
接続口径			Rc1/8			Rc1/4		
ストローク許容差	mm	+2.0						
ストローク計台左	111111	0						
使用ピストン速度	mm/s			50~500			50~300	
クッション				ゴムクッ	ション付			
給油		不要(給油時はタービン油1種ISOVG32を使用)						
搭載バルブ		4KB1シリーズ 4KB2シリーズ						
許容吸収エネルギー	J	0.157	0.157	0.401	0.627	0.980	1.560	

注:バルブの詳細については、「方向制御弁②」(No.RJ-012) をご参照ください。

ストローク

STM

STG

STS. STL

STR2

UCA2

チューブ内径 (mm)	標準ストローク (mm)		最大ストローク(mm)	最小ストローク (mm)	
b20·φ25·φ32	25·φ32 STS 25·50		100	E	
¢40·φ50·φ63	STL	50.75.100	100	5	

注:中間ストロークについて標準ストローク以外の中間ストロークは5mm毎に製作可能です。

ただし、全長寸法はその上の標準ストロークの寸法と同一になります。

(例) STS-MV1-25-35の場合、STS-MV1-25-50の本体内部にスペーサを装着し、全長寸法は50ストロークと同一寸法になります。

シリーズバリエーション

チューブ内径 (mm)	適用バルブシリーズ	位置ソレノイド数	バルブ有効断面積 (mm²) (Cv 値)		
φ20			4(0.22)		
φ25	4KB1シリーズ	2位置シングル			
φ32					
φ40			14(0.76)		
φ50	4KB2シリーズ	2位置シングル			
φ63					

バルブ仕様

項目	STS-MV1、STS-BV1、S STL-MV1、STL-BV1、S1	TS-MV2、STS-BV2 (ショー TL-MV2、STL-BV2	トストローク)	STS-MV1、STS-BV1、STS-MV2、STS-BV2 (ロングストローク)				
適用バルブシリーズ	4	KB1シリーズ	4	KB2シリーズ				
位置ソレノイド数	2	位置シングル	2	位置シングル				
バルブ有効断面積 (mm²)	バルブ有効断面積 (mm²) 4				14			
(Cv值)	(0.22)			(0.76)				
定格電圧 (V)	AC100(50/60Hz)	AC200(50/60Hz)	DC24	AC100(50/60Hz)	AC200(50/60Hz)	DC24		
起動電流 (A)	0.056/0.044	0.034/0.026	0.075	0.056/0.044	0.028/0.022	0.075		
保持電流 (A)	0.028/0.022	0.017/0.013	0.075	0.028/0.022	0.014/0.011	0.075		
消費電力 (W)	1.8/1.4	2.1/1.6	1.8	1.8/1.4		1.8		
電圧変動範囲	±10%			±10%				
耐熱クラス	B種	モールドコイル		B種モールドコイル				

注:バルブの詳細については、「方向制御弁②」(No.RJ-012) をご参照ください。

理論推力表 (単位:N) STM

扫-ブ内径	作動士白			ſ	使用圧力 MPa	3		
(mm)	作動方向	0.15	0.2	0.3	0.4	0.5	0.6	0.7
420	Push	47.1	62.8	94.2	1.26×10 ²	1.57×10 ²	1.88×10 ²	2.20×10 ²
φ20	Pull	35.3	47.1	70.7	94.2	1.18×10 ²	1.41×10 ²	1.65×10 ²
405	Push	73.6	98.2	1.47×10 ²	1.96×10 ²	2.45×10 ²	2.95×10 ²	3.44×10 ²
φ25	Pull	56.7	75.6	1.13×10 ²	1.51×10 ²	1.89×10 ²	2.27×10 ²	2.64×10 ²
φ32	Push	1.21×10 ²	1.61×10 ²	2.41×10 ²	3.22×10 ²	4.02×10 ²	4.83×10 ²	5.63×10 ²
Ψ32	Pull	90.5	1.21×10 ²	1.81×10 ²	2.41×10 ²	3.02×10 ²	3.62×10 ²	4.22×10 ²
440	Push	1.88×10 ²	2.51×10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10 ²	8.80×10 ²
φ40	Pull	1.58×10 ²	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10 ²	7.39×10 ²
φE0	Push	2.95×10 ²	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³
φ50	Pull	2.47×10 ²	3.30×10 ²	4.95×10 ²	6.60×10 ²	8.25×10 ²	9.90×10 ²	1.15×10 ³
462	Push	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10^{3}	2.18×10 ³
φ63	Pull	4.20×10 ²	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³

シリンダ質量については 642 ページ~ 645 ページをご参照ください。

シリンダ スイッチ

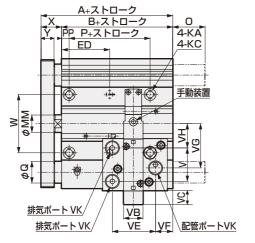
巻末

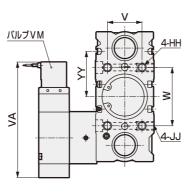
シリンダ スイッチ

外形寸法図

● バルブ正面付

ガイド付


STM


STG

STS ·

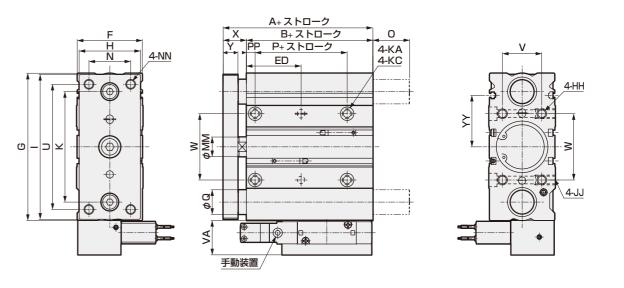
STR2

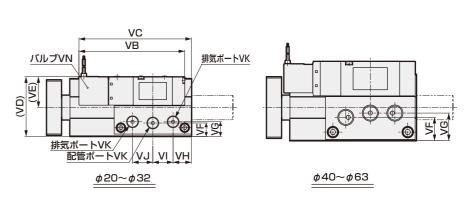
UCA2

谔	Α	Ь	٠.		le								.	_{1/}	IZ.	_		VC.		B 4 B 4	NI.	NINI)	Р
ューブ内径(mm)	A				-	٦			ПП		'	JJ		K	K.	A		KU		IVIIVI	IN	IVIV	STS	STL	
φ20	53	40	14	+ ^{ストローク}	38	8	3 36	3 M	6深さ	12	81 N	16深さ	12	59	5.2	貫通	9.5座	ぐり済	き5.4	10	24	M6貫通	0	18	20
φ25	54	41	14.5	+ ストローク 2	42	8	6 38	3 M	6深さ	12	84 N	16深さ	12	63	5.2	貫通	9.5座	ぐり済	き5.4	12	26	M6貫通	0	17	20
φ32	68	49	17.5	+ <u> </u>	47	11	1 45	5 M	8深さ	16 1	09 N	18深さ	16	81	6.3	貫通	11座	ぐり深	さ6.5	16	29	M8貫通	0	34	22
φ40	72	53	19.5	+ <u> </u>	54	12	0 50) M	8深さ	16 1	18 N	18深さ	16	90	6.3	貫通	11座	ぐり深	き6.5	16	34	M8貫通	0	30	25
φ50	77	55	19.5	+ <u> </u>	66	14	7 64	1 M	10深さ	20 1	45 N	110深る	±20	110	8.6	貫通	14座	ぐり深	8.8	20	44	M10貫通	0	48	26
φ63	83	61	22.5	+ <u> </u>	79	16	2 7	5 M	10深さ	20 1	60 N	110深る	20	124	8.6	買通	14座	ぐり深	8.85	20	55	M10貫通	0	42	26
谔	DD	G	ו		V	w	v	v	VV	V/A	VD	VC	VD	VE	VE	VG	VL	M	VIV		VA	4			
ューブ内径(mm)\		Mタイプ	Bタイプ		v	vv	^	<u> </u>		VA	VB	• •		"	VF	• •	• •	VI	VK		VI	VI.			
φ20	6	14	12	69	20	31	13-2	9	25	86	15	8.5	42.5	35.5	9.5	29.5	13	22	Rc1/	8 4K	B1シ	リーズ			
φ25	6	14	12	72	24	35	13-2	9	27	86	15	8	42.5	35.5	10.5	30.5	14	22	Rc1/	8 4K	B1シ	リーズ			
φ32	7	20	16	93	25	45	19-2	12	39	86	15	4	42.5	37.5	15.5	39	20.5	26	Rc1/	8 4K	B1シ	リーズ			
φ40	7	20	16	102	32	54	19-2	12	42	107	18	15	52.5	40	16	41	22.5	31	Rc1/	4 4K	B2シ	リーズ			
φ50	8	25	20	125	38	66	22 -2	16	45	107	18	9	52.5	41	17	49	43	21	Rc1/	4 4K	B2シ	リーズ			
φ63	8	25	20	140	50	79	22.2	16	52	107	18	8	52.5	41	23	55.5	49.5	21	Rc1/	4 4K	B2シ	リーズ			
	1-7解(mm) ゆ20 ゆ25 ゆ32 ゆ40 ゆ50 ゆ63 こ号 1-7解(mm) ゆ20 ゆ25 ゆ32 ゆ40 ゆ50	□ 7州隆(mm) A	### 1-7月後(mm) A B 日本 日本 日本 日本 日本 日本 日本	### 1-7階(mm) 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	### Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10 Page 10	### Page 10 Page 11 Page 12 Page 12 Page 12 Page 13 Page 13 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14	### Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Pag	### Page 10 Page 11 Page 12 Page 12 Page 12 Page 13 Page 13 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14 Page 14	### Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Pag	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters	## Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Proper	## Part	## Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Proper	4 1 1 2 2 2 2 2 2 2 2	## Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Proper	## Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	## Proproprofile Proprofile 中の 日本 日本 日本 日本 日本 日本 日本 日	4 1 1 1 1 1 1 1 1 1	中央の 1 1 1 1 1 1 1 1 1	中央の 1 1 1 1 1 1 1 1 1	A B ED F G H FH D D K KA KC WW N N N N N STS ## ## ## ## ## ## D K KA KC WW N N N N N N N N	1- 万條(mn)	

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2: 各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ


巻末


スイッチ ------

632

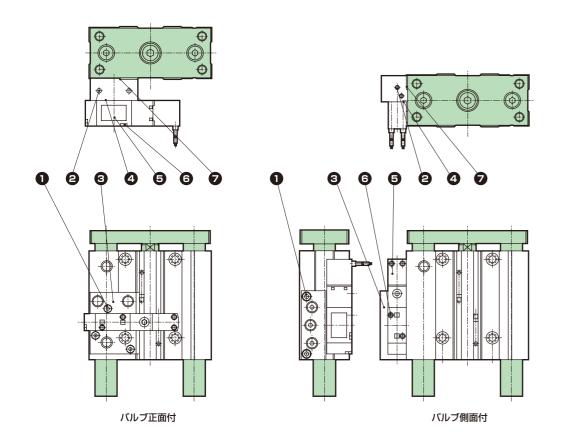
外形寸法図

● バルブ側面付

記号		_				۱.		١			Τ.				1/	14.6			1 /0		ANA	N.	BIBI)	
チューブ内径(mm)	Α	В		ED		F	G	Н		нн			JJ		K	KA	•		KC	ľ	VIIVI	Ν	NN	STS	STL	Р
φ20	53	40	14	+ 2	トローク 2	38	83	36	Me	深さ1	2 8	31 M	16深さ	12	59	5.2賃	通	9.5座	ぐり深る	±5.4	10	24	M6貫通	0	18	20
φ25	54	41	14.	5+ ⁻²	<u>トローク</u> 2	42	88	38	Me	深さ1	2 8	34 M	16深さ	12	63	5.2賃	通	9.5座	ぐり深る	±5.4	12	26	M6貫通	0	17	20
φ32	68	49	17.	5+ ⁻²	トローク 2	47	11	1 45	ME	3深さ1	6 10)9 M	18深さ	16	81	6.3賃	通	11座<	ぐり深る	±6.5	16	29	M8貫通	0	34	22
φ40	72	53	19.	5+ ²	トローク 2	54	120	50	ME	3深さ1	6 11	8 M	18深さ	16	90	6.3賃	通	11座<	ぐり深る	±6.5	16	34	M8貫通	0	30	25
φ50	77	55	19.	5+ ⁻²	トローク 2	66	147	7 64	M1	0深さ2	20 14	15 M	10深さ	20	110	8.6賃	通	14座<	り深る	28.6	20	44	M10貫通	0	48	26
φ63	83	61	22.	5+ ⁻²	<u>トローク</u> 2	79	162	2 75	M1	0深さ2	20 16	80 M	10深さ	20	124	8.6賃	通	14座<	ぐり深る	28.6	20	55	M10貫通	0	42	26
記号	PP	G	2	U	v	w	х	V	vv	V/A	VD	VC	VD	VE	VE	VG	VL	_/I		VK		VI	NI.			
チューブ内径(mm)	FF	Mタイプ	Bタイプ	٦	v	vv	^	•	' '	VA	VD	VC	•		. V -	1	VII	VI	טע	VK	•	VI	u			
φ20	6	14	12	69	20	31	13-2	9	25	23	86	92	47.5	28.5	10	11	15	16.5	16.5	Rc1/	8 4	KB1シ	リーズ			
φ25	6	14	12	72	24	35	13-2	9	27	23	86	92	49.5	28.5	12	13	15	16.5	16.5	Rc1/	8 4	KB1シ	リーズ			
φ32	7	20	16	93	25	45	19-2	12	39	23	86	92	48.5	25	11	12	15	16.5	16.5	Rc1/	8 4	KB1シ	リーズ			
φ40	7	20	16	102	32	54	19-2	12	42	28	107	108	64.5	37.5	19	22.5	17.5	20	20	Rc1/	4 4	KB2シ	リーズ			
φ50	8	25	20	125	38	66	22-2	16	45	28	107	108	66.5	33.5	21	24.5	17.5	20	20	Rc1/	4 4	KB2シ	リーズ			
φ63	8	25	20	140	50	79	22-2	16	52	28	107	108	68	28.5	22.5	26	17	20	20	Rc1/	4 4	KB2シ	リーズ			

注1:中間ストロークの場合、各寸法は長い方の標準ストロークと同一になります。 注2:各スイッチ付の寸法は、636ページ、637ページをご参照ください。

シリンダ スイッチ


STM

STG

STR2

UCA2

MEMO

田番	部品名称	材質	備考
1	六角穴付ボルト	ステンレス鋼	
2	六角穴付止めねじ	鋼	黒染
3	サブベース	アルミニウム合金	アルマイト
4	ガスケット	ニトリルゴム	
5	セレックスバルブ		
6	取付ねじ	鋼	亜鉛クロメート
7	ロリング	ニトリルゴム	

STG

UCA2

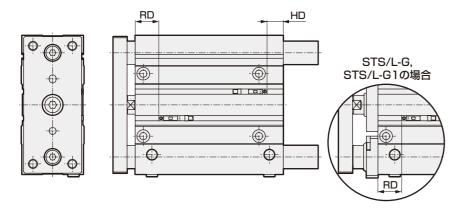
シリンダ スイッチ

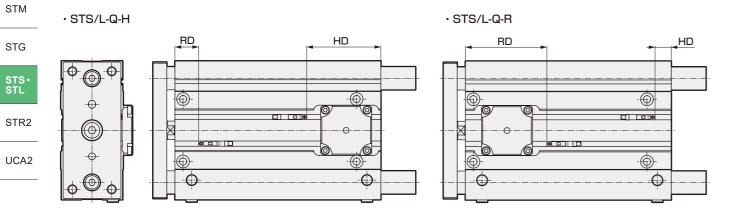
巻末

メンテナンス用部品については、CKD機器商品サイト (https://www.ckd.co.jp/kiki/jp/)→「形番」→ メンテナンス用部品 をご覧ください。

シリンダ スイッチ

CKD


CKD


スイッチ付外形寸法図

STS・STLシリーズ スイッチ付外形寸法図

● T0H/V,T5H/V,T2H/V,T2※R3,T3H/V,T3PH/V,T2WH/V,T3WH/V,T2WLH/V

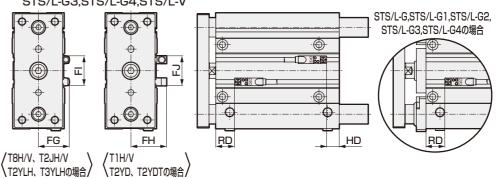
 $\cdot \texttt{STS/L}, \texttt{STS/L-P}, \texttt{STS/L-T2}, \texttt{STS/L-} \times \texttt{C}, \texttt{STS/L-C}, \texttt{STS/L-O}, \texttt{STS/L-G}, \texttt{STS/L-G}, \texttt{STS/L-V} \\$

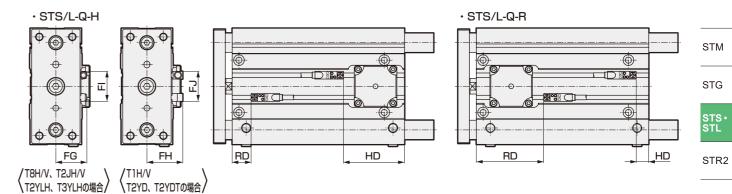
=3 P		S/L,-P F,-O,-G				STS	/L-C			STS/I	L-Q-H			STS/	L-Q-R	
記号	TO,T	5,T2,	T2W,	T3W,	TO,T	5,T2,	T2W,	T3W,	TO,T	5,T2,	T2W,	T3W,	TO,T	5,T2,	T2W,	T3W,
	T2%R3,	T3,T3P	T2	WL	T2%R3,	,T3,T3P	T2	WL	T2%R3,	T3,T3P	T2	WL	T2%R3,	T3,T3P	T2	WL
チューブ 内径(mm)	RD	HD	RD	HD	RD	HD	RD	HD	RD	HD	RD	HD	RD	HD	RD	HD
φ8	6.5	2.5	8.5	4.5	_	_	-	_	_	_	_	_	_	_	_	_
φ12	5	8.5	7	10.5	_	-	_	_	_	_	-	_	_	_	_	_
φ16	4	9.5	6	11.5	_	_	-	_	_	_	-	_	_	_	-	_
φ20	10.5	10.5	12.5	12.5	_	-	_	_	10.5	35.5	12.5	37.5	35.5	10.5	37.5	12.5
φ25	12.5	9	14.5	11	27.5	19	29.5	21	12.5	34	14.5	36	37.5	9	39.5	11
φ32	17	13	19	15	34	21	36	23	17	38	19	40	42	13	44	15
φ40	20.5	14	22.5	16	38	22	40	24	20.5	64	22.5	66	70.5	14	72.5	16
φ50	21.5	14.5	23.5	16.5	38	22.5	40	24.5	21.5	64.5	23.5	66.5	71.5	14.5	73.5	16.5
φ63	19.5	22.5	21.5	24.5	43.5	25.5	45.5	27.5	19.5	72.5	21.5	74.5	69.5	22.5	71.5	24.5
φ80	26	33.5	28	35.5	60	49.5	62	51.5	26	108.5	28	110.5	101	33.5	103	35.5
φ100	25	35	27	37	_	_	_	_	_	_	_	_	_	_	_	_

注:スイッチの搭載可否については、各バリエーションの形番表示方法をご参照ください。

ノリンダ

636


巻末


CKD

STS・STLシリーズ スイッチ付外形寸法図

■ T2JH/V,T2YLH,T3YLH,T8H/V,T1H/V,T2YD,T2YDT

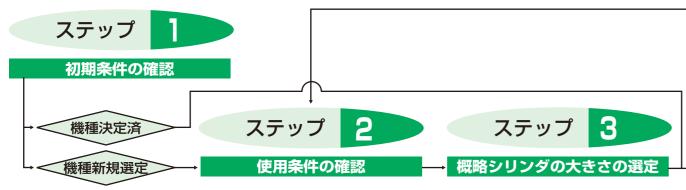
• STS/L,STS/L-P,STS/L-T2,STS/L-%C,STS/L-C,STS/L-Q-H,STS/L-Q-R,STS/L-F,STS/L-O,STS/L-G,STS/L-G1,STS/L-G2, STS/L-G3,STS/L-G4,STS/L-V

記号	_ =	515/L,-P,-12,-%U,-P,-U,-U,-U1,-U2,-U3,-U																		
			T2J,T2	PY,T3Y	T	8			T1,T2Y0	O,T2YDT			T2J,T2	PY,T3Y	T	8			T1,T2Y0	O,T2YDT
チューブ 内径(mm)	FG	FI	RD	HD	RD	HD	FH	FJ	RD	HD	FG	FI	RD	HD	RD	HD	FH	FJ	RD	HD
φ8	17.6	16	5.5	1.5	-注2	-注2	22.6	16	5.5	1.5	_	_	_	_	_	ı	_	_	_	_
φ12	18.8	16	4	7.5	-注2	-注2	23.8	16	4	7.5	_	_	_	_	_	_	_	_	_	_
φ16	20.8	16	3	8.5	-注2	-注2	25.8	16	3	8.5	_	_	_	_	_	_	_	_	_	_
φ20	24.3	16	9.5	9.5	4.5	4.5	29.3	16	9.5	9.5	_	_	_	_	_	_	_	_	_	_
φ25	26.3	17	11.5	8	6.5	3	31.3	17	11.5	8	26.3	17	26.5	18	21.5	13	31.3	17	26.5	18
φ32	28.8	24	16	12	11	7	33.8	24	16	12	28.8	24	33	19	28	14	33.8	24	33	19
φ40	32.3	31	19.5	13	14.5	8	37.3	31	19.5	13	32.3	31	37	21	32	16	37.3	31	37	21
φ50	38.3	32	20.5	13.5	15.5	8.5	43.3	32	20.5	13.5	38.3	32	37	21.5	32	16.5	43.3	32	37	21.5
φ63	44.8	32	18.5	21.5	13.5	16.5	49.8	32	18.5	21.5	44.8	32	42.5	24.5	37.5	19.5	49.8	32	42.5	24.5
φ80	55.3	32	25	32.5	20	27.5	60.3	32	25	32.5	55.3	32	59	48.5	54	43.5	60.3	32	59	48.5
φ100	65	32	24	34	19	29	70.9	32	24	34	_	_	_	_	_	-	_	_	_	_
					- T- 4															

		STS/L-Q-H 														
记号 -			T2J,T2	2Y,T3Y			T1,T2Y0	O,T2YDT			T2J,T2	2Y,T3Y			T1,T2Y	O,T2YD1
Fューブ 内径(mm)	FG	FI	RD	HD	FH	FJ	RD	HD	FG	FI	RD	HD	FH	FJ	RD	HD
φ8	-	-	-	-	-	-	-	_	_	-	_	_	_	_	_	_
φ12	_	-	_	-	-	_	_	_	_	_	-	_	_	_	_	_
φ16	-	-	_	_	-	-	_	_	-	-	_	_	_	-	_	_
φ20	24.3	16	9.5	34.5	29.3	16	9.5	34.5	24.3	16	34.5	9.5	29.3	16	34.5	9.5
φ25	26.3	17	11.5	33	31.3	17	11.5	33	26.3	17	36.5	8	31.3	17	36.5	8
φ32	28.8	24	16	37	33.8	24	16	37	28.8	24	41	12	33.8	24	41	12
φ40	32.3	31	19.5	63	37.3	31	19.5	63	32.3	31	69.5	13	37.3	31	69.5	13
φ50	38.3	32	20.5	63.5	43.3	32	20.5	63.5	38.3	32	70.5	13.5	43.3	32	70.5	13.5
φ63	44.8	32	18.5	71.5	49.8	32	18.5	71.5	44.8	32	68.5	21.5	49.8	32	68.5	21.5
φ80	55.3	32	25	107.5	60.3	32	25	107.5	55.3	32	100	32.5	60.3	32	100	32.5
φ100	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_

注1:スイッチの搭載可否については、各バリエーションの形番表示方法をご参照ください。

注2: STS/L-8~16、STS/L-P-8~16、STG-T2-12,16、STS/L-Q-20~80(R/H)、STS/L-F-8~16、STS/L-O-8~16はT8H/Vは搭載できません。


CKD

シリンダ スイッチ

UCA2

次ページへ

一般のエアシリンダとは選定条件が異なりますので選定ガイドによって適正の可否を確認してください。

使用条件の確認

1.使用圧力 P (MPa)

2.総負荷荷重 W (N)

〈総負荷荷重〉

STM

STS STL

総負荷荷重を決定する時に、シリンダ本体の ガイドロッド部の質量を考慮してください。 W=(負荷荷重)+(治具荷重)+ (ガイドロッド部自重力: Fa)の値です。 ガイドロッド部自重力計算式は表1のように なります。

表1 可動部自重力計算式

チューブ	Fa:可動部	自重力 (N)
内径	STS	STL
φ 8	(0.36) +0.004×ST	(0.43) +0.004×ST
φ12	(0.54) +0.008×ST	(0.69) +0.008×ST
φ16	(0.81) +0.012×ST	(1.10) +0.012×ST
φ20	(1.30) +0.030×ST	(2.00) +0.030×ST
φ25	(1.50) +0.033×ST	(2.20) +0.033×ST
φ32	(3.90) +0.065×ST	(5.80) +0.065×ST
φ40	(4.10) +0.065×ST	(6.10) +0.065×ST
φ50	(7.40) +0.101×ST	(11.2) +0.101×ST
φ63	(8.30) +0.101×ST	(12.1) +0.101×ST
φ80	(26.2) +0.234×ST	(40.6) +0.234×ST
φ100	(52.3) +0.248×ST	(65.8) +0.248×ST

st: ストローク (mm)

3.取付方向

〈作動方式〉

水平、垂直一上昇、垂直一下降

4.ストローク ST (mm)

5.作動時間 t (s)

6.作動速度 V (mm/s)

シリンダの平均作動速度Vaの計算式

Va=ST/t (mm/s)

ステップ 3 概略シリンダの大きさの選定

● シリンダの大きさ(内径)の計算式 $F = \pi/4 \times D^2 \times P$

 \therefore D= $\sqrt{4F/\pi}$ P

D: シリンダの内径 (mm) P:使用圧力 (MPa) F:シリンダの理論推力 (N)

● 表2の理論推力値から求める場合 概略の必要推力≥負荷荷重×2 (負荷荷重×2の×2は安全係数として負荷 率50%程度とした場合です)

〈例〉使用圧力 0.5(MPa) 負荷荷重 25(N)

必要推力は 25(N)×2=50(N) 表2より使用圧力0.5MPaにて理論推 力が50N以上のチューブ内径を選択 するとの12以上となります。

 $D = \phi 12$

〈シリンダの理論推力〉

表2 シリンダの理論推力表

理論抗	推力表 φ8、φ12	2	単位: N					
動作	圧力 MPa	チューブ	内径 mm					
動作方向	正/J IVIPa	φ8	φ12					
	0.15	7.5	17					
	0.2	10	22.6					
	0.3	15.1	33.9					
押	0.4	20	45.2					
押出し時	0.5	25.1	56.6					
時	0.6	30.1	67.8					
	0.7	35.2	79.1					
	0.8	40.2	90.4					
	0.9	45.2	101.8					
>*/ TIDE	シロートナー 40 C 🔊 こごた る キロフィジュー							

※理論推力表は485ページをご参照ください。

ステップ

総負荷荷重(W)、各モーメント値の算出

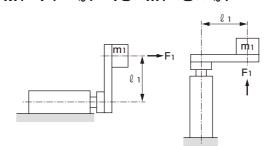
ステップ 4 総負荷荷重(W)、各モーメント値の算出

● 負荷のシリンダ取付状態により静負荷 (Wo)、モーメント(M) を計算します。

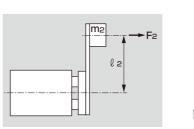
Wo=(負荷荷重)+(治具荷重) (N)

 $M_1 = F_1 \times \ell_1$ (N·m)

 $M_2=F_2\times \ell_2$ (N·m)

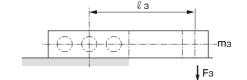

Мз=Fз× *ℓ* з (N·m)

F1、F2、F3の値は図2を使用


図2 各モーメントの計算式 総負荷荷重と慣性力係数、偏心距離より各 モーメントを算出する。

〈曲げモーメント〉

 $M_1=F_1\times \ell_1=10\times m_1\times G\times \ell_1$



〈横曲げモーメント〉 $M_2=F_2\times \ell_2=10\times m_2\times G\times \ell_2$

〈ねじりモーメント〉 $M3 = F3 \times \ell3 = 10 \times m3 \times \ell3$

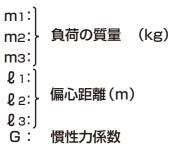
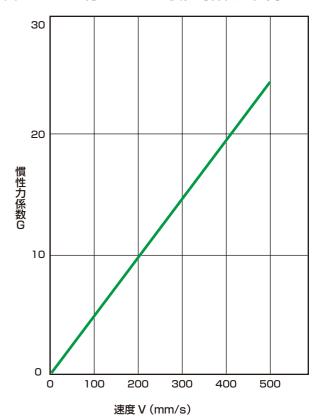



図3 ガイド付シリンダの慣性力係数の傾向

シリンダ スイッチ

STG

STR2

UCA2

巻末

638

STR2

UCA2

STM

STG

条件変更 1.負荷の再検討 2.使用空気圧力を高くする 1.外部に緩衝装置(ショックキラー)を設置

> 3.シリンダ内径をあげる ステップ

クッション能力の確認

3.シリンダ内径をより大きいものにする

条件変更

NG

OK

作動方向による荷重、モーメントの確認

5-1 総負荷荷重の確認

1 水平作動時

静負荷荷重が許容荷重値以下であること 静負荷荷重 Wo ステップ4で計算し

た値

ステップ

作動方向による荷重、モーメントの確認

許容横荷重 Wmax ストロークに応じ て表3またはグラ

フより選択

(中間ストロークの場合は長い方の標準 ストロークを選択) Wo≦Wmax

表3 許容橫荷重

単位:N

NG

					= 177 · 174
チューブ 内 径	形式	軸受の種類		STS	
(mm)			10	20	25
φ 8	ST ^S -M-8	すべり軸受	14	11	-
φ8	ST ^S -B-8	ころがり軸受	16	11	-
410	STL-M-12	すべり軸受	23	19	-
φ12	STL-B-12	ころがり軸受	30	21	-
416	ST ^S -M-16	すべり軸受	40	34	-
φ16	ST ^S -B-16	ころがり軸受	44	32	-
400	ST ^S -M-20	すべり軸受	-	-	48
φ20	ST ^S -B-20	ころがり軸受	-	-	45
405	ST ^S -M-25	すべり軸受	-	-	48
φ25	ST ^S -B-25	ころがり軸受	-	-	45
422	ST ^S -M-32	すべり軸受	-	-	141
φ32	ST ^S -B-32	ころがり軸受	-	-	49

※許容横荷重は648ページをご参照ください。 また、偏心荷重時は650ページ~653ページのグラフを ご参照ください。

2 垂直作動時

総負荷荷重が理論推力値に負荷率を考慮し た値であること

● 負荷率の計算

ステップ2で計算した値 総負荷荷重 W シリンダの理論推力 F 理論推力表485ページ

より圧力に応じて選択

 $\alpha = W/F \times 100(\%)$

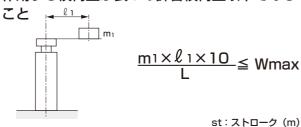

● 負荷率はシリンダの作動速度の安定性 余裕・寿命などを、利用状況を配慮して 決定します。一般的使用は表4の範囲が望

表4 負荷率の適性範囲(参考値)

ましい。

使用圧力(MPa)	負荷率 (%)
0.1~0.3	<i>α</i> ≦40
0.3~0.6	<i>α</i> ≦50
0.6~1.0	<i>α</i> ≦60

● 偏心荷重時、横荷重が作用します。 作用する横荷重が表3の許容横荷重以下である

			31 71 <u> </u>
チューブ内径	L	チューブ内径	L
φ8	0.015+st	φ32	0.022+st
φ12	0.015+st	φ40	0.022+st
φ16	0.016+st	φ50	0.025+st
φ20	0.016+st	φ63	0.025+st
φ25	0.016+st	φ80	0.046+st
		φ100	0.055+st

5-2 モーメントの確認

 曲げモーメント、横曲げモーメントを表 5の値で割り、モーメント率を求め、モーメ ント率の合計値が1.0以下であること

● モーメント率の計算

曲げモーメント Мı ステップ4で 計算した値 横曲げモーメント M2

 $M_1 / M_1 max + M_2 / M_2 max \le 1.0$

表5 モーメントの許容値

2.作動速度を下げる

(N	•	m	1)
•	ıvı			

選定完了

チューブ内径	許容曲げモーメントM1 max、M2 max
(mm)	(N • m)
φ8	4.1
φ12	6.1
φ16	19.3
φ20	32.6
φ25	48.5
φ32	107.4
φ40	107.4
φ50	201.7
φ63	201.7
φ80	726.0
φ100	726.0

ねじりモーメントが許容回転トルク以下で あること

ねじりモーメント M3 ステップ4で計算した値 許容回転トルク

M3max ストロークに応じて表6より選択 (中間ストロークの場合は長い方の標準ストロークを選択)

M₃ ≤ M₃max

表6 許容回転トルク

 $(N \cdot m)$

チューブ 内 径	形式	軸受の種類	STS				
(mm)			10	20	25		
φ 8	ST ^S -M-8	すべり軸受	0.14	0.11	-		
φ 8	ST ^S -B-8	ころがり軸受	0.16	0.11	-		
φ 12	STL-M-12	すべり軸受	0.24	0.19	-		
Ψ 12	ST _L -B-12	ころがり軸受	0.31	0.22	-		
φ 16	ST ^S -M-16	すべり軸受	0.46	0.39	-		
ψιο	STL-B-16	ころがり軸受	0.51	0.37	-		
φ 20	ST ^S -M-20	すべり軸受	-	-	0.71		
Ψ 20	ST ^S -B-20	ころがり軸受	-	-	1.19		
φ 25	ST ^S -M-25	すべり軸受	-	-	0.76		
Ψ 25	ST ^S -B-25	ころがり軸受	-	-	1.28		
4 22	ST ^S -M-32	すべり軸受	-	-	2.86		
φ 32	STL-B-32	ころがり軸受	-	-	0.99		
φ 40	ST ^S -M-40	すべり軸受	-	-	3.17		
φ 40	STL-B-40	ころがり軸受	-	-	1.10		
<i>φ</i> 50	ST ^S -M-50	すべり軸受	-	-	5.86		
φ 50	ST ^S -B-50	ST ^S -B-50 ころがり軸受		-	2.01		
<i>φ</i> 63	ST ^S -M-63	すべり軸受	-	-	6.60		
ψ 63	ST ^S -B-63	ころがり軸受	-	-	2.26		
φ 80	ST ^S -M-80	すべり軸受	-	-	13.95		
φ 80	ST ^S -B-80	ころがり軸受	-	-	8.48		
#100	ST ^S -M-100	すべり軸受	-	-	18.23		
φ100	ST ^S -B-100	ころがり軸受	-	-	11.07		

※許容回転トルクは648ページをご参照ください。

ステップ 6 クッション能力の確認

シリンダ自体の持つクッション能力により、 実際に使用する負荷の運動エネルギーを吸収で きるかどうかを確認します。

- シリンダの持つ許容吸収エネルギー (E1) は、シリンダ特有の値でSTS、 STLでは表7の値を使用します。
- ピストンの運動エネルギー(E2)の 計算式

 $E_2 = 1/2 \times W \times V^2 \times \frac{1}{10} \qquad (J)$

W: 総負荷荷重 (N) ステップ2で 計算した値

V: ピストンのクッション突入速度 (m/s) $V=ST/t\times (1+1.5\times\alpha/100)$

ST: ストローク (m)

t : 作動時間 (s)

α:負荷率 (%)

シリンダの許容吸収エネルギー

● シリンダのクッション機構による運動工 ネルギー吸収能力の値は、シリンダの内径 によって異なります。ガイド付シリンダは 表7の値で比較します。

表7 STS·STLの許容吸収エネルギー (E1)

チューブが経	Ī	午容吸収エネ							
(mm)	ゴムクッション	ゴムエアクッション	エアクッション	クッション無					
φ8	0.029	_	_	_					
φ12	0.056	_	_	0.004					
φ16	0.088	_	0.010						
φ20	20 0.157 — — —			0.016					
φ25	0.157	157 – 1.		0.021					
φ32	0.401	0.401	2.27	0.025					
φ40	0.627	0.627	3.05	0.092					
φ50	0.980	0.980	3.81	0.100					
φ63	1.560	1.560	15.64	0.120					
φ80	2.510	2.510	20.18	0.270					
φ100	3.920			0.560					

E1>E2

(許容吸収エネルギー) > (ピストンの運動エネルギー)

選定完了

E1<E2

(許容吸収エネルギー) < (ピストンの運動エネルギー)

スイッチ

CKD

CKD

641

STM

STG

STS STL

STR2

UCA2

STS Series

技術資料・シリンダ質量

● ショートストローク 単位:g ストロークOmm時の質量 St=25mm当りの加算質量 チューブ内径 機種シリーズ 軸受形式 シリンダ本体 (mm) М 102 φ 8 62 29 ● 標準片ロッド形 В 89 STS-^M_B М 151 φ12 27 76 37 ● 低速形 154 В STS-⊮O M 225 *φ*16 37 104 47 В 229 ● 耐食形 STS-M-M·M1 M 483 φ20 72 200 150 363 ● 耐熱形 В STS-NT М 534 φ25 78 169 219 753ページの R 415 ● パッキンフッ素ゴム スイッチ仕様 STS-_BT2 М 924 φ32 162 451 に記載の質量 231 В 804 ● ゴムエアクッション形 をご参照くだ STS-N-%C М 1333 さい。 φ40 195 543 283 В 1214 ● 微速形 STS-MF M 2026 **φ50** 415 1158 428 В 1915 M 2803 1478 557 φ63 530 В 2569 М 6435 1265 φ80 1335 3720 В 5876 1150 М 10850 1933 φ100 2685 7491 В 9934 1817 М 260 **ø** 8 22 33 62 В 243 М 340 ø12 27 76 45 B M 333 462 *φ*16 37 104 59 В 454 742 M ø20 72 200 210 В 602 753ページの М 836 スイッチ仕様 φ25 78 219 229 В 697 ● ストローク調整形 に記載の質量 M 1499 STS-^MP φ32 162 451 をご参照くだ 335 1331 В さい。 M 2006 **640** 195 543 407 В 1841 M 3323 φ50 415 1158 620 В 3106 M 4458 φ63 749 530 1478 В 4118 1755 M 9505 3720 **φ80** 1335 В 8776 1526 М 680 φ20 72 200 150 560 M 767 φ25 78 219 169 В 648 1235 φ32 162 451 231 753ページの В 1115 スイッチ仕様 ● 落下防止形 M 2183 543 φ40 195 283 に記載の質量 STS-MQ-H (ヘッド側落下防止付) В 2064 をご参照くだ 3305 M さい。 φ50 415 1158 428 B 3194 М 4554 φ63 530 1478 557 4320 В 1265 М 11583 3720 φ80 1335 В 10679 1150 М 666 **ø20** 72 200 150 В 546 749 М ø25 78 219 169 630 М 1221 φ32 162 451 231 753ページの В 1101 スイッチ仕様 ● 落下防止形 М 2126 **φ40** 543 に記載の質量 283 195 STS-MQ-R (ロッド側落下防止付) В 2007 をご参照くだ М 3214 1158 さい。 φ50 415 428 В 3103 М 4434 **ø**63 530 1478 557 В 4200 11340 1265 М

1335

10436

3720

1150

● ショートストローク

● バルブ搭載形

STS-MV 3S (バルブ側面付)

単位:g ストロークOmm時の質量 チューブ内径 エンドプレート スイッチ1個当りの質量 St=25mm当りの加算質量 機種シリーズ シリンダ本体 (mm) (グロメット) М 572 φ20 72 200 150 В 452 M 630 **#**25 78 219 169 ● コイルスクレーパ形 В 511 STS-⊮G1 M 1083 **ø32** 162 451 231 753ページの ● 強力スクレーパ形 В 963 スイッチ仕様 STS-⊮G М 1667 *φ*40 195 543 に記載の質量 283 ● 耐切削油形 В 1548 をご参照くだ STS-⊮G2、G3 М 2299 さい。 φ50 415 1158 428 2188 ● スパッタ付着防止形 В STS-MG4 М 3125 φ63 530 1478 557 В 2891 М 6861 1265 **ø**80 1335 3720 В 6302 1150 М 668 **#20** 72 200 150 В 548 M 719 ø25 78 219 169 В 600 STM 753ページの М 1136 **φ32** 162 451 スイッチ仕様 231 ● バルブ搭載形 В 1016 に記載の質量 STG STS-MV2 (バルブ正面付) M 1648 をご参照くだ *φ*40 195 543 283 В 1529 さい。 М 2428 *φ*50 415 1158 428 В 2317 M 3205 φ63 530 1478 557 В 2971 STR2 M 663 **#20** 72 200 150 В 543 M 714 φ25 78 219 169 UCA2 В 595 753ページの

1104

684

1651

1532

2344

2233

3121

2887

162

195

45

530

451

543

1158

1478

スイッチ仕様

に記載の質量

をご参照くだ

さい。

231

283

428

557

注:スイッチリード線長さ3m、5mのスイッチ質量につきましては、753ページをご参照ください。

φ32

*φ*40

φ50

ø63

M

В

M

В

M

В

M

В

スイッチ

巻末

680

スイッチ

STM

STG

STS ·

STR2

UCA2

シリンダ スイッチ

巻末

644

STL Series

技術資料・シリンダ質量

技術資料・シリンダ質量

● ロングストローク 単位:g ストロークOmm時の質量 チューブ内径 エンドプレート スイッチ1個当りの質量 St=25mm当りの加算質量 標準形 | 鋼 (グロメット) 機種シリーズ 軸受形式 シリンダ本体 (mm) M 103 φ 8 22 62 73 ● 標準片ロッド形 В 99 STL-^M M 159 φ12 91 27 76 ● 低速形 В 173 STL-^MO 232 265 M φ16 104 119 37 В ● 耐食形 STL-^M-M⋅M1 M 890 72 ø20 200 150 В 751 ● 耐熱形 STL-[™]T М 979 78 φ25 219 169 753ページの 840 ● パッキンフッ素ゴム B スイッチ仕様 STL-[™]T2 М 1705 φ32 162 451 に記載の質量 231 1520 ● ゴムエアクッション形 В をご参照くだ STL-^M-%C M 2218 さい。 φ40 195 543 283 В 2033 ● 微速形 STL-^MF М 3587 φ50 1158 415 428 В 3228 М 4501 **φ63** 530 1478 557 В 4142 1265 М 10337 φ80 1335 3720 В 9341 1150 М 16649 1933 φ100 2685 7491 15385 В 1817 М 261 φ **8** 22 84 62 В 253 М 348 φ12 27 76 111 В 352 M 469 *φ*16 37 104 150 В 490 1149 M 72 210 φ20 200 В 990 753ページの М 1281 φ25 78 219 スイッチ仕様 229 ● ストローク調整形 В 1122 に記載の質量 STL-^MP M 2280 φ32 162 451 をご参照くだ 335 В 2049 さい。 M 2891 407 φ40 195 543 В 2658 M 4884 φ50 415 1158 620 В 4419 M 6156 φ63 530 1478 749 В 5691 1755 M 12035 1335 3720 φ80 В 11191 1526 M 1087 φ20 72 200 150 948 М 1212 78 169 φ25 219 В 1073 2016 φ32 162 451 753ページの 231 В 1831 スイッチ仕様 ● 落下防止形 М 3068 φ40 195 543 に記載の質量 283 STL-MQ-H(ヘッド側落下防止付) В 2883 をご参照くだ М 4866 φ50 さい。 428 415 1158 В 4507 М 6252 φ63 530 1478 557 В 5893 1265 15485 M φ80 1335 3720 14144 В 1150 М 1073 ø20 72 200 150 В 934 М 1194 φ25 78 219 169 1056 М 2002 φ32 162 451 231 753ページの В 1867 スイッチ仕様 ● 落下防止形 М 3011 φ40 195 543 283 に記載の質量 STL-MQ-R (ロッド側落下防止付) В 2826 をご参照くだ М 4775 さい。 φ50 415 1158 428 В 4416 6132 M φ63 1478 557 530 5773 В M 15242 1265 φ80 1335 3720

13401

1150

● ロングストローク							単位:g		
	エー づめ辺		ス	トローク0	mm時の質	量			
機種シリーズ	チューブ内径	軸受形式	2.112. All and a second	エンド	プレート	スイッチ1個当りの質量	St=25mm当りの加算質量		
	(mm)		シリンダ本体	標準形	細	(グロメット)			
	φ20	M B	979 840	72	200		150		
		M	1075	70	010	1	100		
● コイルスクレーパ形	φ25	В	936	78	219		169		
STL-MG1 ● 強力スクレーパ形	φ32	M B	1864 1679	162	451	753ページの	231		
STL-MG ● 耐切削油形	φ40	M B	2552 2367	195	543	スイッチ仕様 に記載の質量	283		
STL-⊮G2、G3	φ50	М	3860	415	1158	- をご参照くだ さい。	428	ガイ	
● スパッタ付着防止形 STL- ^M G4	φ63	B M	3501 4823	530	1478	_	557	ガイド付	
	Ψ03	В	4464 10763	330	1470	1			
	φ80	M B	9767	1335	3720		1265 1150		
	φ20	M B	1075 936	72	200		150		
	φ25	M B	1164 1025	78	219		169		
		M	1917			753ページの		STM	
● バルブ搭載形	φ32	В	1732	162	451	スイッチ仕様 に記載の質量	231		
STL-mV 2 (バルブ正面付)	φ40	M B	2533 2348	195	543	をご参照くだったい。	283	STG	
	φ50	M B	3989 3630	415	1158	2010	428	STS.	
	φ63	M B	4903 4544	530	1478		557	SIL	
	φ20	М	1070	72	200		150	STR2	
	φ25	B M	931 1159	78	219	_	169	UCA2	
		B M	1020 1885			753ページの			
● バルブ搭載形	φ32	В	1700	162	451	スイッチ仕様に記載の質量	231		
STL-MV2S (バルブ側面付)	φ40	M B	2536 2351	195	543	ここ戦の員里 をご参照くだ さい。	283		
	φ50	M B	3905 3546	415	1158	2010	428		
	φ63	M B	4819 4460	530	1478		557		
		<u>B</u>	4460						

シリンダ スイッチ

巻末

CKD

無負荷時のエンドプレート先端に生ずる傾き量は、下記グラフの値が目安となります。

STS-B

±0.7

±0.6

±0.5

Ě ±0.4

量 δ_{±0.3}

, mm ±0.2

±0.1

STS-B

+10

±0.9

±0.8

±0.7

<u>傾</u> ±0.6

量±0.5

←±0.4

±0.2

±0.1

STS-B

±1.0 ±0.9

±0.8

±0.7

傾 ±0.6

量 ±0.5

←±0.4

±0.3

±0.2

±0.1

φ100°

ストローク (mm)

25 50

ストローク (mm)

■ロッド出端

 $+\delta$ (mm)

-δ (mm)

STL-B

±0.7

±0.6

±0.5

傾 き ±0.4

量 δ ±0.3

´±0.2

±0.1

STL-B

±1.0

±0.9

±0.8

±0.7

傾 ±0.6 き ±0.5

~±0.4

±0.3

±0.2

±0.1

STL-B

±1.0

±0.9

±0.8

±0.7

傾 + ±0.6

量 δ ±0.5

⊕±0.4 ±0.3

±0.2

±0.1

50

φ 20 ~ φ 80 ころがり軸受

φ20,25

′±0.3 |ø32~63-

ストローク (mm)

φ 100 ころがり軸受

Ω

75 100 125 150 175 200

ストローク (mm)

 ϕ 20, 25

\$32¹~63

50 100 150 200 250 300 350 400

ストローク (mm)

φ 100

50 100 150 200 250 300 350 400

ストローク (mm)

φ8~φ16 ころがり軸受

(ガイドロッドのたわみ量は除く)

φ12

50 75 100 125 150 175 200

φ20, 25

φ80, φ100

φ32, 40

50 100 150 200 250 300 350 400

ストローク (mm)

φ50, 63

ストローク (mm)

技術資料 ②振れ精度

振れ精度

φ8~φ16 すべり軸受

φ8

50

STL-M

±0.7

±0.6

±0.5

傾 き ±0.4

量 ・ る _{±0.3}

4 mm ±0.2

±0.1

STL-M

±1.0

±0.9

±0.8

±0.7

傾 ±0.6

量 ±0.5

_____±0.4

±0.3

±0.2

±0.1

0

STS-M

±0.7

±0.6

±0.5

傾 き ±0.4

 $\delta_{\pm 0.3}$

±0.2

±0.1

+10

±0.9

±0.8

±0.7

±0.2

±0.1

ストローク (mm)

媑±0.6

ストローク (mm)

φ20~φ100 すべり軸受

φ<u>20</u>~100

 $\widehat{\text{mm}}$

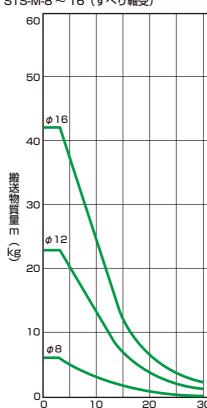
STM

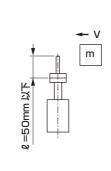
STG

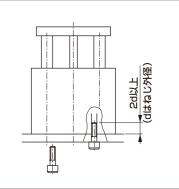
STS ·

STR2

UCA2 STS-M


STS·STL Series


技術資料・日ストッパとしての使用範囲


ストッパとして使用する場合の使用範囲

衝撃荷重

STS-M-8~16 (すべり軸受)

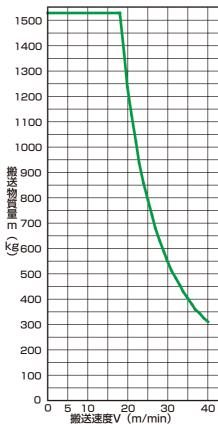
使用上の注意事項

注1: ストッパとして使用する際 50 ストローク以下 (STS-M) の 機種をご選定ください。(ϕ 8~ ϕ 16は30ストローク以下)

注2:ストッパ部の全長は &=50mm以下としてください。


注3:シリンダ本体の固定の際、ボルトのねじ込み深さを 2d 以上と し、ゆるみ防止(接着剤、ばね座金等)対策を考慮してください。 $(\phi 80, \phi 100$ はねじ込み深さ 1d とします。d はねじ外径)

注4:STS-B (ころがり軸受) はストッパとして使用できません。


衝撃荷重

STS-M-20~80 (すべり軸受)

搬送速度V (m/min)

巻末

巻末

CKD

量 ±0.5 _____±0.4

STM

STG

STR2

UCA2

シリンダ スイッチ

646

CKD

技術資料 (4) 許容博荷重 / 許容回転トルク / 不回転精度

STS · STL Series

15

11

15

11

54

19

54

19

89 34

89

34

73

196

350 | 375 | 400

14

10

14

10

51

18

51

18

85

31

85

31

187

69

単位:N

14

9

14

9

48

16

48

16

81

29

81 29

179

64

単位:N·m

STM

STG

STR2

UCA2

技術資料 4 許容横荷重 / 許容回転トルク / 不回転精度

ストローク (mm)

許容橫荷重

横荷重:F

許容回転トルク

トルク: T (N·m)

 $| \oplus - \phi - \oplus |$

STM

STS STL

STR2

STG

UCA2

チューフ内径		軸受の種類				Sī	rs												,	STL			
(mm)			10	20	25	30	40	50	75	100	50	75	100	125	150	175	200	225	250	275	300	325	3
φ 8	ST ^s -M-8	すべり軸受	14	11	-	9	8	7	-	- 1	12	9	7	6	5	5	4	-	-	-	-	-	
φ 8	ST ^s -B-8	ころがり軸受	16	11	-	8	7	6	-	- 1	16	11	9	7	5	4	4	-	-	-	-	-	
4 10	ST ^s -M-12	すべり軸受	23	19	-	16	14	12	-	-	20	16	13	11	10	9	8	-	-	-	-	-	
φ 12	ST ^S -B-12	ころがり軸受	30	21	-	16	13	11	-	-	23	16	13	10	8	7	6	-	-	-	-	-	
	ST ^s -M-16	すべり軸受	40	34	-	29	25	22	-	- 1	35	29	24	21	19	17	15	-	-	-	-	-	
φ 16	ST _L S-B-16	ころがり軸受	44	32	-	25	21	18	-	- 1	34	25	19	16	13	11	10	-	-	-	-	-	П
4 00	ST ^s -M-20	すべり軸受	-	-	48	-	-	35	-	- 1	54	45	38	33	30	27	24	22	20	19	17	16	
φ 20	ST ^s -B-20	ころがり軸受	-	-	45	-	-	29	-	-	68	50	39	32	27	23	20	18	16	14	13	12	
4 05	ST ^s -M-25	すべり軸受	-	-	48	-	-	35	-	- 1	54	45	38	33	30	27	24	22	20	19	17	16	
φ 25	ST ^S -B-25	ころがり軸受	-	-	45	-	-	29	-	- 1	68	50	39	32	27	23	20	18	16	14	13	12	
4 00	ST ^s -M-32	すべり軸受	-	-	141	-	-	109	-	-	161	138	121	108	97	88	81	75	69	65	61	57	
φ 32	ST _L -B-32	ころがり軸受	-	-	49	-	-	33	-	-	100	76	62	51	44	38	34	30	27	25	22	21	
4 40	ST ^s -M-40	すべり軸受	-	-	141	-	-	109	-	- 1	161	138	121	108	97	88	81	75	69	65	61	57	
φ 40	ST _L -B-40	ころがり軸受	-	-	49	-	-	33	-	- 1	100	76	62	51	44	38	34	30	27	25	22	21	
4 50	ST ^s -M-50	すべり軸受	-	-	213	-	-	170	-	-	243	213	189	170	155	142	131	121	113	106	100	94	
φ 50	ST _L -B-50	ころがり軸受	-	-	73	-	-	50	-	-	161	126	103	87	75	66	58	52	47	43	40	36	
4 60	ST ^S -M-63	すべり軸受	-	-	213	-	-	170	-	- 1	243	213	189	170	155	142	131	121	113	106	100	94	П
φ 63	ST _L S-B-63	ころがり軸受	-	-	73	-	-	50	-	- 1	161	126	103	87	75	66	58	52	47	43	40	36	П
4 00	ST _L -M-80	すべり軸受	-	-	372	-	-	316	275	243	-	402	367	338	312	291	272	255	241	228	216	205	
φ 80	ST _L -B-80	ころがり軸受	-	-	226	-	-	165	133	112	-	235	197	170	149	133	120	109	99	91	85	79	
4100	ST _L -M-100	すべり軸受	-	-	372	-	-	316	275	243	-	402	367	338	312	291	272	-	-	-	-	-	
φ100	ST ^S -B-100	ころがり軸受	-	-	226	-	-	165	133	112	-	235	197	170	149	133	120	-	-	-	-	-	Г

注1:荷重をかけ作動させる時の許容横荷重は、下記2式より算出してください。 (耐蝕形) カタログ許容構荷重値×0.6 〔上記以外のオプションバリエーション〕 カタログ許容横荷重値×0.9

2:設計の際は使用条件に合わせて安全率を考慮してください。

単位:N·m

単位:N

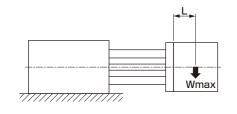
ストローク (mm) チューブ内径 STL 形番 軸受の種類 STS (mm) 375 400 25 | 30 | 40 | 50 | 75 | 100 50 100 | 125 | 150 | 175 200 225 250 275 | 300 | 325 | 350 10 | 20 | 75 ST^s-M-8 すべり軸受 0.14 | 0.11 0.09 | 0.08 | 0.07 0.12 0.09 0.07 0.06 0.05 0.05 0.04 φ 8 ST_L-B-8 ころがり軸受 0.16 0.11 0.08 | 0.07 | 0.06 0.16 0.11 0.08 0.07 0.05 0.04 0.04 ST_L-M-12 すべり軸受 0.24 0.19 | 0.16 | 0.14 | 0.12| 0.21 0.16 0.13 0.11 0.10 0.09 0.08 φ 12 | ころがり軸受 | 0.31 | 0.22 ST_L-B-12 0.16 | 0.13 | 0.11 0.24 0.16 0.13 0.10 0.08 0.07 0.06 すべり軸受 ST^s-M-16 0.17 0.46 | 0.39 | 0.33 | 0.29 | 0.25 0.40 0.33 0.28 0.24 0.22 0.20 φ 16 ST^s-B-16 ころがり軸受 0.15 0.51 | 0.37 0.29 | 0.24 0.21 0.39 0.29 0.22 0.18 0.13 0.12 0.66 ST^s-M-20 すべり軸受 0.71 0.52 0.80 0.56 0.35 0.32 0.21 0.49 0.44 0.40 0.30 0.28 0.25 0.24 | 0.22 0.21 φ 20 STL-B-20 ころがり軸受 1.19 1.00 0.74 0.30 0.27 0.21 0.80 0.58 0.47 0.40 0.34 0.24 0.19 | 0.18 | 0.16 0.15 0.13 ST_L-M-25 すべり軸受 0.76 0.55 0.85 0.71 0.60 0.52 0.38 0.35 0.32 0.30 0.27 0.47 0.43 0.25 0.24 0.22 0.22 ST^S-B-25 ころがり軸受 1.28 0.85 0.79 0.61 0.50 0.43 0.36 0.32 0.28 0.25 0.22 0.20 | 0.19 | 0.17 0.16 0.14 ST_L-M-32 すべり軸受 2.86 2.21 2.79 2.45 2.19 1.96 1.64 | 1.52 1.40 1.32 1.24 | 1.15 1.09 1.03 0.97 3.26 1.78 φ 32 ST^S-B-32 | ころがり軸受 0.99 0.67 2.03 1.54 | 1.26 | 1.03 0.89 0.77 0.69 | 0.61 0.55 0.51 0.45 | 0.43 | 0.38 | 0.36 0.32 ST^S-M-40 すべり軸受 3.17 2.45 3.62 3.11 2.72 2.43 2.18 1.98 1.82 | 1.69 1.55 1.46 1.37 | 1.28 | 1.22 1.15 1.08 ϕ 40 ST^S-B-40 ころがり軸受 0.74 1.10 -2 25 171 1 40 1.15 0.99 0.86 0.77 0.68 0.61 0.56 $0.50 \mid 0.47$ 0.43041 0.364.68 ST^S-M-50 すべり軸受 5.86 6 68 5.20 3.60 | 3.33 2.92 2.59 2.45 234 2.23 5.86 4.68 4.26 3.91 3.11 2.75 ϕ 50 2.06 1.60 1.43 ST₁-B-50 2.01 1.38 4.43 1.82 1.29 1.18 1.10 0.99 0.94 0.85 0.80 ころがり軸受 3.47 2.83 2.39 ST^S-M-63 すべり軸受 6.60 5.27 7.53 6.60 5.86 5.27 4.81 4.40 4.06 3.75 3.50 3.29 3.10 2.91 2.76 2.64 2.51 φ 63 1.55 ST^s-B-63 ころがり軸受 2.26 4.99 3.91 3.19 2.70 2.33 2.05 1.80 1.61 1.46 1.33 1.24 1.12 1.05 0.96 0.90 13.95 11.85 10.31 9.11 12.68 | 11.70 | 10.91 10.20 9.56 9.04 7.01 6.71 ST^s-M-80 すべり軸受 15.08 | 13.76 8.55 8.10 7.69 7.35 ST_L-B-80 8.48 -6.19 4.99 4.20 7.39 6.38 4.99 4.50 4.09 3.71 3.41 2.96 2.74 2.59 2.40 ころがり軸受 -8.81 5.59 3.19 ST^S-M-100 すべり軸受 18.23 15.48 13.48 11.91 19.70 | 17.98 16.56 | 15.29 | 14.26 | 13.33 φ100 ST^S-B-100 ころがり軸受 - 8.09 6.52 5.49 - |11.07 - | | 11.52 | 9.65 | 8.33 | 7.30 | 6.52 | 5.88

不回転精度

項目								
チューブ内径(mm)	すべり軸受	ころがり軸受						
φ 8	±0.09							
φ 12		±0.06						
φ 16	±0.10							
φ 20	10.10	±0.08						
φ 25		±0.06						
φ 32	±0.08	±0.04						
φ 40	±0.07	±0.04						
φ 50	±0.07	±0.03						
φ 63	±0.06	±0.03						
φ 80	±0.05	±0.03						
<i>φ</i> 100	±0.05	±0.03						

(PULL時 初期値)注:ガイドロッドのたわみ量は除く

CKD


CKD

スイッチ

648

■ ショートストローク

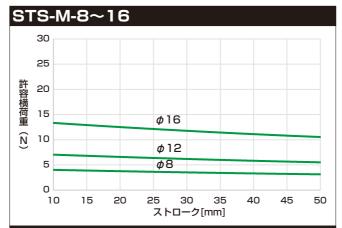
許容横荷重 すべり軸受

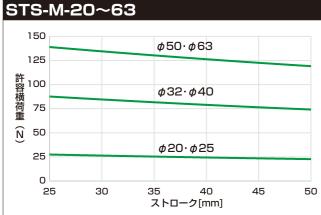
Wmax:横荷重(N) : 負荷の重心位置 (mm)

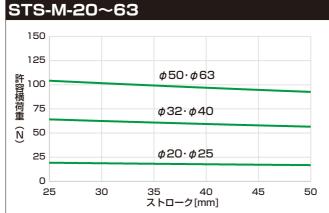
●L=50mmの場合

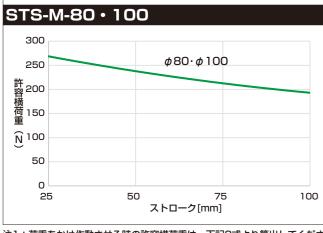
STM

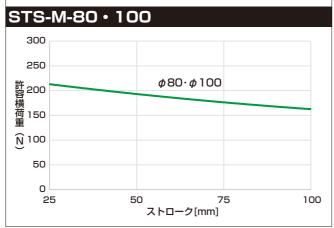
STG

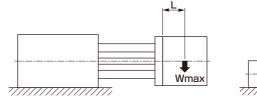

STS. STL


STR2


UCA2


STS-M-8~16 25 20 *φ*16 15 φ12 \widehat{N} φ8 10 15 25 30 35 40 45 ストローク[mm]


●L=100mmの場合

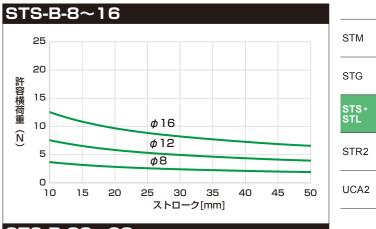


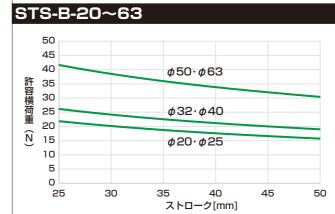
注1:荷重をかけ作動させる時の許容横荷重は、下記2式より算出してください。 〔耐蝕形〕カタログ許容横荷重値×0.6

(上記以外のオプションバリエーション) カタログ許容横荷重値×0.9 2:設計の際は使用条件に合わせて安全率を考慮してください。

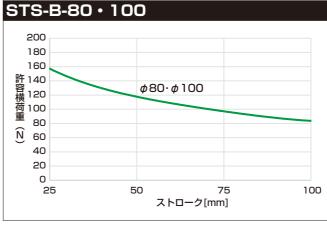
■ ショートストローク

許容横荷重 ころがり軸受




Wmax:横荷重(N) : 負荷の重心位置 (mm)

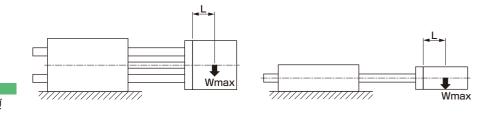
●L=50mmの場合



●L=100mmの場合

STS-B-80 • 100 200 180 160 許 140 容 横 120 φ80·φ100 荷 100 重 80 Ñ 60 40 20 75 100 ストローク[mm]

注1:荷重をかけ作動させる時の許容横荷重は、下記2式より算出してください。 〔耐蝕形〕カタログ許容横荷重値×0.6


(上記以外のオプションバリエーション) カタログ許容横荷重値×0.9 2:設計の際は使用条件に合わせて安全率を考慮してください。

シリンダ スイッチ

巻末

■ ロングストローク

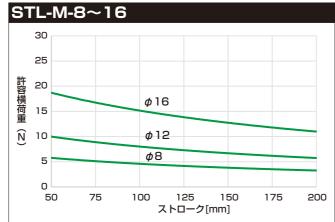
許容横荷重 すべり軸受

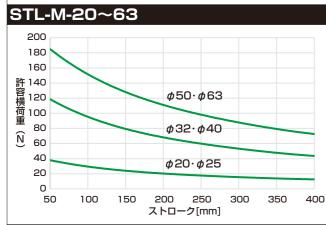
Wmax:横荷重(N) : 負荷の重心位置 (mm)

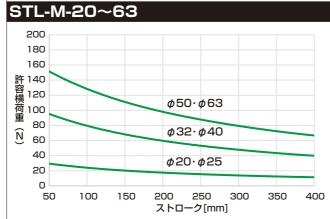
●L=50mmの場合

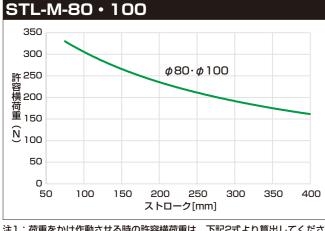
STM

STG

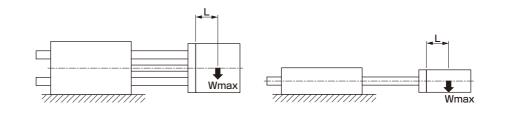

STS ·


STR2


UCA2

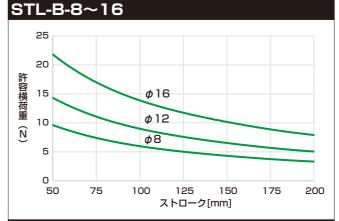


●L=100mmの場合

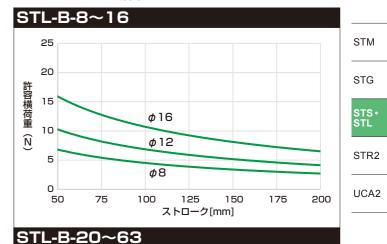

STL-M-80 • 100 300 許 250 φ80·φ100 容 横 200 荷 重 150 <u>N</u> 100 50 0 100 150 200 250 300 350 400 50 ストローク[mm]

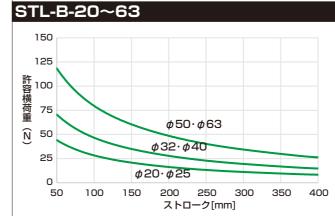
注1:荷重をかけ作動させる時の許容横荷重は、下記2式より算出してください。 〔耐蝕形〕カタログ許容横荷重値×0.6

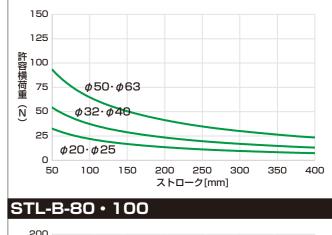
(上記以外のオプションバリエーション) カタログ許容横荷重値×0.9 2:設計の際は使用条件に合わせて安全率を考慮してください。

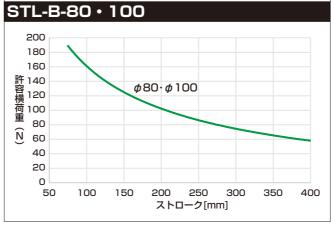

■ ロングストローク

許容横荷重 ころがり軸受




Wmax:横荷重(N) : 負荷の重心位置 (mm)


●L=50mmの場合



●L=100mmの場合

200 180 160 許 140 容 120 荷 100 重 80 φ80·φ100 80 Ñ 60 40 20 0 100 150 200 250 300 350 400 50 ストローク[mm]

注1:荷重をかけ作動させる時の許容横荷重は、下記2式より算出してください。 〔耐蝕形〕カタログ許容横荷重値×0.6 〔上記以外のオプションバリエーション〕 カタログ許容横荷重値×0.9

2:設計の際は使用条件に合わせて安全率を考慮してください。

シリンダ スイッチ

巻末

CKD

STS·STL Series

カスタム品

■ ポート対称形(-O)

内容:標準とのポート位置と反対側にポートを設けます。

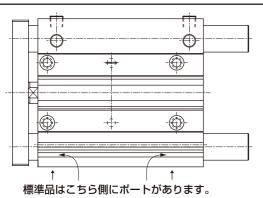
形番表示方法

※オプション記号の直後にハイフンを付けずに表示

機種形番

STS/Lシリーズの形番表示方法をご覧ください。

外 形 図


STM

STG

STS. STL

STR2

UCA2

MEMO

STS.

STR2

UCA2

シリンダ スイッチ

巻末

654

CKD

CKD

巻末

シリンダ スイッチ

655

本製品を安全にご使用いただくために

で使用になる前に必ずお読みください。 シリンダー般については巻頭41ページを、シリンダスイッチについては808ページをご確認ください。

個別注意事項:ガイド付シリンダ STS・STL シリーズ

設計・選定時

1. 共通

▲注意

■ すべり軸受タイプでストロークが長く低速で使用さ れる場合に、負荷条件によってはスティックスリッ プが発生する可能性があります。この場合、ころが り軸受タイプをご使用ください。

2. ゴムエアクッション付 STS・STL-№-%C

▲注意

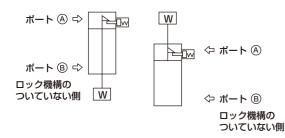
STM

STG

STS STL

STR2

UCA2


■構造上、エアの供給がきれますとストロークエンド 位置を保持できませんのでご注意ください。

ストロークエンドをスイッチにより検出する際には 検出範囲から外れる場合がありますのでスイッチの 位置設定はエア加圧状態で行ってください。

3. 落下防止形 STS・STL-₩Q

▲警告

■ロック状態で、両側ポート無加圧状態からポートA に圧力を供給するとロックが解除しなかったり、突 然ロックが解除しピストンロッドが飛び出す場合が あり大変危険です。ロック機構を解除するときは必 ずポート®に圧力を供給し、ロック機構に負荷がか からない状態から解除してください。

■急速排気弁で下降速度を速くした使用方法では、 ロックピンの作動よりもシリンダ本体の動き出しが 早く、正常な解除ができない場合があります。落下 防止形シリンダには、急速排気弁を使用しないでく ださい。

■3ポジションのバルブは使用しないでください。 3ポジション(特にクローズドセンターメタルシールタイプ) のバルブと組合せて使用しないでください。ロック機構の付 いている側のポートに圧力が封じ込められますとロックがか かりません。また、一旦ロックしてもバルブから漏れた空気 がシリンダに入り、時間がたつとロックが解除されてしまう

▲注意

- ■シリンダの負荷率は50%以下としてください。 負荷率が高いとロックが解除されなかったり、ロック部の破 損につながることがあります。
- ■ロック機構側に背圧がかかるとロックが外れる場合 がありますので、バルブは単体、またはマニホール ドの個別排気形をご使用ください。
- ■複数のシリンダを同期させて使用しないでください。 2本以上の落下防止形シリンダを同期させて1つのワークを 動かす使用方法はしないでください。どれか1本のシリンダ のロックが解除できなくなることがあります。

4. 微速形(STS・STL-☆F)

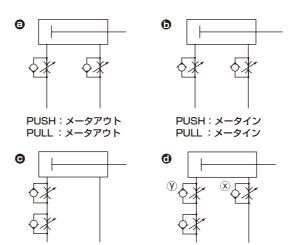
▲注意

■無給油でご使用ください。 給油しますと特性が変化する場合があります。

■スピードコントローラはシリンダの近くに組込みく ださい。

シリンダから離れたところに組込むと、速度が不安定になり ます。

スピードコントローラはSC-M3/M5、SC3W、SCD-M3/ M5、SC3Uシリーズを推奨します。


■ 一般にエアー圧力が高い程、負荷率が低いほど速度 が安定します

負荷率は50%以下でご使用ください。

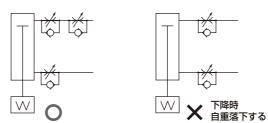
■シリンダに横荷重はかけないでください。 また、摺動案内はこじれがないように設置ください。 負荷の変動、抵抗の変動がありますと作動が不安定になりま す。静摩擦と動摩擦の差の大きい案内(ガイド)は、作動が不 安定になります。

■振動のある場所でのご使用は避けてください。 振動の影響を受けて、作動が不安定となります。

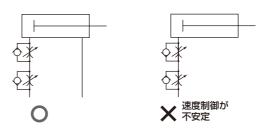
■メータアウト回路で速度制御を行なうと安定します。 片ロッドシリンダで作動方向がPUSH時にて微速駆動する場 合、負荷抵抗が小さいと作動開始時に飛び出し現象が発生し ます。対策としては⑥、⑥、⑥の回路にしてください。なお、 ●回路が最も安定します。

●回路のPUSH作動の速度調整方法:

- 1. xスピードコントローラでの速度設定
- 2. yスピードコントローラで飛び出しがなくなるまで絞る。 3. 速度の再確認


PUSH:メータインアウト

PULL:メータアウト


PUSH: メータイン

PULL:メータアウト

- (注1) 6 @ 6 を比較しますと 6 回路が最も作動が安定します。
- (注2) 垂直取付の場合はメータイン回路では自重落下しますの で、メータアウト回路を組合せてください。

(注3) スピードコントローラの直列接続は下図の回路としてくだ さい。

(飛び出し発生の目安)

- 以下の場合に飛び出しが発生します。
- ・推力>抵抗
- ※抵抗:排気側の残圧による推力 | 水平使用の場合:負荷による摩擦力 (微速形では吸気圧=残圧) | 垂直使用の場合:負荷の自重 (微速形では吸気圧=残圧)

5. 耐切削油形 STS・STL-NG 3

▲注意

- ■ピストンロッドへの偏荷重はかけないでくださ い。スクレーパや軸受の寿命を低下させる恐れが あります。
- ■ピストンロッドに切削油や水の飛散がない場合は、 G、G1シリーズをご使用ください。

G2、G3シリーズで切削油や水の飛散がない場合、ピストン ロッドの潤滑が切れて寿命を低下させるため、ご注意くだ

■シリンダには、スピードコントローラを取付けてく ださい。

シリンダには、スピードコントローラを取付けてください。 各シリンダの使用ピストン速度範囲内でご使用ください。

6. スパッタ付着防止形 STS・STL-₩G4

▲注意

■本シリンダシリーズはスパッタ飛散雰囲気で耐久性 が一般形シリンダより向上します。しかし、その他 の雰囲気で使用される場合は耐久性が一般形シリン ダより劣る可能性がありますのでご注意ください。

STM

STG

スイッチ

巻末

656 CKD

ことがあります。

巻末

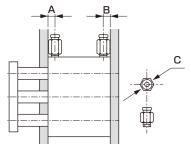
CKD

ご使用時

1. 共通

▲注意

STM


STG

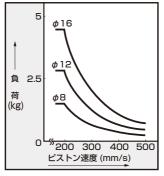
STS ·

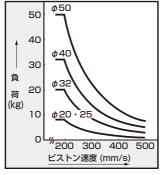
STR2

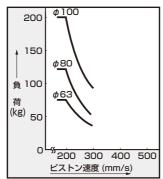
UCA2

■配管時は必ずスピードコントローラをつけてご使 用ください。また、使用可能な継手は以下のとお りです。

φ80 は上図の様な側面配管はできません。


Ψ00101				3 C C S C 100		
項目 チューブ内径(mm) \	ポート径	#−M A	超寸法 B	使用できる継手	継手外径 φ C	
φ 8		11	6.5	SC3W-M5-4		
φ12		SC3W-M5-6 7.5 7.5 GWS4-M5-S GWS4-M5 GWL4-M5 GWL6-M5 GWS6-M5		GWS4-M5-S	φ12以下	
φ16	M5×0.8			GWL6-M5 GWS6-M5		
φ20		12	8	SC3W-M5-4 SC3W-M5-6 GWS4-M5-S GWS4-M5		
φ25		12	9	GWL4-M5 GWL6-M5	φ15以下	
φ32	D 1/0	14	9	SC3W-6-4·6·8 GWS4-6 GWS6-6 GWS8-6	41ENT	
φ40	Rc1/8	14.5			φ15以下	
φ50	D-1/4	16	11	SC3W-8-6·8·10 GWS4-8 GWS6-8	401NT	
φ63	Rc1/4	17.5	16	GWS10-8 GWS12-8 GWL4~12-8	φ21以下	
φ80	Rc3/8 2		26	SC3W-10-8·10·12 GWS6-10 GWS8-10 GWS10-10 GWL6~12-10	φ21以下	
φ100	Rc3/8	24	25.5 (50)	SC3W-10-8·10·12 GWS6-10 GWS8-10 GWS10-10 GWL6~12-10	φ21以下	


■摺動抵抗の増加につながるため、チューブ本体取 付面及びエンドプレート面には平面度を阻害する ような打痕、キズなどを付けないようにしてくだ さい。エンドプレートに取り付ける相手側の平面 度は0.05mm以下にしてください。


上記平面度の確保が困難な場合は、エンドプレー トとワークの間にシム(お客様用意)などを挿入 し、隙間の調整を行ってください。摺動抵抗の増 加の防止につながる場合があります。

■ (心ずれにより) 作動が不安定となる場合がありま すので、ピストンロッドを回転させないでください。

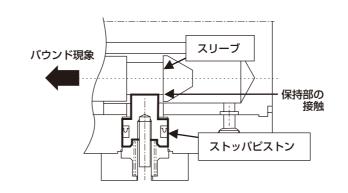
■許容エネルギー値 曲線より左下側の範囲でで使用ください。右上側の 範囲でご使用の場合は外部に別途緩衝装置を設けて ください。

- ■メンテナンス等で製品を分解するとき以外は、ピ ストンロッドを回転させないでください。芯ずれ が発生して作動が不安定となる場合がありますの で、ピストンロッドを回転させないでください。
- ■当社のショックキラーは消耗部品として取り扱って ください。

エネルギー吸収能力の低下がみられた場合や、作 動が円滑ではなくなった時に交換をしてください。

2. ゴムエアクッション付 STS・STL-№-%C)

▲注意


■ カタログ仕様範囲外の低速作動させた後にシリンダ 内のエアを急激に排気させないでください。(例:配 管やカプラを外す等) ゴムエアクッションが外れる場合があります。特に

エア圧が高い場合に発生する可能性が高くなります のでご注意ください。

3. 落下防止形 STS·STL-₩Q

▲警告

- 設備メンテナンスの際は、安全の為、負荷が自重で 落下しないような処置を別途配慮ください。
- ■外部緩衝機器(ショックアブソーバー等)で停止さ せる場合バウンドが無いよう、調整してください。 バウンドすると、スリーブとストッパピストンが衝 撃的に接触し、ロック機構の破損につながります。 また、この現象による保持部の損傷が無いか、1回 ~2回/年の定期点検をお願いします。

▲注意

- ■ロック機構が働くのはストロークエンドのため、 ストローク途中で外部ストッパによりストッパを かけるとロック機構が働かず落下する恐れがあり ます。負荷セット時には必ずロック機構が働くこ とを確認して据付けてください。
- ■ロック機構の付いている側のポートには、最低使 用圧力以上の圧力を供給してください。
- ■ロック機構の付いている側の配管が細く長い場合、 あるいはスピードコントローラがシリンダポート から離れている場合には排気速度が遅くなり、ロッ クがかかるまでに時間を要する場合がありますの でご注意ください。またバルブの EXH. ポートに 取付けたサイレンサの目づまりも同様の結果を招 きます。
- スピードコントローラはメーターアウトでご使用く STG ださい。

メータイン制御ではロックを解除できないことがあります。

4. 微速形(STS・STL-☆F)

▲注意

■シリンダに横荷重がかからないように心合わせな どの調整をしてください。

また、摺動案内に対してこじれがないように調整 して設置してください。

負荷の変動、抵抗の変動がありますと作動が不安定になり

静摩擦と動摩擦の差の大きい案内(ガイド)は、作動が不 安定になります。

取付・据付・調整時、使用・メンテナンス時の注意事項については、本カタログ記載の「ご使用時」および CKD機器商品サイト(https://www.ckd.co.jp/kiki/jp/)→「形番」→ 取扱説明書 をご覧ください。

巻末

CKD

658 CKD

STR2

UCA2

シリンダ スイッチ