LCM

LCR LCG LCW I CX STM STG STR2 UCA₂ ULK* JSK/M2 JSG JSC3/JSC4

USSD **UFCD** USC UB LMB

HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP

I MI

BBS RRC **GRC** RV3* NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs

GLC

MFC

FΚ SpdContr Ending

FJ

Selection guide of rotary actuator

Oscillating time check Step 1

Use an oscillating time within the specified range of the table below.

Model No.	90	180	270
RRC-8	0.015 to 0.151	0.030 to 0.302	0.045 to 0.452
RRC-32	0.038 to 0.377	0.075 to 0.754	0.113 to 1.131
RRC-63	0.073 to 0.440	0.147 to 0.880	0.220 to 1.320

^{*} The oscillating time in the table is the time for the oscillating to end after movement begins.

Step 2 Size selection

When simple static pushing force is required for clamp, etc.

ℓ(m)

To move load

Resistance load

When applying force (resistance load) including frictional force, gravity or other external forces.

- (1) Determine the working pressure. P(MPa)
- (2) Determine the required force. $F_R(N)$
- (3) Length of arm from rotary
- actuator is determined.

Inertia load

When the object is rotated.

(1) Oscillating angle/oscillating time and working pressure are determined. θ (rad)

Oscillating angle Oscillating time

t(s)

Working pressure P(MPa) 90°=1.5708(rad)

180°=3.1416(rad)

270°=4.7124(rad)

- (2) Calculate the load moment of the inertia according to the load shape and weight. Refer to moment of inertia table for the calculation formula.
 - I (kg·m²)
- (3) Calculate the max. angular acceleration speed. $\alpha = \frac{2\theta}{t^2} (rad/s^2)$
 - θ: Oscillating angle (rad)
 - t: Oscillating time (s)

Calculation of resistance torque $T_R = K \times F_R \times \ell (N \cdot m)$ K: Slack coefficient If no load fluctuation K = 2If load fluctuates K = 5(When resistance torque caused by gravity operates) If load fluctuates when K < 5, the change in angular speed increases. 1

Determine size of rotary actuator according to output torque graph.

Unit: S

Calculation of acceleration torque $T_A = 5 \times 1 \times \alpha (N \cdot m)$ TA is the required torque to accelerate inertia load until set speed.

Check of allowable energy Step 3

When using an inertial load, keep the load energy lower than the rotary actuator's allowable energy.

- (1) Angular speed at oscillation edge $\omega = \frac{2\theta}{t}$ (rad/s)
 - θ: Oscillating angle (rad) t: Oscillating time (s)
- (2) Calculation of load inertia energy

$$E = \frac{1}{2} \times I \times \omega^2 (J)$$

- I: Load moment of inertia (kg·m²)
- (3) Confirm that the load inertia energy E is equal to or less than the allowable energy of the rotary actuator. When exceeding the allowable energy, an external shock absorber, etc., will be required.

LCM LCR

LCG

LCW

I CX STM STG

STR2

UCA2

ULK* JSK/M2

USSD

UFCD

USC

JSB3

LMB

I MI

HCM

НСА

LBC

CAC4

UCAC2

CAC-N UCAC-N

RCS2

PCC

SHC

MCP

GLC

MFC BBS

GRC

RV3

NHS HRL LN Hand

Chuk

MecHnd/Chu

ShkAbs

SpdContr

Ending

FJ

FΚ

UB

Figure for moment of inertia calculation When rotary shaft passes through the workpiece Radius of rotation K₁² Sketch Moment of inertia I kg·m² Requirements Remarks Dial plate No mounting $\frac{d^2}{8}$ Diameter d(m) direction For sliding use, Weight M(kg) contact CKD. Circular stepped plate Diameter $d_1(m)$ Ignore when the $d_2(m)$ d₂ section is $I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$ Weight d₁ section M₁(kg) extremely small d₂ section M₂(kg) compared to the d₁ section Bar (center of rotation at end) Mounting direction is horizontal Bar length R(m) $I = \frac{MR^2}{3}$ Oscillating time Weight M(kg) changes when the mounting direction is vertical Mounting direction is Bar length R_1 Thin rod horizontal R_2 $I = \frac{M_1/R_1^2}{3} + \frac{M_2/R_2^2}{3}$ Oscillating time Weight changes when the mounting direction is vertical RRC Bar length R(m) No mounting $I = \frac{MR^2}{12}$ Weight M(kg) direction Mounting Plate length direction is a_1 horizontal Oscillating time Side length $I = \frac{M_1}{12} (4a_1^2 + b^2) = \frac{M_2}{12} (4a_2^2 + b^2)$ changes when Weight M_1 the mounting direction is vertical Side length a(m) b(m) No mounting Weight M(kg) direction $I = \frac{M}{12} (a^2 + b^2)$ For sliding use, contact CKD. Concentrated Mounting direction **Concentrated load** Shape of concentrated load Calculate k₁² is horizontal Length to center of gravity according to When M₂ is $I = M_1(R_1^2 + k_1^2) + \frac{M_2 R_2^2}{3}$ of concentrated load R₁(m) extremely small shape of Arm length $R_2(m)$ compared to M₁, it concentrated Concentrated load weight M₁(kg) may be calculated Arm weight M₂(kg) as $M_2 = 0$ How to convert load J_L to rotary actuator shaft rotation when using with gear

Load IL

Gear - Rotary side (tooth number) a,

Load moment of inertia

 $N \cdot m$

Load side (tooth number) b

Load moment of inertia for the

rotary actuator's shaft rotation

 $I_H = \left(\frac{a}{b}\right)^2 I_L$

When gear

shape is larger,

gear moment of

inertia should be

considered