SFR•SFRT Series ## Technical Information ## 1. Inertial Moment Calculation Drawings | 1. Inertial Woment Calculation Drawings If rotary axis passes through workpiece | | | | | | | | | |--|---|--|--|--|--|--|--|--| | Shape | Sketch | Requirement | Inertial moment I, kg/m² | Rotation radius K ₁ ² | Remarks | | | | | Disk | | Diameter d(m) Weight M(kg) | $I = \frac{Md^2}{8}$ | $\frac{d^2}{8}$ | No particular
mounting direction Other considerations
required if the disk is
to be used sliding. | | | | | Stepped disk | | Diameter | $I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$ | $\frac{d_{1}^{2}+d_{2}^{2}}{8}$ | May be ignored if
part d² is
significantly smalle
than part d¹. | | | | | Rod (end is rotation center) | R | Rod length R(m) Weight M(kg) | $I = \frac{MR^2}{3}$ | $\frac{R^2}{3}$ | Horizontal
mounting Oscillating time will
change for vertical
mounting. | | | | | Thin rod | R | Rod length R1 R2 Weight M1 M2 | $I = \frac{M_1 \cdot R_1^2}{3} + \frac{M_2 \cdot R_2^2}{3}$ | $\frac{R_1^2 + R_2^2}{3}$ | Horizontal
mounting Oscillating time will
change for vertical
mounting. | | | | | ngular plate (cuboid) (center of gravity is rotation center) | R | ■ Rod length R(m) ■ Weight M(kg) | $I = \frac{MR^2}{12}$ | R²
12 | No particular
mounting direction | | | | | Thin rectangular plate (cuboid) | a a b | Plate length a1 a2 Edge length b Weight M1 M2 | $I = \frac{M_1}{12} (4a_1^2 + b^2) + \frac{M_2}{12} (4a_2^2 + b^2)$ | (4a ₁ ² +b ²)+(4a ₂ ² +b ²) 12 | Horizontal
mounting Oscillating time will
change for vertical
mounting. | | | | | Cuboid | | ● Edge length a(m) b(m) ■ Weight M(kg) | $I = \frac{M}{12} (a^2 + b^2)$ | <u>a²+b²</u>
12 | No particular
mounting direction Other considerations
required if the disk is
to be used sliding. | | | | | Concentrated load | R ₁ Concentrated load M ₁ | Concentrated load shape Length to concentrated load center of gravity Arm length Concentrated Load weight Arm weight M ₂ (kg) | $I=M(R_1^2+k_1^2)+\frac{M_2R_2^2}{3}$ | k-²calculated
based on
concentrated
load shape. | Horizontal mounting May be calculated based on M2 = 0 if M2 significantly smaller than M1. | | | | | Gear | b Load IL a Load IL a | Gear Rotary side (number of teeth) a Load side (number of teeth) b Load inertial moment N·m | Inertial moment around load rotary axis Inertial moment around load rotary axis | | The greater the
gear size, the more
it becomes
necessary to
consider the gear
inertial moment. | | | | •If rotary axis is offset from workpiece | Shape | Sketch | Requirement | Inertial moment I, kg/m² | Remarks | |-----------------|---------------------------------|--|---|--------------------------------------| | Cuboid | R | Edge length a(m) Distance from rotary b(m) axis to load center R(m) Weight M(kg) | $I = \frac{M}{12} (a^2 + b^2) + MR^2$ | Same for cuboid | | Hollow cuboid | R h ₁ h ₂ | ■ Edge length | $I = \frac{M}{12} (h_1^2 + h_2^2) + MR^2$ | Cross section applies to cuboid only | | Cylinder | R | Diameter d(m) Distance from rotary axis to load center R(m) Weight M(kg) | $I = \frac{Md^2}{16} + MR^2$ | | | Hollow cylinder | R d _z | Diameter d₁(m) d₂(m) Distance from rotary axis to load center R(m) Weight M(kg) | $I = \frac{M}{16} (d_1^2 + d_2^2) + MR^2$ | | ^{*} When obtaining the inertial moment, first model the load and jig, etc., convert the shape to something simpler, and then calculate. In the case of combined loads, calculate the individual inertial moments and add them up.