LCM

LCR LCG

НСА

LBC CAC4 UCAC2

CAC-N UCAC-N

RCS2

RCC2

Technical data (selection example)

Technical data (selection example)

[Specifications]

· Required clamping force: 400 N

- · Working pressure: 0.5 MPa
- · Maximum piston speed: 100 mm/s

· Lever shape

M2:0.31 kg L:0.080 m A:0.1 m a:0.010 m

· Jig shape

M1:0.04 kg D:0.020 m

1. Calculate the required pressurized area.

Required pressurized area (mm²) =
$$\frac{\text{Required clamping force (N)}}{\text{Working pressure (MPa)xefficiency}} = \frac{400}{0.5x80\%} = 1,000 \text{ (mm}^2)$$

Note) Efficiency varies depending on lever length or cylinder resistance.

2. Select the cylinder size from the pressurized area (retracted side) given in the specifications list. ø40 pressurized area: 1,055 (mm²) > required pressurized area: 1,000 (mm²)

3. Confirm the allowable lever length.

Working pressure 0.5 MPa, lever length 80 mm Confirm with the graph on page 1115

→ Within usable range

4. Confirm the allowable moment of inertia for lever.

Calculating moment of inertia

(Use the formula for concentrated load on page 1114)

Moment of inertia I = M₁ (R₁² + K₁²) +
$$\frac{M_2R_2^2}{3}$$

R₁ = L, R₂ = A - a, K₁² = $\frac{D^2}{8}$
I =0.04x(0.08²+ $\frac{0.02^2}{8}$)+ $\frac{0.31x(0.1-0.01)^2}{3}$

=1.10x10
$$^{-3}$$
 kg·m²

Moment of inertia 1.10x10⁻³ kg⋅m² Maximum piston speed 100 mm/s Confirm with the graph on page 1115

→ Within usable range

Based on the above, size ø40 is selected.

LCM LCR LCG LCW LCX STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC UB JSB3 LMB LML HCM LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FΚ SpdContr Ending

Figure for moment of inertia calculation

1_					
	Sketch	Requirements	Moment of inertia I kg·m²	Rotation radius K ₁ ²	Remarks
	Dial plate	Diameter d (m) Weight M (kg)	$I = \frac{Md^2}{8}$	d ² 8	● No mounting direction
	Bar (center of rotation at end) Gircular stepped plate	 Diameter d₁(m) d₂(m) Weight d₁ Part M₁ (kg) d₂ Part M₂ (kg) 	$I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$	d ₁ ² +d ₂ ² 8	■ Ignore when the d₂ section is extremely small compared to the d₁ section
	Bar (center of rotation at end)	● Bar length R (m) ● Weight M (kg)	$I = \frac{MR^2}{3}$	R ² 3	● The mounting direction is horizontal.
	Thin rod		$I = \frac{M_1 \cdot R_1^2}{3} + \frac{M_2 \cdot R_2^2}{3}$	$\frac{R_1^2 + R_2^2}{3}$	● The mounting direction is horizontal.
	Bar (center of rotation / gravity)	● Bar length R (m) ● Weight M (kg)	$I = \frac{MR^2}{12}$		● No mounting direction
Thin rectangle plate	(rectangular parallelepiped)	 Plate length a₁ a₂ Side length Weight M₁ M₂ 	$I = \frac{M_1}{12} (4a_1^2 + b^2) + \frac{M_2}{12} (4a_2^2 + b^2)$	(4a ₁ ² +b ²)+(4a ₂ ² +b ²) 12	● The mounting direction is horizontal.
	Rectangular parallelepiped (rectangular parallelep	● Side length a (m) ● Weight b (m) M(kg)	$I = \frac{M}{12}(a^2 + b^2)$	<u>a²+b²</u> 12	No mounting direction
	Concentrated load R ₂ Arm M ₂	centrated M ₁ Shape of concentrated load Length to center of gravity of concentrated load R ₁ Arm length R ₂ (m) Concentrated load weight M ₁ (kg) Arm weight M ₂ (kg)	$I = M_1(R_1^2 + k_1^2) + \frac{M_2 R_2^2}{3}$	Calculate k ₁ ² according to shape of concentrated load	 The mounting direction is horizontal. When M₂ is extremely small compared to M₁, it may be calculated as M₂ = 0