LCM LCR LCG НСА LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 ## Technical data (selection example) ## Technical data (selection example) ## [Specifications] · Required clamping force: 400 N - · Working pressure: 0.5 MPa - · Maximum piston speed: 100 mm/s · Lever shape M2:0.31 kg L:0.080 m A:0.1 m a:0.010 m · Jig shape M1:0.04 kg D:0.020 m 1. Calculate the required pressurized area. Required pressurized area (mm²) = $$\frac{\text{Required clamping force (N)}}{\text{Working pressure (MPa)xefficiency}} = \frac{400}{0.5x80\%} = 1,000 \text{ (mm}^2)$$ Note) Efficiency varies depending on lever length or cylinder resistance. 2. Select the cylinder size from the pressurized area (retracted side) given in the specifications list. ø40 pressurized area: 1,055 (mm²) > required pressurized area: 1,000 (mm²) 3. Confirm the allowable lever length. Working pressure 0.5 MPa, lever length 80 mm Confirm with the graph on page 1115 → Within usable range 4. Confirm the allowable moment of inertia for lever. Calculating moment of inertia (Use the formula for concentrated load on page 1114) Moment of inertia I = M₁ (R₁² + K₁²) + $$\frac{M_2R_2^2}{3}$$ R₁ = L, R₂ = A - a, K₁² = $\frac{D^2}{8}$ I =0.04x(0.08²+ $\frac{0.02^2}{8}$)+ $\frac{0.31x(0.1-0.01)^2}{3}$ =1.10x10 $$^{-3}$$ kg·m² Moment of inertia 1.10x10⁻³ kg⋅m² Maximum piston speed 100 mm/s Confirm with the graph on page 1115 → Within usable range Based on the above, size ø40 is selected. LCM LCR LCG LCW LCX STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC UB JSB3 LMB LML HCM LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FΚ SpdContr Ending ## Figure for moment of inertia calculation | 1_ | | | | | | |----------------------|--|--|---|--|---| | | Sketch | Requirements | Moment of inertia I kg·m² | Rotation radius K ₁ ² | Remarks | | | Dial plate | Diameter d (m) Weight M (kg) | $I = \frac{Md^2}{8}$ | d ² 8 | ● No mounting direction | | | Bar (center of rotation at end) Gircular stepped plate | Diameter d₁(m) d₂(m) Weight d₁ Part M₁ (kg) d₂ Part M₂ (kg) | $I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$ | d ₁ ² +d ₂ ²
8 | ■ Ignore when the d₂ section is extremely small compared to the d₁ section | | | Bar (center of rotation at end) | ● Bar length R (m) ● Weight M (kg) | $I = \frac{MR^2}{3}$ | R ² 3 | ● The mounting direction is horizontal. | | | Thin rod | | $I = \frac{M_1 \cdot R_1^2}{3} + \frac{M_2 \cdot R_2^2}{3}$ | $\frac{R_1^2 + R_2^2}{3}$ | ● The mounting direction is horizontal. | | | Bar (center of rotation / gravity) | ● Bar length R (m) ● Weight M (kg) | $I = \frac{MR^2}{12}$ | | ● No mounting direction | | Thin rectangle plate | (rectangular parallelepiped) | Plate length a₁ a₂ Side length Weight M₁ M₂ | $I = \frac{M_1}{12} (4a_1^2 + b^2) + \frac{M_2}{12} (4a_2^2 + b^2)$ | (4a ₁ ² +b ²)+(4a ₂ ² +b ²) 12 | ● The mounting direction is horizontal. | | | Rectangular parallelepiped (rectangular parallelep | ● Side length a (m) ● Weight b (m) M(kg) | $I = \frac{M}{12}(a^2 + b^2)$ | <u>a²+b²</u>
12 | No mounting direction | | | Concentrated load R ₂ Arm M ₂ | centrated M ₁ Shape of concentrated load Length to center of gravity of concentrated load R ₁ Arm length R ₂ (m) Concentrated load weight M ₁ (kg) Arm weight M ₂ (kg) | $I = M_1(R_1^2 + k_1^2) + \frac{M_2 R_2^2}{3}$ | Calculate k ₁ ² according to shape of concentrated load | The mounting direction is horizontal. When M₂ is extremely small compared to M₁, it may be calculated as M₂ = 0 |