SCK Series

Selection guide

SCP*3

CMK2

CMA2

SCM SCG

SCA₂

SCS2 CKV2

CAV2/ COVP/N2

SSD2

SSG SSD

CAT

MDC2

MVC

SMG MSD/

MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

ShkAbs

F.J

FK

Spd Contr

Ending

Selection guide

Setting working conditions

Make the following conditions clear for shock absorber selection.

(1) Load weight (kg)

- (2) Instantaneous colliding speed of impact with shock absorber(m/s)
- (3) Thrust (kgf) if there is external pressure with load

Code

D = Cylinder diameter (mm)

E = Kinetic energy (J)

P = Operation pressure (MPa)

K = Radius of rotation (m) (distance of load center to center of rotation)

 ω = Colliding angular speed (rad/s)

I = Moment of inertia (kg/m²)

F = Thrust(N)

 $T = Torque (N \cdot m)$

V = Colliding speed (m/s)

H = Height (m)

St = Shock absorber stroke (m)

M = Weight of workpiece (kg)

g = Gravity acceleration 9.8 m/s²

Example of calculation

(1) Vertical falling motion (free fall)

$$E = \frac{1}{2} \cdot M \cdot V^2 + Mg \cdot St$$

Where weight (M) of workpiece is 70 kg and vertical fall is from 0.7 m (H), check if SCK-00-60 can be used.

Find the max. colliding speed under these conditions.

$$V = \sqrt{2 \cdot g \cdot H} = \sqrt{19.6 \times H}$$

$$V = \sqrt{19.6 \times 0.7} = 3.7 \text{ m/s} < 4 \text{ m/s}$$

(SCK-00-60)

$$E = \frac{1}{2}x70x3.7^2 + 70x9.8x0.07 = 527.2$$

Absorbed energy of SCK-00-60 is larger according to colliding speed characteristics graph of absorbed energy on Graph 1. Therefore, energy can be absorbed by SCK-00-60.

(2) Horizontal motion (inertia motion)

$$E = \frac{1}{2} \cdot M \cdot V^2$$

$$V=1.0 \text{ m/s}$$

$$M=10 \text{ kg}$$

With workpiece weight (M) of 10 kg for colliding speed (V)

At 1.0m/s,

$$E = \frac{1}{2} \times 10 \times (1.0)^2 = 5.0 J$$

SCK-00-1.2 can be used.

(3) Horizontal motion (for thrust)

If the workpiece calculated in (2) is moved by a ø50 mm pneumatic cylinder (D) with pneumatic pressure (P) of 0.5 MPa, pneumatic cylinder thrust is:

$$F = \frac{\pi}{4} \times D^2 \times P = \frac{\pi}{4} \times 50^2 \times 0.5 = 981N$$

Check if SCK-00-6.5 can be used.E=-

Therefore, energy can be absorbed by SCK-00-6.5.

(Graph 1)

(4) Tilted falling motion

When a 70 kgf workpiece comes down a 30° slope, When a 70 kgf workpiece with a radius of rotation (K) consider if the SCK-00-40 can be used. Find the max. colliding speed under the same conditions.

$$V = \sqrt{19.6xH(H=0.5x\sin 30^{\circ})}$$

$$= \sqrt{19.6x0.5x\sin 30^{\circ}}$$

$$= 2.2 \text{ m/s} < 3 \text{ m/s}$$

$$E = (\frac{1}{2} \times 70 \times 2.2^{2}) + (70 \times 9.8 \times 0.07 \times \sin 30^{\circ})$$

$$\approx 193.4 \text{ J}$$

Therefore, energy can be absorbed by SCK-00-20.

(5) Horizontal rotary motion (inertia motion)

0.5 m and colliding angular speed of 1 rad/s is being operated, consider if the SCK-00-1.2 can be used.I =

$$70 \times (0.5)^2 = 17.5 \text{ kg} \cdot \text{m}^2$$

 $(1)^2 = \frac{17.5 \times (1)^2}{2}$
 $E = \frac{2}{2} = \frac{2}{2}$

=8.8 J

Therefore, energy can be absorbed by SCK-00-1.2.

