

Shock absorber

NCK Series

Max. absorbed energy: 1 to 200 J

Specifications

SCM

SCG

SCA2

SCS2

CKV2 CAV2/ COVP/N2 SSD2

SSG

SSD

CAT

MDC2

MVC

SMG MSD/ MSDG FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

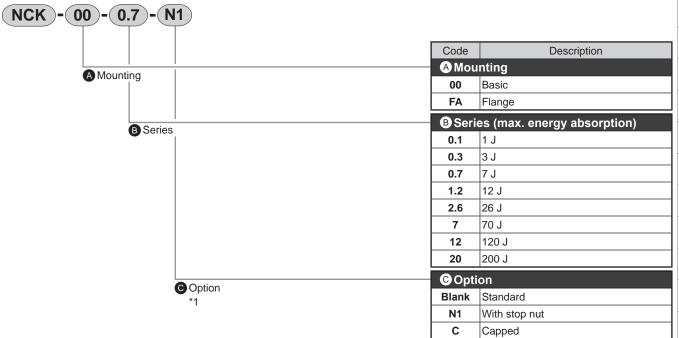
MRG2

SM-25

ShkAbs

Item		NCK											
Series	0.1	0.3	0.7	1.2	2.6	7	12	20					
Type/Classification		Spring return without adjuster											
Max. energy absorpt	tion J	1	3	7	12	26	70	120	200				
O.D. thread size	M8x	(0.75	M10x1.0	M12x1.0 M14x1.5		M20x1.5	M20x1.5 M25x1.5						
Stroke	mm	4.5	6	8	10	15	20	25	30				
Max. absorbed energy kJ/hr		4.8	6.3	12.6	21.6	39.0	84.0	86.4	108.0				
Max. colliding speed	m/s	1.0	1	.5	2	.0	2.5	3.0					
Max. operating frequ	ency Cycle/min.	80	35	3	0	25	20	12	9				
Ambient temperature	e °C	-10 (14°F) to 80 (176°F)											
Max. load (resistance) N		525	1150	2010	2750	4000	7980	10950	15380				
Return time	S			0.3 or less	0.4 o	0.5 or less							
Weight	0.009	0.012	0.02	0.04	0.07	0.2	0.3	0.45					
Return	When extended N	2	9	2.0	2.9	5.9	9.8	16.3					
spring force V	4	4.5		5.9	11.8	21.6	33.3	33.9					

Note: The speed and absorption capacity of the shock absorber vary depending on the ambient temperature. Values given in the above specifications are for room temperature.


FJ

FK Spd

Contr

A Precautions for model No. selection

*1: 3 hexagon nuts are provided for N1 specifications products.

[Example of model No.]

NCK-00-0.7-N1

Model: Shock absorber A Mounting : Basic

B Series : Max. energy absorption 7 J


Option : With stop nut

How to order options

Flange bracket (1 pc.)

Stop nut + hexagon nut (each 1 pc.)

Hexagon nut (1 pc.)

Code	Series (max. energy absorption)
0.1	1 J
0.3	3 J
0.7	7 J
1.2	12 J
2.6	26 J
7	70 J
12	120 J
20	200 J

Specifications for rechargeable battery (Catalog No. CC-1226A)

 Design compatible with rechargeable battery manufacturing process

SCP*3

CMK2

CMA2

SCM

SCG

SCA₂

SCS₂

CKV2 CAV2/

COVP/N2 SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD/ **MSDG**

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

ShkAbs

FJ

FK

Spd Contr

^{*} Contact CKD for details.

NCK Series

Operational explanation

(1) Collision

SCP*3

CMK2

CMA2

SCM

SCG

SCA₂

SCS₂

CKV2

COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD/

MSDG

FC*

STK

SRL3

SRG3

SRM3

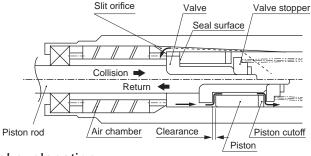
SRT3

MRL2

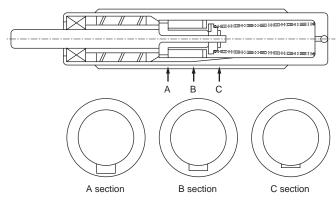
MRG2

SM-25

ShkAbs

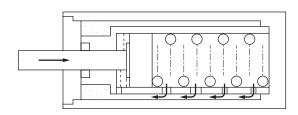

FJ

FK

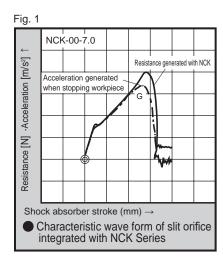

When the workpiece collides with the piston rod, the oil in the tube pushed by the piston is simultaneously pressurized. The pressurized oil passes through grooves on CKD's original slit orifice, and flows toward the oil chamber with an air chamber. The piston is further pressed in by cylinder thrust or workpiece weight, etc., but the area of the slit orifice gradually decreases, so that even higher resistance is generated. These series of operations are done continuously to stop the workpiece smoothly.

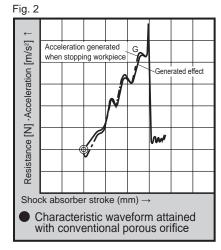
(2) Return

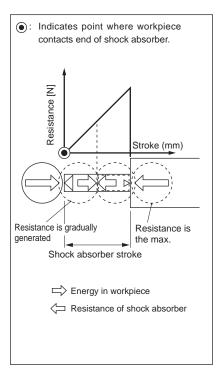
When released from the workpiece, the piston returns with the integrated spring. At this time it moves from the seal to the valve stopper, so that the oil return flow path is opened by the cutoff section on the piston. Oil passes through this flow path and the slit orifice and returns to the state before the workpiece collided. In this state, the system is on standby for the next workpiece collision.



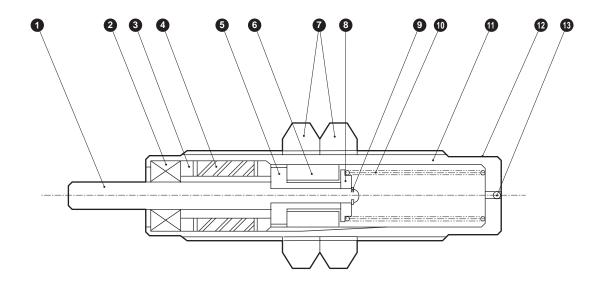
Structural explanation

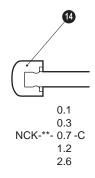


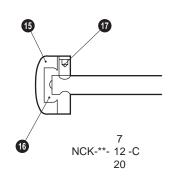

1. The slit orifice smoothly changes (decreases) as the piston moves as shown above


This structure enables an ideal "stop" when used with a hydraulic damper, but as manufacturing is difficult, it has not been integrated in other brands. CKD has handled this tough issue with linear stopping performance as shown in Fig.1.

2. Generally, the dual tube shown above is used for the orifice area as a structure that changes with piston movement. Multiple small orifice holes in the inner pipe are closed as the piston moves. In this structure, performance via hole positioning precision is greatly affected, and resistance changes with each orifice, preventing smooth operation as shown in Fig. 2.






Spd Contr

Basic (without cap)

Capped

Cannot be disassembled

Parts list

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Rod	Steel	Industrial chrome plating	10	Spring	Piano wire	
2	Oil seal	Special nitrile rubber		11	Damper case	Steel	Chrome plating
3	Rod guide	Copper alloy		12	Label	Polyester film	
4	Air chamber	Nitrile rubber		13	Ball	Alloy steel	
5	Valve	Steel		14	Damper cushion	Polyamide resin	Black
6	Piston	Cast iron		15	Damper cushion	Polyester resin	Black
7	Hexagon nut	Steel	Zinc plated	16	Cushion stopper	Steel	Zinc plated
8	Valve stopper	Steel		17	Hexagon socket set screw	Steel	
9	E type snap ring	Steel for spring	Zinc plated				-

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

CAV2/ COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD/ MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

....

MRG2

SM-25

ShkAbs

FJ

FK

Spd Contr

NCK Series

Dimensions

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2
CAV2/
COVP/N2
SSD2

SSG

SSD

CAT

MDC2

MVC

SMG MSD/ MSDG FC*

STK

SRL3

SRG3

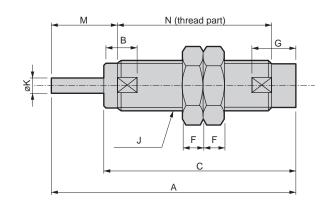
SRM3

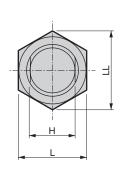
SRT3

MRL2

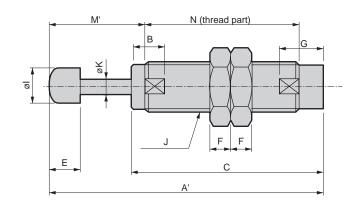
MRG2

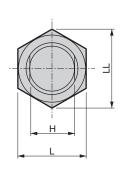
SM-25


ShkAbs


FJ

FΚ

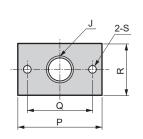



Standard (NCK-**-**)

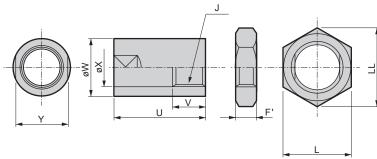
● Capped (NCK-**-**-C)

Code	Basic (00)															
Model No.	Α	A'	В	С	E	F	G	Н	ı	J	K	L	LL	М	M'	N
NCK-00-0.1	34.5	40.5	4	29.5	6	4	7.5	7	6	M8x0.75	2.8	12	13.9	6	12	23
NCK-00-0.3	45.5	51.5	7.5	39	6	4	8	7	6	M8x0.75	2.8	12	13.9	11	16.5	29.0
NCK-00-0.7	50	57	7.5	41.5	7	4	9	9	8	M10x1.0	3	14	16.2	13	20	31
NCK-00-1.2	57.5	65	8.5	47	7.5	5	11	11	10	M12x1.0	3.5	17	19.6	15	22.5	35.5
NCK-00-2.6	86	96	10.5	70.5	10	5.5	14	13	12	M14x1.5	5	19	21.9	20	30	58
NCK-00-7	98.5	109.5	12.5	78	11	8	18	19	16	M20x1.5	6	27	31.2	25	36	63.5
NCK-00-12	129	142	15.5	103.5	13	10	23	24	22	M25x1.5	8	32	37	30	43	87
NCK-00-20	141	154	15.5	110.5	13	10	25	24	22	M27x1.5	8	32	37	35	48	92

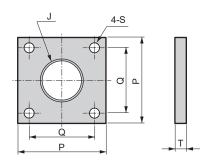
Spd Contr

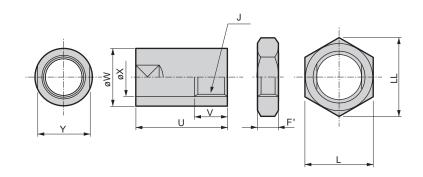

Dimensions

Dimensions: Option [flange (mounting bracket)]



Flange (FA) Material: Steel





2.6 • NCK-7 12 -** 20

Flange (FA) Material: Steel Stop nut (N1) Material: Steel

Code	Flange (FA)						Weight	Stop	Weight						
Model No.	J	Р	Q	R	S	T	(g)	F'	J	U	V	W	Х	Υ	(g)
NCK-0.1-**	M8x0.75	42	30	20	5.5	2.3	14	4	M8x0.75	15	8	14	9	12	13
NCK-0.3-**	M8x0.75	42	30	20	5.5	2.3	14	4	M8x0.75	15	8	14	9	12	13
NCK-0.7-**	M10x1.0	42	30	20	5.5	2.3	14	4	M10x1.0	17	10	15	11	13	15
NCK-1.2-**	M12x1.0	46	34	20	5.5	3.6	22	5	M12x1.0	23	10	19	13	17	34
NCK-2.6-**	M14x1.5	52	38	-	6.5	6	115	5.5	M14x1.5	26.5	10	20	15	17	37
NCK-7-**	M20x1.5	52	38	-	6.5	6	108	8	M20x1.5	36.5	15	26	21	24	77
NCK-12-**	M25x1.5	52	38	-	6.5	6	100	10	M25x1.5	35	15	32	26	30	112
NCK-20-**	M27x1.5	52	38	-	6.5	6	100	10	M27x1.5	45.5	15	35	28	32	155

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

CAV2/ COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD/ MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

ShkAbs

FJ

FK

Spd Contr