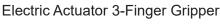
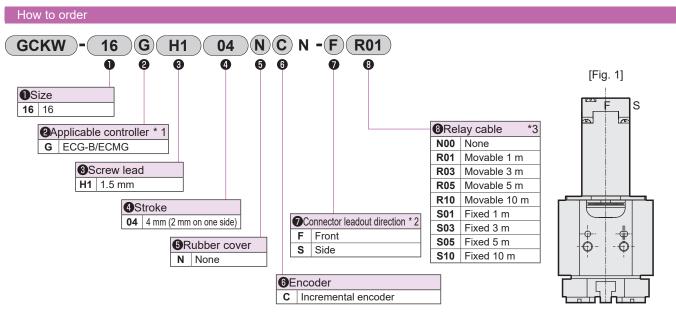
GCKW

Electric actuator
Motor specifications


3-Finger Gripper

CONTENTS Product introduction Intro Page Specifications / How to order / Dimensions · GCKW-16 180 · GCKW-20 182 · GCKW-25 184 Model selection 186 ▲ Safety precautions 216 Model Selection Check Sheet 243

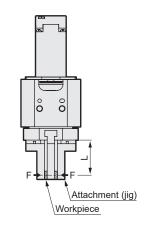
GCKW Series variation

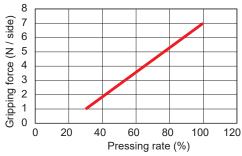

Actuator	Motor Size	Screw lead (mm)	Stroke and Max. speed (mm/s)		Max. Gripping force
model No.			4	6	(N)
GCKW-16	□20	1.5	50)	7
GCKW-20	□25	1.5	50		16
GCKW-25	□25L	1.5		50	29

GCKW-16

☐20 Stepping motor

Connector leadout direction diagram

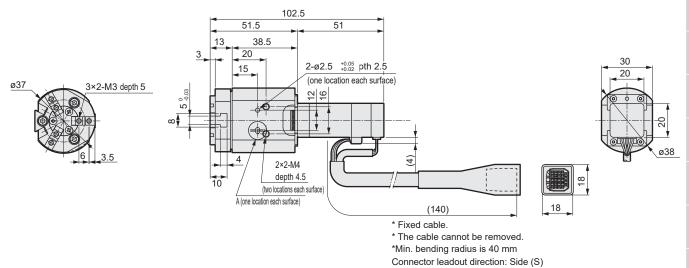

- *1 For controller, refer to page 203.
- *2 Refer to Figure 1.
- *3 Refer to page 214 for relay cable dimensions.

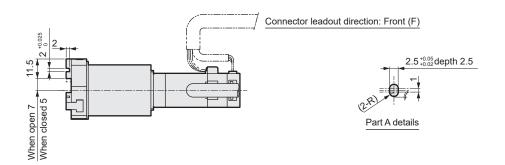

Specifications

Motor	□20 Stepping motor	
Drive method	Sliding screw	
Stroke mm	4 (2 per side)	
Screw lead mm	1.5	
Max. gripping force *1 N	7	
Open/Close speed range mm/s	5 to 50 (per side)	
Gripping speed range *1 mm/s	5 to 15 (per side)	
Repeatability * 2 mm	±0.02	
Positioning repeatability *3 mm	±0.05 (per side)	
Lost motion mm	0.3 or less (per side)	
Insulation resistance	10MΩ, 500 VDC	
Withstand voltage	500 VAC for 1 minute	
Operating ambient	0 to 40 °C (no freezing)	
temperature, humidity	35 to 80% RH (no condensation)	
Storage ambient	-10 to 50°C (no freezing)	
temperature, humidity	35 to 80% RH (no condensation)	
Atmosphere	No corrosive gas, explosive gas, or dust	
Degree of protection	IP40	
Weight g	250	

- *1 Gripping is done with pressing operation. If a pressing operation is performed in the positioning mode, parts inside the actuator may be damaged.
- *2 Repeat accuracy indicates the variation when the same workpiece is repeated gripped at the same power, under the same operation conditions.
- *3 This will result in variations in the stop position when repeated positioning to the same point is performed.

Gripping force and pressing rate





- *1 Gripping force and pressing rate indicate a guideline. Power supply voltages, individual motor differences and variations in mechanical efficiency may result in differing actual values, even at the same pressing rate.
- *2 Speed when gripping is 15 mm/s. (L=20)

Dimensions

Dimensions GCKW-16

D2 DSTK

DSTK DST

DSTG DS

DSTS.

De H

D Series (Spring

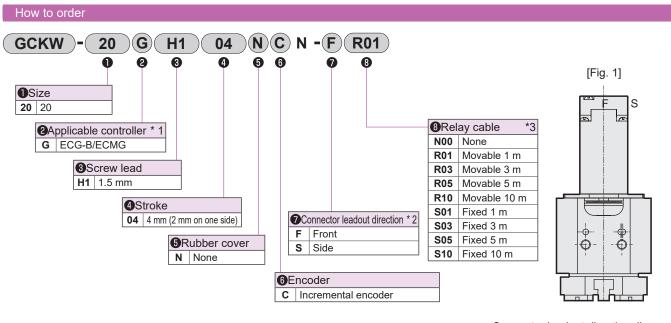
ESC3

G Series

G Z

©ontrolle

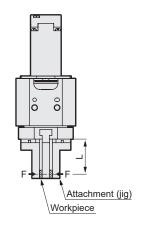
ECG-B

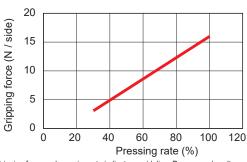

Safety Caution

selection Check shee

☐25 Stepping motor

Connector leadout direction diagram

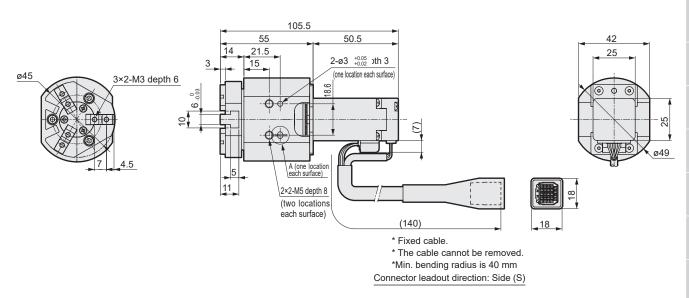

- *1 For controller, refer to page 203.
- *2 Refer to Figure 1.
- *3 Refer to page 214 for relay cable dimensions.

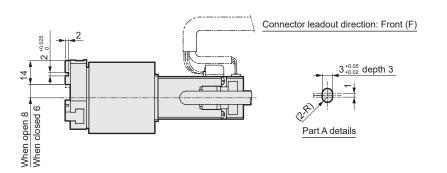

Specifications

Motor	☐25 Stepping motor		
Drive method	Sliding screw		
Stroke mm	4 (2 per side)		
Screw lead mm	1.5		
Max. gripping force *1 N	16		
Open/Close speed range mm/s	5 to 50 (per side)		
Gripping speed range *1 mm/s	5 to 15 (per side)		
Repeatability * 2 mm	±0.02		
Positioning repeatability *3 mm	±0.05 (per side)		
Lost motion mm	0.3 or less (per side)		
Insulation resistance	10MΩ, 500 VDC		
Withstand voltage	500 VAC for 1 minute		
Operating ambient	0 to 40 °C (no freezing)		
temperature, humidity	35 to 80% RH (no condensation)		
Storage ambient	-10 to 50°C (no freezing)		
temperature, humidity	35 to 80% RH (no condensation)		
Atmosphere	No corrosive gas, explosive gas, or dust		
Degree of protection	IP40		
Weight g	390		

- *1 Gripping is done with pressing operation. If a pressing operation is performed in the positioning mode, parts inside the actuator may be damaged.
- *2 Repeat accuracy indicates the variation when the same workpiece is repeated gripped at the same power, under the same operation conditions.
- *3 This will result in variations in the stop position when repeated positioning to the same point is performed.

Gripping force and pressing rate

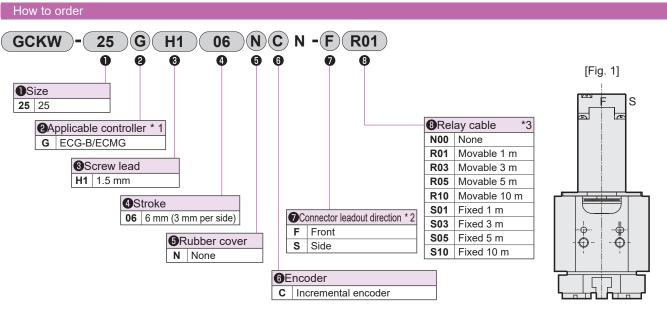




- *1 Gripping force and pressing rate indicate a guideline. Power supply voltages, individual motor differences and variations in mechanical efficiency may result in differing actual values, even at the same pressing rate.
- *2 Speed when gripping is 15 mm/s. (L=20)

Dimensions

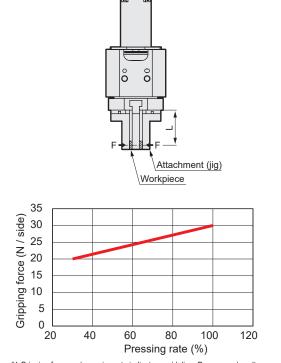
Dimensions GCKW-20



GCKW-25

☐25L Stepping motor

Connector leadout direction diagram

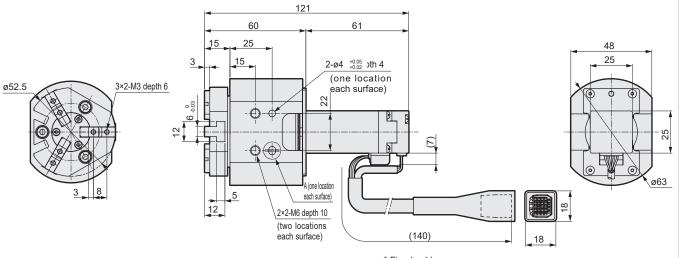

- *1 For controller, refer to page 203.
- *2 Refer to Figure 1.
- *3 Refer to page 214 for relay cable dimensions.

Specifications

Motor	☐25L Stepping motor		
Drive method	Sliding screw		
Stroke mm	6 (3 per side)		
Screw lead mm	1.5		
Max. gripping force * 1 N	29		
Open/Close speed range mm/s	5 to 50 (per side)		
Gripping speed range *1 mm/s	5 to 15 (per side)		
Repeatability *2 mm	±0.02		
Positioning repeatability *3 mm	±0.05 (per side)		
Lost motion mm	0.3 or less (per side)		
Insulation resistance	10MΩ, 500 VDC		
Withstand voltage	500 VAC for 1 minute		
Operating ambient temperature, humidity	0 to 40 °C (no freezing) 35 to 80% RH (no condensation)		
Storage ambient temperature, humidity	-10 to 50°C (no freezing) 35 to 80% RH (no condensation)		
Atmosphere	No corrosive gas, explosive gas, or dust		
Degree of protection	IP40		
Weight g	580		

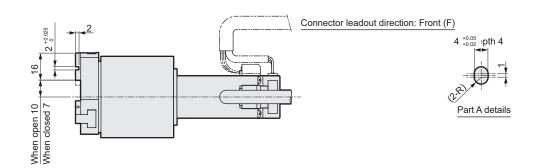
- *1 Gripping is done with pressing operation. If a pressing operation is performed in the positioning mode, parts inside the actuator may be damaged.
- *2 Repeat accuracy indicates the variation when the same workpiece is repeated gripped at the same power, under the same operation conditions.
- *3 This will result in variations in the stop position when repeated positioning to the same point is performed.

Gripping force and pressing rate



- *1 Gripping force and pressing rate indicate a guideline. Power supply voltages, individual motor differences and variations in mechanical efficiency may result in differing actual values, even at the same pressing rate.
- *2 Speed when gripping is 15 mm/s. (L=20)

Dimensions


● GCKW-25

Dimensions

- * Fixed cable.
- * The cable cannot be removed.
- *Min. bending radius is 40 mm

Connector leadout direction: Side (S)

DSTK

CTK Deta Screy

TG DSTS

DSTL

DMSDG DISH

ing drive)

C3

COTU

G Series

selection Check shee Model selection

STEP 1 Calculating the required gripping force

Gripping force Fw satisfying the following equation is required to transport the workpiece (weight WL).

$$Fw > \frac{W_L \times g \times K}{n}$$

Fw : Required gripping force [N]

n: Number of attachments = 3

W_L: Weight of workpiece [kg]

g: Gravity acceleration 9.8 [m/s²]

K: Transport coefficient

5 [Holding only]

10 [Normal transport]

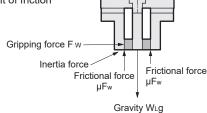
20 [Sudden accelerated transport]

Transport coefficient K-

Calculation example) Transport speed V = If the friction coefficient μ between the workpiece and the finger is 0.1 for the purpose of decelerating and stopping at 0.75 m / s in 0.1 seconds, the result is as follows.

Obtain the transport coefficient K from the force applied to the workpiece

• Inertial force = W L (V/t)

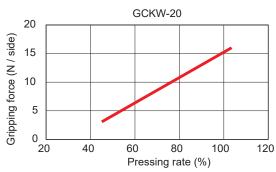

• Gravity = W ∟ g

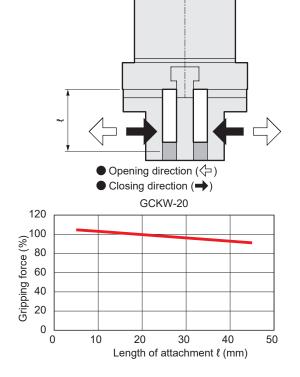
• Required gripping force F w >
$$\frac{W_L (V/t) + W_L g}{n\mu} = \frac{W_L (V/t+g)}{n\mu} = \frac{17.3 W_L}{3 \times 0.1} = 57.7 W_L$$

: Here, the transport coefficient K is a calculated from the above equation:
$$\frac{V/t+g}{\mu q} = \frac{0.75/0.1+9.8}{0.1\times9.8} = \frac{0.75/0.1+9.8}{0.1\times9.8}$$

V: Transport speed [m/sec]t: Deceleration time [sec]

μ : Coefficient of friction

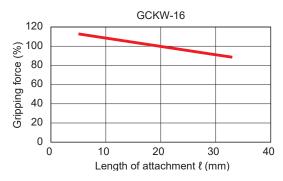


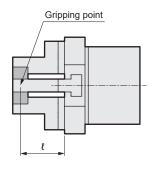

Grip direction

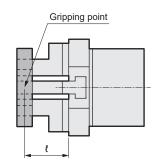
Note) Allowance is required for transport coefficient K due to impacts during transportation, etc. Even when the coefficient of friction μ is higher than μ=0.1, set transport coefficient K from 10 to 20 or more for safety.

STEP 2 Temporarily select a model from the gripping force graph

Check the conditions at right and temporarily select a model from the gripping force graph. The gripping force varies according to gripping point distance ℓ and the current limit value. Confirm on the graph that sufficient force can be obtained under the working conditions.




Model selection



Confirmation of attachment shape STEP 3

- Use attachments as short and lightweight as possible. If the attachment is long and heavy, inertia increases when opening and closing, this may cause play in the finger, and adversely affect durability.
 - Even if the attachment shape is within the performance data, by making it as small as possible enables the product to have a longer service life. Also, if ℓ is long, unexpected vibration, etc., could cause erroneous gripping and falling during transport.
 - The weight of the attachment affects the service life, so check that the weight is less than the following value.

W < 1/4 H (1 pc.) W : Weight of attachment

: Gripper product weight