FLSH Series

Model selection

STEP 1 Calculating the required gripping power

Workpiece (weight W_L) Calculate the required gripping power with the following as the reference.

$$F_w > \frac{W_L \times g \times K}{n}$$

Fw: Required gripping power (N)
n: Number of attachments = 2
WL: Workpiece weight (kg)

g : Gravitational acceleration = 9.8 (m/s²)

K :Transport coefficient

5 [holding only]

10 [normal transport]

20 [suddenly accelerated transport]

Transport coefficient K-

Calculation example: When decelerating and stopping in 0.75 second from transport speed of $V = \frac{1}{2} \left(\frac{1}{2} \right)^{-1}$

0.1 m/s with friction coefficient μ of workpiece and attachment as 0.1, see below.

Obtain the transport coefficient K from the force applied to the workpiece

• Inertial force = $W_Lx(V/t)$

• Gravity = W∟g

• Required gripping force Fw>
$$\frac{W_L x(V/t) + W_L g}{n \mu} = \frac{W_L x(V/t + g)}{n \mu} = \frac{17.3 \ W_L}{2 \ x \ 0.1} = 86.5 W_L$$

:.Here, the transport coefficient K is calculated from the above equation: $\frac{WL \times g \times K}{n} = 86.5 \text{ WL}$

$$K = \frac{n \times 86.5}{g}$$

$$= \frac{2 \times 86.5}{9.8}$$

$$\approx 20$$

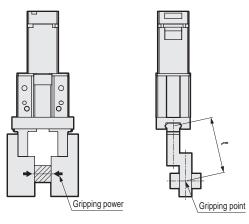
V: Transport speed (m/sec)
t: Deceleration time (sec)

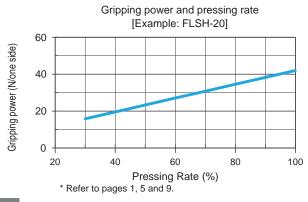
µ: Coefficient of friction

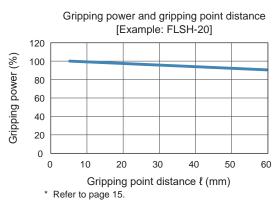
36.5WL

Gripping power Fw

Frictional force

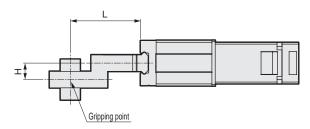

µFw


Gravity WLg

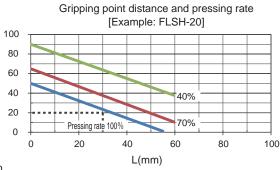

Note)Allowance is required for transport coefficient K due to impacts during transportation, etc. Coefficient of friction μ even when μ is higher than μ = 0.1, set transport coefficient K from 10 to 20 or more for safety.

STEP 2 Temporarily select a model from the gripping power graph

Check the conditions at right and temporarily select a model from the gripping power graph. The gripping power varies according to gripping point distance ℓ and the pressing rate. Confirm on the graph that sufficient force can be obtained under the working conditions.



Model selection


STEP 3 Confirmation of attachment shape

Use gripping point distance within the range of the graph at right.

Example) L: 30 mm, H: 20 mm

When FLSH-20 is selected, the intersection of L:30mm and H:20mm will be inside the 100% pressing rate line, so it can be used.

* Refer to page 15.

- Use attachments as short and lightweight as possible.
 - If the attachment is long and heavy, inertia increases when opening and closing, this may cause play in the finger, and adversely affect durability.
 - Minimizing the attachment shape as much as possible within the performance data enables the product to be used for a longer time.

H(mm)

The weight of the attachment affects the service life, so check that the weight is less than the following value.

W<1/4h (1 pc.) W: Weight of attachment

h: Product weight of gripper

STEP 4 Confirmation of external forces applied to finger

When external force is applied to the finger, use it within the range in [Table 1].

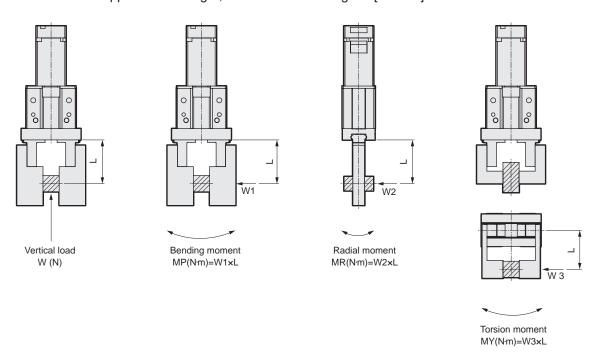


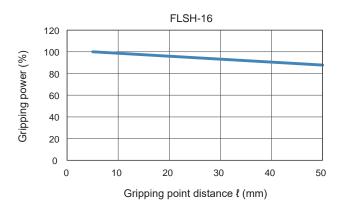
Table 1 Static allowable moment

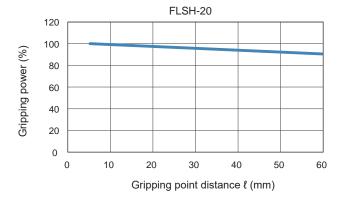
Size	Vertical load Wmax(N)	Bending moment MPmax(N·m)	Radial moment MRmax(N·m)	Torsion moment MYmax(N·m)
FLSH-16	98	0.68	1.36	0.68
FLSH-20	147	1.32	2.65	1.32
FLSH-25	255	1.94	3.88	1.94

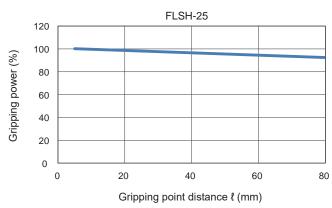
Example of calculation:

When load W1:30N is applied to model No.: FLSH-20, L:40mm

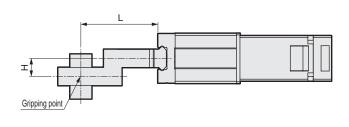
 $MP=30\times40\times10^{-3}=1.2Nm < MPmax=1.32Nm$

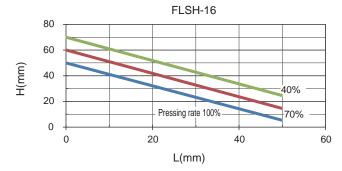

FLSH Series

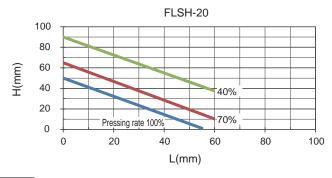

Gripping power and gripping point distance

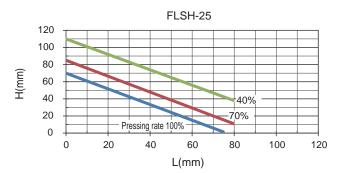

This indicates the gripping power at gripping point distance ℓ .

Calculated by $\ell = \sqrt{L^2 + H^2}$.









Gripping point distance and pressing rate

Maintenance parts

■ Maintenance parts (rubber cover)

	Model No.	Compatibility		
Jer J	FLSH-16G-06-COVER-G	FLSH-16GH106		
rubk	FLSH-20G-10-COVER-G	FLSH-20GH110		
rene	FLSH-25G-14-COVER-G	FLSH-25GH114		
Chloroprene rubber	FLSH-16G-12-COVER-G	FLSH-16GH112		
ြင်	FLSH-20G-18-COVER-G	FLSH-20GH118		
	FLSH-16G-06-COVER-F	FLSH-16GH106		
pper	FLSH-20G-10-COVER-F	FLSH-20GH110		
Fluoro rubber	FLSH-25G-14-COVER-F	FLSH-25GH114		
Fluo	FLSH-16G-12-COVER-F	FLSH-16GH112		
	FLSH-20G-18-COVER-F	FLSH-20GH118		