Related products

NCK Shock absorber/fixed

Compared to the SCK, the NCK shock absorber is the ideal buffering device for stopping a workpiece with thrust at medium or slow speeds. Slit orifice method that was thought difficult to realize is used. Due to this structure, high absorbing performance and linear soft stop, etc., are achieved in slow speed operation range. Furthermore, the compact, slim, space saving design contributes to the FA system configuration.

Features

Available for thrust energy

Absorbing thrust energy of cylinder, etc., is efficient. Very soft stopping is also achieved.

Smooth absorbing even if slowly operated

Superior characteristics in slow speed range enable smooth impact absorption.

Compact but large absorbing force

Compact and slim design which absorbs a lot of energy. This product is remarkably efficient at saving space.

Simple mounting

Linear soft stop

Extensive models

8 types are available by absorbed energy. Select according to applications.

CONTENTS	
Series variation	1809
 NCK (max. absorbed energy 1 to 200 J) 	1820
Selection guide	1826
A Safety precautions	1859

SCP*3 CMK2 CMA2 SCM SCG SCA2 SCS2 CKV2 CAV2/ COVP/N2 SSD2 SSG SSD CAT MDC2 MVC SMG MSD/ MSDG FC* STK SRL3 SRG3 SRM3 SRT3 MRL2 MRG2 SM-25 ShkAbs FJ FK Spd Contr Ending 1819

SCP*3 CMK2 CMA2 SCM SC SC SC CK CAV COV SS SS SS

Shock absorber

NCK Series

Max. absorbed energy: 1 to 200 J

Specifications

-												
Item		NCK										
Series		0.1	0.3	0.7	1.2	2.6	7	12	20			
Type/Classification		Spring return without adjuster										
Max. energy absor	ption J	1	3	7	12	26	70	120	200			
O.D. thread size	mm	M8x0.75		M10x1.0	M12x1.0	M14x1.5	M20x1.5	M25x1.5	M27x1.5			
Stroke	mm	4.5	6	8	10	15	20	25	30			
Max. absorbed energy		4.0	6.2	12.6	21.6	20.0	84.0	96.4	108.0			
per hour	KJ/11	4.0	0.3	12.0	21.0	39.0	04.0	00.4	100.0			
Max. colliding spee	1.0	1	1.5 2.0			2.5 3		.0				
Max. operating free	80	35	3	0	25	20	12	9				
Ambient temperatu	ıre °C	-10 (14°F) to 80 (176°F)										
Max. load (resistan	nce) N	525	1150	2010	2750	4000	7980	10950	15380			
Return time			0.3 or less	0.4 or less		0.5 or less						
Weight	kg	0.009	0.012	0.02	0.04	0.07	0.2	0.3	0.45			
Return When extended		2	.9	2.0	2.9	5.9	9.8 16		5.3			
spring force	When compressed N	4	.5	4.3	5.9	11.8	21.6	33.3	33.9			
	Item Series Type/Classification Max. energy absor O.D. thread size Stroke Max. absorbed energy per hour Max. colliding speed Max. colliding speed Max. operating freed Ambient temperatu Max. load (resistant Return time Weight Return spring force	Item Series Type/Classification Type/Classification J Max. energy absorption J O.D. thread size mm Stroke mm Max. absorbed energy kJ/hr per hour Max. colliding speed m/s Max. colliding speed m/s Max. operating frequency Cycle/min. Ambient temperature °C Max. load (resistance) N Return time S Weight kg Return When extended N spring force When compressed N	Item Series 0.1 Series 0.1 Type/Classification Image: Classification Max. energy absorption J 1 O.D. thread size mm M8x Stroke mm 4.5 Max. absorbed energy kJ/hr 4.8 per hour M/s 1.0 Max. colliding speed m/s 1.0 Max. operating frequency Cycle/min. 80 Ambient temperature °C °C Max. load (resistance) N 525 Return time S °C Weight kg 0.009 Return When extended N 2 spring force When compressed 4	ItemSeries0.10.3Type/ClassificationI3Max. energy absorptionJ13O.D. thread sizemmM8x0.75Strokemm4.56Max. absorbed energy per hourkJ/hr4.86.3Max. colliding speedm/s1.01Max. colliding speedm/s1.01Max. colliding speedm/s1.01Max. operating frequencyCycle/min.8035Ambient temperature°CMax. load (resistance)N5251150Return timeSWeightkg0.0090.012ReturnWhen extendedN2.9spring forceWhen compressed4.5	ItemSeries0.10.30.7Type/ClassificationJ137Max. energy absorptionJ137O.D. thread sizemmM8x0.75M10x1.0Strokemm4.568Max. absorbed energy per hourkJ/hr4.86.312.6Max. colliding speedm/s1.01.5Max. colliding speedm/s1.01.5Max. operating frequencyCycle/min.803533Ambient temperature°C°CMax. load (resistance)N52511502010Return timeS0.3 or lessWeightkg0.0090.0120.02ReturnWhen extended2.92.0spring forceWhen compressed N4.54.3	ItemNoSeries0.10.30.71.2Type/ClassificationSpring return vSpring return vMax. energy absorptionJ13712O.D. thread sizemmM8x0.75M10x1.0M12x1.0Strokemm4.56810Max. absorbed energy per hourkJ/hr4.86.312.621.6Max. colliding speedm/s1.01.522Max. operating frequencyCycle/min.80353030Ambient temperature°C-10 (14°F) to102750Return timeS0.3 or less0.3 or less0.3 or lessWeightkg0.0090.0120.020.04ReturnWhen extended N2.92.02.9spring forceWhen compressed N4.54.35.9	Item NCK Series 0.1 0.3 0.7 1.2 2.6 Type/Classification Spring return without adjust Max. energy absorption J 1 3 7 12 26 O.D. thread size mm M8x0.75 M10x1.0 M12x1.0 M14x1.5 Stroke mm 4.5 6 8 10 15 Max. absorbed energy per hour kJ/hr 4.8 6.3 12.6 21.6 39.0 Max. colliding speed m/s 1.0 1.5 2.0 39.0 25 Ambient temperature °C -10 (14°F) to 80 (176°F) 4000 25 4000 25 Ambient temperature °C -10 (14°F) to 80 (176°F) 4000 2750 4000 Return time S 0.3 or less 0.3 or less 0.3 or less 0.3 or less Weight kg 0.009 0.012 0.02 0.04 0.07 Return When extended 2.9 2	Item NCK Series 0.1 0.3 0.7 1.2 2.6 7 Type/Classification Spring return without adjuster Max. energy absorption J 1 3 7 12 2.6 7 O.D. thread size mm M8x0.75 M10x1.0 M12x1.0 M14x1.5 M20x1.5 Stroke mm 4.5 6 8 10 15 20 Max. absorbed energy per hour kJ/hr 4.8 6.3 12.6 21.6 39.0 84.0 Max. colliding speed m/s 1.0 1.5 2.0 2.5 2.5 Max. operating frequency Cycle/min. 80 35 30 25 20 Ambient temperature °C -10 (14°F) to 80 (176°F) 7 780 780 Return time S 0.3 or less 0.4 o 0.4 o 0.7 0.2 Weight kg 0.009 0.012 0.02 0.04 0.07 0.2 </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

Note: The speed and absorption capacity of the shock absorber vary depending on the ambient temperature. Values given in the above specifications are for room temperature.

FK Spd Contr

Ending

How to order

CKD

NCK Series

low to order

¹⁸²¹

NCK Series

SCP*3 Operational explanation

(1) Collision

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

CAV2/

COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD/

MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

ShkAbs

FJ

FK

Spd

Contr

Ending

When the workpiece collides with the piston rod, the oil in the tube pushed by the piston is simultaneously pressurized. The pressurized oil passes through grooves on CKD's original slit orifice, and flows toward the oil chamber with an air chamber. The piston is further pressed in by cylinder thrust or workpiece weight, etc., but the area of the slit orifice gradually decreases, so that even higher resistance is generated. These series of operations are done continuously to stop the workpiece smoothly.

(2) Return

When released from the workpiece, the piston returns with the integrated spring. At this time it moves from the seal to the valve stopper, so that the oil return flow path is opened by the cutoff section on the piston. Oil passes through this flow path and the slit orifice and returns to the state before the workpiece collided. In this state, the system is on standby for the next workpiece collision.

Structural explanation

1. The slit orifice smoothly changes (decreases) as the piston moves as shown above.

This structure enables an ideal "stop" when used with a hydraulic damper, but as manufacturing is difficult, it has not been integrated in other brands. CKD has handled this tough issue with linear stopping performance as shown in Fig.1.

2. Generally, the dual tube shown above is used for the orifice area as a structure that changes with piston movement. Multiple small orifice holes in the inner pipe are closed as the piston moves. In this structure, performance via hole positioning precision is greatly affected, and resistance changes with each orifice, preventing smooth operation as shown in Fig. 2.

1822

NCK Series Internal structure and parts list Internal structure and parts list SCP*3 CMK2 CMA2 Basic (without cap) SCM SCG 6 10 2 3 4 6 9 1 12 13 1 8 SCA2 SCS2 CKV2 CAV2/ COVP/N2 SSD2 Л þ SSG Lp_____ SSD CAT MDC2 MVC Capped SMG 17 14 15 MSD/ MSDG V FC* STK 0.1 0.3 NCK-**- 0.7 -C SRL3 7 16 NCK-**- 12 -C 1.2 20 SRG3 2.6 SRM3 Cannot be disassembled SRT3

Parts list

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks	MRL2
								MDOO
1	Rod	Steel	Industrial chrome plating	10	Spring	Piano wire		MRG2
2	Oil seal	Special nitrile rubber		11	Damper case	Steel	Chrome plating	
3	Rod guide	Copper alloy		12	Label	Polyester film		SM-25
4	Air chamber	Nitrile rubber		13	Ball	Alloy steel		
5	Valve	Steel		14	Damper cushion	Polyamide resin	Black	ShkAbs
6	Piston	Cast iron		15	Damper cushion	Polyester resin	Black	-
7	Hexagon nut	Steel	Zinc plated	16	Cushion stopper	Steel	Zinc plated	FJ
8	Valve stopper	Steel		17	Hexagon socket set screw	Steel		
9	E type snap ring	Steel for spring	Zinc plated					FK
				-				

Spd Contr

Ending

NCK Series

• Standard (NCK-**-**) CMK2

Dimensions

SCP*3

CMA2

SCM

SCG

SCA2

SCS2

CKV2 CAV2/ COVP/N2 SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD/

MSDG FC*

STK

SRL3

SRG3

SRM3

SRT3

CAD

MRL2																	
	Code	Basi	ic (00)														
MRG2	Model No.	Α	A'	В	С	Е	F	G	н	I	J	К	L	LL	М	M'	Ν
	NCK-00-0.1	34.5	40.5	4	29.5	6	4	7.5	7	6	M8x0.75	2.8	12	13.9	6	12	23
SM-25	NCK-00-0.3	45.5	51.5	7.5	39	6	4	8	7	6	M8x0.75	2.8	12	13.9	11	16.5	29.0
	NCK-00-0.7	50	57	7.5	41.5	7	4	9	9	8	M10x1.0	3	14	16.2	13	20	31
ShkAbs	NCK-00-1.2	57.5	65	8.5	47	7.5	5	11	11	10	M12x1.0	3.5	17	19.6	15	22.5	35.5
_	NCK-00-2.6	86	96	10.5	70.5	10	5.5	14	13	12	M14x1.5	5	19	21.9	20	30	58
FJ	NCK-00-7	98.5	109.5	12.5	78	11	8	18	19	16	M20x1.5	6	27	31.2	25	36	63.5
	NCK-00-12	129	142	15.5	103.5	13	10	23	24	22	M25x1.5	8	32	37	30	43	87
FK	NCK-00-20	141	154	15.5	110.5	13	10	25	24	22	M27x1.5	8	32	37	35	48	92

Spd Contr

Ending

NCK Series

1825

FK Spd Contr

Ending

Shock absorber selection guide (1)

SCP*3	1 Clarify t	he colliding pat	tern of the devi	ce										
CMK2		a. Simple horizor	ntal collision		g. C	ollision due to free	sliding							
CIVINZ	motion	b. Collision with a	cylinder thrust	n n	notion h. C	ollision with cylinde	er thrust (downward)							
CMA2		c Collision with c	er thrust (upward)											
SCM	Vertical	- d. Collision due to free fall												
	motion	e. Collision with a	cylinder thrust (dow	/nward) r	otation k. Co	olliding with torque of	motor, etc., (oscillation							
SCG	Note: Defer to "Ev	→ 1. Containing with torque of the second s												
SCA2			ns/descriptions	clear to calcula	ate energy									
SCS2	E = all absorbe	$E = all absorbed energy (J) \qquad M = colliding weight (kg) \qquad H = drop height (m)$												
CKV2	$E_1 = kinetic en$ $E_2 = thrust/self$	ergy (J)	V = coll S = NC	iding speed (m/s)	T = to Td - n	N.m)								
CAN2/		$F = pushing force (N) \qquad \qquad F = reduction ratio$												
CAV2/ COVP/N2	L – colliding of	g = gravity acceleration 9.8 m/s ² θ , α , β = tilt angle (deg)												
SSD2	(Slope free													
SSG	R = distance from center of rotation to colliding point (m) D = diameter (m) N = number of rotations (rpm)													
SSD	center of gi	avity (m)	in to ivie = ed	quivalent weight (k	9)									
000	G = position of	center of gravity												
CAT	Example of	f colliding patte	ern											
MDC2			Horizontal colliding	l		Vertical colliding								
MVC		a. Simple horizontal collision	b. Pushing force of cylinder applies	c. Pushing force of motor applies	d. Free fall	e. Cylinder lower limit stopper	f. Cylinder upper limit stopper							
SMG		V	V	Td v		₽								
MSD/	Applications				∣н↓∣м∣↓∨	м	↓ ↓							
MSDG														
FC*				\checkmark			ÊÎ₽							
STK	Kinotic oporav	4	4	4		1								
	E1(J)	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2} \cdot M \cdot V^2$							
SRL3	energy E ₂ (J)		F∙S	$2 \cdot \frac{K}{D} \cdot Td \cdot S$	M∙g∙S	(M·g+F)·S	(F-M·g)·S							
SRG3	All absorbed energy E (J)	E=E1	E=E1+E2	E=E1+E2	E=E1+E2	E=E1+E2	E=E1+E2							
SRM3	Equivalent weight Me(kg)	Me=M	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2} (V = \sqrt{2 \cdot g \cdot H})$	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2}$							
SRT3		g. Free fall	Slope colliding	i. When thrust of cylinder is applied	Oscillation	n colliding	Rotation colliding							
MRL2			6 y 11											
MRG2	Applications			Y .	MR		T							
CM OF			M S	F. M										
SIVI-25		θ	θ	D U		M								
ShkAbs														
FJ	Kinetic energy E₁(J)	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2} \cdot M \cdot V^2$	M∙g∙H	$\frac{J\cdot\omega^2}{2}$ or $\frac{1}{2}\cdot M\cdot V^2$	$\frac{J \cdot \omega^2}{2} = \frac{M \cdot D^2 \cdot \omega^2}{16}$							
FK	Thrust/self-weight energy E ₂ (J)	M·g·S·sinθ	(M·g·sinθ+F)·S	(F-M·g·sinθ)·S	r/R·M·g·S	T R·S	$\frac{T}{R} \cdot S$							
Spd	All absorbed energy E (J)	E=E1+E2	E=E1+E2	E=E1+E2	E=E1+E2	E=E1+E2	E=E1+E2							
Contr	Equivalent weight Me(kg)	$Me = \frac{2 \cdot E}{V^2} (V = \sqrt{2 \cdot g \cdot L \cdot \sin \theta})$	Me= $\frac{2 \cdot E}{\sqrt{2}}$	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2} \left(V = \frac{R}{r} \sqrt{\frac{3 \cdot g \cdot H}{2}} \right)$	$Me = \frac{2 \cdot E}{V^2} (V = \omega \cdot R)$	$Me = \frac{2 \cdot E}{V^2} (V = \omega \cdot R, \omega = \frac{2\pi \cdot N}{60})$							

Ending

3 Check shock absorber specifications range SCP*3 a. Max. repeating cycle [cycle/min.] c. Ambient temperature [°C] CMK2 b. Max. colliding speed [m/s] d. Return time [s] Note: Value of allowable energy absorption may vary depending on colliding speed. Refer to Graph 5 on page 1829. CMA2 4 Calculate actual energy per "Example of colliding pattern" SCM Explanation of code a. Kinetic energy Calculate the E1 value according to "Example of colliding pattern". SCG b. Thrust/self-weight energy ... Calculate the value of E2 according to "Example of colliding E = all absorbed energy J E1 = kinetic energy J pattern". For S (stroke of NCK) in the formula, select a model SCA2 E₂ = thrust/self-weight energy J whose max, absorbed energy exceeds E1, and use S for that model No. SCS2 c. Total absorbed energy If after that the calculation result exceeds Emax (max. energy absorption), select one size larger NCK than the previously CKV2 selected model No., and recalculate. If calculated E is lower than CAV2/ Emax selected model No., the selection is acceptable. COVP/N2 Confirm the equivalent weight 5 SSD2 Me = Equivalent weight [kg] a. Calculate value of Me according to "Example of colliding pattern". SSG b. Usable if Me is within Me range of selected model (calculated value of Me < specified Note: Equivalent weight corresponds to weight of value of Me) according to calculation of Me (catalog value) and "a" for model No. workpiece, even for body moving with thrust, etc., selected at 4 SSD if it is assumed that all of them are kinetic energy c. When exceeding the Me range of the selected model at b, select an NCK one size only. If only the energy formula is used, load is larger, and check conditions in the same manner. restricted by the equivalent weight, because the CAT Note) Equivalent weight (Me) is listed on page 1829 (Graph 4). weight of workpiece will increase sharply in low speed operations. MDC2 Calculation flow chart of step 4 and 5 6 MVC SMG Calculate E1 MSD/ MSDG Select model No. roughly FC* Select one size larger model No. Substitute St of selected model No. for formula E2 STK SRL3 Calculate E₂ SRG3 Calculate $E = E_1 + E_2$ SRM3 SRT3 E < Emax No (Specified value) MRL2 MRG2 Yes SM-25 Calculate Me ShkAbs M'e < Me FJ (Specified No (Calculated value) value) FK Spd Yes Contr End of selection Ending 1827

Shock absorber selection guide (2)

[Graph 2]

SCP*3 CMK2 CMA2 SCM SCG SCA2 SCS2 CKV2 CAV2/ COVP/N2 SSD2 SSG SSD CAT MDC2 MVC SMG MSD/ MSDG FC* STK SRL3 SRG3 SRM3 SRT3 MRL2 MRG2 SM-25 ShkAbs FJ FK Spd Contr Ending

Shock absorber models can be selected either entirely by calculation, as in (1), or through the graph. If not required to grasp energy values, etc., during calculation, if this graph is used, proper model can be selected efficiently.

Energy calculation graph

[Graph 1]

Colliding speed (m/s)

Thrust applies at the horizontal collision

Condition of this figure: Horizontal colliding with thrust m=50 kg, V=1.0 m/s Cylinder bore size ø50 Supply pressure = 0.5 MPa

400

200

100

(8) 60

a) Determine the colliding weight M (kg)...(1)

b) Collision speed V (m/s) ... 2

500

- c) Point of intersection between M and V 3 is kinetic energy E₁ (J). ... 3
- d) Extend ③ to [Graph 2], and refer to the curve in the figure to draw a similar curve. (dotted line) ... ④
- e) Next, if thrust applies, determine thrust F (N) (from bore and pressure of cylinder) by the right end chart of [Graph 3] ... (5)
- f) Determine model No. of NCK according to stroke and max. energy absorption. ... 6

(Select a model No. whose max. energy absorption
 exceeds E₁ calculated in step (3).)

- g) The point of intersection between F and NCK model No. $(\overline{)}$ shows the thrust/self-weight energy E_2 (J). ... $(\overline{)}$
- h) Extend point (B) to [Graph 2], and point of intersection
 (8) with curve (4) shows total energy E (= E₁ + E₂) (J).
 ... (8)

Here, if value E exceeds the selected NCK Emax (max. absorbed energy) at (f), select an NCK model No. one size larger again, and then find E with the same procedure.

 i) Here, if "©" and (a) are extended to [Graph 1], the point of intersection (a) with V (m/s) represents the equivalent weight Me. ... (a)

Check that equivalent weight is within the specified value range [Graph 4].

(When Me exceeds specifications values, return to (f) and repeat the same procedures.)

NCK stroke (mm)

1828

Example of selection

NCK Series Selection guide

Ending

CKD

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

ShkAbs

F.J

FK

Spd

Contr