

SCARA Robot
KSL3000 Robot Language Manual

INSTRUCTION MANUAL

INSTRUCTION MANUAL

• Read this Instruction Manual before using the product.
• Read the safety notes carefully.
• Keep this Instruction Manual in a safe and convenient place for future reference.

SM-A20050-A

MSV-484083

2020-08-06

– a –

SM-A20050-A

KSL3000 Robot Language Manual

2020-08-06

– b –

SM-A20050-A

KSL3000 Robot Language Manual

Preface

This manual explains the SCOL robot language, commands and programming

procedures as they apply to CKD’s KSL series system robot controller.

SCOL stands for "Symbolic Code Language for Robot" and is a robot language made up

of various commands used to control the robot. By using these commands, it is

possible to create programs to make the robot do what you want.

This manual is directed at the people from those who have never written a robot

program to those who have much programming experience. However, this manual

only covers SCOL robot language. For the outline and operating method of the KSL

series system robot controllers, please refer to the following manuals:

 Operator’s Manual

This manual is organized as follows:

[1] An Outline of Robot Language

 This section explains the connection between robot language and robot movement,

and presents a rough outline of commands used in robot language. Be sure to

read this section in order to get a grasp of the fundamentals of robot language.

[2] Writing Programs in Robot Language

 This section describes various rules for writing a program with robot language. Be

sure to read this section before starting to write your own programs.

[3] Explanation of Robot Commands

 This section details what each command means and does. The commands are

listed in alphabetical order for your convenience. This section will come in useful

when you write programs on your own.

[4] Program Examples

 This section contains various examples of robot language programs. Be sure to

use this section for reference when writing your own programs.

[5] Programming Hints and Warnings

 This section explains timing considerations, things not to do, and things to watch

out for when writing a program. Be sure to read it before beginning work on your

own program. Also, look this section over should your program be not working the

way you intended.

2020-08-06

– c –

SM-A20050-A

KSL3000 Robot Language Manual

Table of Contents

 Page

Section 1 An Outline of Robot Language ... 1-1

1.1 Robot Movement .. 1-1

1.2 Robot Language ... 1-3

1.3 Types of Commands ... 1-5

Section 2 Writing Programs in Robot Language ... 2-1

2.1 Program Configuration.. 2-1

2.1.1 Files ... 2-1

2.1.2 Program ... 2-1

2.2 Character Set ... 2-2

2.3 Identifiers .. 2-3

2.4 Variables and Constants ... 2-4

2.4.1 Scalar Data .. 2-4

2.4.2 Vector Data .. 2-7

2.4.3 System Variables ... 2-9

2.4.4 System Constants ... 2-11

2.5 Expressions .. 2-12

2.5.1 Computational Expressions ... 2-13

2.5.2 Logical Expressions ... 2-18

2.6 Labels ... 2-18

2.7 Remarks and Comments .. 2-19

2.8 Programs .. 2-20

2.8.1 Program Declaration .. 2-20

2.8.2 Subprograms ... 2-21

2.8.3 Library ... 2-23

2.8.4 Multitask Processing .. 2-26

2.8.5 Global Variable Definition .. 2-31

2.8.6 Array Type Variable ... 2-32

Section 3 Explanation of Robot Commands ... 3-1

3.1 Command Explanations.. 3-1

3.2 Explanation of Commands .. 3-8

Section 4 Program Examples ... 4-1

Section 5 Programming Hints and Warnings .. 5-1

5.1 Program Execution Timing .. 5-1

5.1.1 Arm Movement and Signal I/O Timing ... 5-1

5.1.2 Synchronization of Arm Movement and Program Execution 5-3

2020-08-06

– d –

SM-A20050-A

KSL3000 Robot Language Manual

5.1.3 DELAY Command and WAIT Command ... 5-5

5.2 Things Not to Do When Programming .. 5-8

5.2.1 Variables .. 5-8

5.3 Things to Watch Out for When Writing a Program .. 5-9

5.3.1 Types of Commands .. 5-9

5.3.2 Robot Coordinate Systems .. 5-11

5.3.3 Short-Cut Movement ... 5-19

5.3.4 Robot Configuration ... 5-25

5.3.5 Data Blocks ... 5-27

5.3.6 Global Data Block .. 5-31

5.3.7 Robot Movement Speed .. 5-33

Appendix A List of Commands .. 6-1

Appendix B List of Reserved Words .. 6-5

Appendix C Contents of Library File (SCOL.LIB) ... 6-7

Appendix D Domains and Ranges of Calculator Functions 6-10

Appendix E How to Read Symbols ... 6-11

Appendix F List of Compile Errors .. 6-13

Appendix G Dynamic Link Library .. 6-23

Appendix H SCOL Program Language Executing Stop of Pre-Reading 6-33

2020-08-06

– 1-1 –

SM-A20050-A

KSL3000 Robot Language Manual

Section 1

An Outline of Robot Language

This section describes the connection between robot language and robot movement,

and presents a rough outline of commands used in robot language.

1.1 Robot Movement

Robots do work in place of people. For example, let’s say that somebody has to

attach a part to a workpiece coming down a conveyor. The employee takes a part

from a parts bin and attaches the part to a workpiece transported to his or her

station by a conveyor. If we were to set up a robot to do this work instead, we

would have an arrangement something like that shown in Figure 1.1.

In Fig. 1.1, the robot grabs a part from the parts feeder and attaches the part to a

prescribed position of the workpiece coming down the conveyor. Considering this

work from the point of view of the robot, we would come up with a diagram like that

of Figure 1.2. In this figure, the robot first moves straight down from Point B, and at

Point A it grabs a part. After grabbing the part, the robot moves back up from Point

A to Point B. From Point B, the robot moves to Point C, which is directly above the

part attachment location Point D. The robot then drops down from Point C to Point

D, and attaches the part to the workpiece. When the robot is finished attaching the

part, it moves back up to Point C, and then finally back to Point B. This completes

one work cycle.

2020-08-06

– 1-2 –

SM-A20050-A

KSL3000 Robot Language Manual

Fig. 1.1 Assembly work

Fig. 1.2 Robot movement

A: Position where robot
grips a part

D: Position where a part
is mounted

B: Position just above A C: Position just above D

Conveyor

Workpiece
Parts feeder

2020-08-06

– 1-3 –

SM-A20050-A

KSL3000 Robot Language Manual

1.2 Robot Language

Robots do assembly work and other tasks in place of people. However, someone

still has to teach the robot what to do.

Robots will only do what you tell them to do, and it's important to tell them exactly

what you want it to do.

Telling a robot what to do is called "teaching." Making a robot do what you taught it

to do is called "playback." Of course, this only applies to what are called "playback

robots," which repeat (or playback) the movements you instructed the robot when

teaching.

There are various ways to teach a robot what to do. One is the method of making

a robot do a job in order. For example, when carrying out painting and spot welding

work, someone teaches a robot as he does it. The robot does the work as it is

moving along a taught motion.

In order to achieve more complicated work, however, we need change robot motion

according to the states of peripheral equipment. As understood by the assembling

example, there may be problems with change in attachment parts in response to

types of workpieces carried by a conveyor, or with repeated attachment and

detachment of the parts when mis-attachment occurs. The robot needs response

to such circumstances that occur around the robot. Thus we must provide the

method how the robot responds to various circumstances.

A language used for writing robot movement programs is called "Robot Language".

A robot task expressed in the robot language is referred to as "Program", and a task

to create the program is called "Programming". KSL series employ the SCOL

Language (which stands for Symbolic Code Language for Robot) as our unique

robot language. The example of the assembly work described in the previous

paragraph can be expressed in the SCOL Language as shown below.

2020-08-06

– 1-4 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM ASSEMBLY

 MOVE B Move to Point B.

 OPEN1 Open Hand 1.

 MOVE A Move to Point A.

 CLOSE1 Close Hand 1.

 DELAY 0.5 Wait 0.5 seconds before grabbing the part.

 MOVE B Move to Point B.

 MOVE C Move to Point C.

 MOVE D Move to Point D.

 OPEN1 Open Hand 1.

 DELAY 0.5 Wait 0.5 seconds before letting go off the part.

 MOVE C Move to Point C.

 MOVE B Move to Point B.

END

The word PROGRAM marks the beginning of a program and the word END marks

the end of a program. The name of this particular program is ASSEMBLY. MOVE

A means to move to Point A. OPEN 1 and CLOSE 1 mean to, respectively, open

and close Hand 1 of the robot. DELAY 0.5 means not to do anything for 0.5

seconds. Furthermore, the locations of Points A, B, C and D are defined (taught)

beforehand by physically guiding the robot (in the teaching mode) to these points.

Thus we can express robot tasks in SCOL by arranging movement commands that

are given to the robot in sequence for achieving the taught tasks.

2020-08-06

– 1-5 –

SM-A20050-A

KSL3000 Robot Language Manual

1.3 Types of Commands

In the previous section, we saw how SCOL is used to express the action of the robot.

Here, we explain a little bit more about SCOL commands themselves.

In addition to commands like "MOVE A" which actually move the robot, there are

many other commands which do such things as sending signals to external

equipment or directing the robot to do the same thing over and over again. Table

1.1 presents a list of SCOL commands.

SCOL commands can be roughly classified into six categories.

(1) Movement control commands

These commands move the robot. Commands which temporarily stop the

robot, interrupt movement, or restart the robot are also included in this category.

Commands which actually move the robot are called movement commands.

(2) Program control commands

Program control commands control the execution of the program by doing such

things as executing certain parts of the program in accordance with external

signals or causing portions of the program to be carried out repeatedly.

(3) I/O (Input/output) control commands

These commands are used to read in (input) or send out (output) signals to and

from external equipment. Hand open/close and data input/output of

communication channel are included in the I/O control command.

(4) Movement condition commands

These commands are used to specify the configuration and speed of various

joints of the robot while it is moving.

(5) Calculator commands

These commands are used to invoke (use) mathematical functions such as the

trigonometric functions and the square root function.

2020-08-06

– 1-6 –

SM-A20050-A

KSL3000 Robot Language Manual

(6) Movement reference commands

These commands are used to reference and check the movement of the robot.

For example, these commands could be used to determine what percentage of

a certain motion has been completed at a certain time. They also include

commands for setting of the timer used during program execution and

referencing to robot operating mode.

These commands, in combination with other commands, are used to output

signals to the external equipment when the robot has completed up to 70% of

the given task, or to branch the program when movement of the robot is

recognized as an error if the movement is not finished within a specified time.

By combining these commands, tasks suitable for the robot can be

programmed.

Table 1.1 Functions of the SCOL language

Type Purpose Commands

Movement control
commands

(1) Move the robot.

(2) Temporarily stop the robot.

(3) Move the robot hand.

(4) Interrupt or restart operation.

MOVE, MOVES, MOVEC,
MOVEA, MOVEI, READY
MOVEJ

DELAY

OPEN1, OPENI1, OPEN2,
OPENI2, CLOSE1,
CLOSEI1, CLOSE2,
CLOSEI2

BREAK, PAUSE, RESUME

Program control
commands

(1) Monitor external signals,
timers, etc.

(2) Control program execution.

(3) Remarks and comments on
program

ON ~ DO ~, IGNORE
IF ~ THEN ~ ELSE,
WAIT, TIMER

PROGRAM, END, GOTO,
RCYCLE, RETURN, FOR
~ TO ~ STEP ~ NEXT,
STOP
TASK, KILL, SWITCH,
TID, MAXTASK

REMARK

2020-08-06

– 1-7 –

SM-A20050-A

KSL3000 Robot Language Manual

Type Purpose Commands

I/O control
commands

(1) Input and output of external
signals.

DIN, DOUT,
PULOUT, RESET,
BCDIN, BCDOUT

(2) Input and output of
communication data.

PRINT, INPUT

Movement condition
commands

(1) Specify conditions for
controlling robot movement.

CONFIG, ACCUR, ACCEL,
DECEL, SPEED, PASS,
TORQUE, GAIN, ENABLE,
SETGAIN, DISABLE,
NOWAIT, PAYLOAD,
FREELOAD, SWITCH,
MOVESYNC

Palletizing command (1) Load a library.

(2) Initialize a pallet.

(3) Move a pallet to the
specified position.

LOADLIB

INITPLT

MOVEPLT

Calculator functions (1) Perform calculations for real
numbers.

(2) Perform calculations
involving positional and
coordinate data.

(3) Use an array.

SIN, COS, TAN, ASIN,
ACOS, ATAN, ATAN2,
SQRT, ABS, SGN, INT,
REAL, LN, MOD, LOGIO,
EXP, AND, OR, NOT

HERE, DEST, POINT,
TRANS

DIM, AS

Movement reference
commands

(1) Check robot movement. MOTION, MOTIONT,
REMAIN, REMAINT

(2) Check system movement. MODE, CONT, CYCLE,
SEGMENT

(3) Assign a coordinate system. TOOL, BASE, WORK

Others (1) Define a variable.

(2) Restore an updated value in
the program file.

(3) Save data at power OFF.

GLOBAL, DATA, END

RESTORE

SAVEEND

2020-08-06

– 2-1 –

SM-A20049-A

KSL3000 Robot Language Manual

Section 2

Writing Programs in Robot Language

In Section 1, we got a rough idea of what a robot language is and how it works. Now,

in Section 2, we will describe how to write a program in robot language.

2.1 Program Configuration

 Below we present a general outline of program configuration with the SCOL

language.

2.1.1 Files

 In order to get the robot to perform a task, you need both a program written in robot

language and positional data for use by the program. That is, for the KSL series,

you have to have a matched set of a program (or programs) and positional data.

This matched set is called a file. Program execution and editing are on the file

basis.

2.1.2 Program

 A program is an expression using robot language of a set of operations performed

by the robot. A program can also be called and used by another program. It is

possible preparing frequently-used operations and preset operations as a single

program and calling these programs when needed. Programs that are called in this

way are called subprograms, and the program that calls the subprogram is called a

main program.

 A single file can include multiple programs. When a program is executed, unless

specified otherwise, the program at the start of the file is executed as the main

program. When a subprogram is called, the subprogram must be located in the

same file as the main program. Also, even if multiple programs are contained in a

file, all of these programs are not executed in order. Instead, the programs are

executed until the end of the main program as a single unit.

 Also, multiple programs can be executed simultaneously using the TASK command

(multitask execution). For details on multitask execution, see Para. 2.8 “Programs.”

Programs are edited from the teach pendant using the program editor function of the

controller. For details on how to use the editor, see the Operator’s Manual.

2020-08-06

– 2-2 –

SM-A20049-A

KSL3000 Robot Language Manual

2.1.3 Positional Data

 Positional data for use in a program (or programs) must be placed in the same file

as the program (or programs). Positional data in a file can be accessed (used) by

all programs in that file. Positional data in a file cannot be accessed by any

programs not in that file.

 Positional data is "fed" to the robot using the data editor function of the controller.

See the Operator’s Manual for information on how to use the data editor.

2.2 Character Set

 The SCOL character set is made up of alphanumeric characters and the following

special symbols.

 Alphanumeric characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 2 3 4 5 6 7 8 9 0

 Special symbols

“ ‘ () + – * / , . < > =

! [] () % ^ & ?

spaces

 With the exception of the small letters, these characters and symbols can all be

input from the teach pendant. When executing a program, the robot makes no

distinction between capital letters and small letters. For reading method of symbols,

see "Appendix E."

2020-08-06

– 2-3 –

SM-A20049-A

KSL3000 Robot Language Manual

2.3 Identifiers

 In the SCOL robot language, identifiers are used to express commands, program

names, variable names, and labels which are used to specify program branches.

Identifiers must start with an alphabetic character and consist of alphanumeric

characters. There is no particular limit on length, although the robot will only

differentiate the first ten alphanumeric characters. The robot does not care

whether you use capital or small letters, since it will treat them the same anyway.

Also, special symbols and spaces cannot be used in identifiers.

 Special characters or spaces are used to separate identifiers.

Example:

SHIBAURAROB

shibaurarob

SHIBAURAROBOT

 The three identifiers above are all treated as the same identifier “SHIBAURAROB”.

 Some identifiers have already been defined by the SCOL language itself. These

are called reserved words, and you as the programmer cannot use them for any

other purpose except for that already defined. A list of reserved words is shown in

Appendix B. In addition to SCOL commands, you will find words used in the

computer system and words set assigned for future expansion.

 Do not use identifiers with the same name for different meanings. For example,

when creating a program, do not use the same identifier for both the program name

and variable name.

2020-08-06

– 2-4 –

SM-A20049-A

KSL3000 Robot Language Manual

2.4 Variables and Constants

 Not all variables and constants take the same form, and these different forms of

data are called data types. Scalar type (integer type, real number type and

character string) and vector type (position type, coordinate type and load type) can

be used in the SCOL language. Variables are divided into global variable and auto

variable according to the definition method. All taught data and variable defined in

the area between the reserved words GLOBAL and END are called the global

variable. Such variables can be referred and changed from any part of the

program. For all data types of global variables, the array can be declared. For

descriptions of global variable and array, see Para. 2.8.5.

 The work area in the controller is used for all data. The defined value is substituted

for the global variables other than the array without a specific initial value at the start

of the program. If the value is entered for the variable during program execution,

only the work area is changed. If the power of controller is turned off, execution file

is reselected or the file is edited, work area is reset by the variable’s initial value

saved in the file and the changed value is lost accordingly. This is also applicable

for change of the taught data. If the data in the file is to be overwritten, the

RESTORE command should be executed in the program.

2.4.1 Scalar Data

 There are three types of scalar data, i.e., integers, real numbers and character

strings. Scalar type auto variables can only be used in the program in which they

were declared. That means that if you use a variable with the same name in

another program, the two variables will be completely independent and have nothing

to do with each other. Therefore, when passing data from one program to another,

make it a point to, if possible, redefine the variable as the scalar type global variable

or declare the arguments in the program. See Para. 2.8 "Programming."

 (1) Integer data

 (a) Constants

 SCOL can handle integer values ("whole numbers") in the range of

–2147483648 to +2147483647. When an integer is used as a constant in a

program, if it is positive, directly describe the value; if it is negative, describe

the value following the – symbol. If a value of 11-digit or over is entered by

the INPUT command, an error occurs.

2020-08-06

– 2-5 –

SM-A20049-A

KSL3000 Robot Language Manual

Example:

0

234

–39208

5963

 (b) Variables

 Variables are distinguished by identifiers and can be in the range of

–2147483648 to +2147483647, just as above. The data type of a variable

is determined by the data type of the first number you assign to that variable.

For example, if the first thing you assign to a variable is an integer, all other

numbers substituted into that variable will become integers. That means

that if you later try to insert a real number into this variable, the controller will

chop off all the decimal places and treat what is left as an integer.

 The variable comes in two types; the global variable which is valid in the

entire program and the general variable which is valid in a part of the

program. The global variable can be changed from any part of the

program.

 (c) Logical values

 Logical values are used in the program when making conditional judgments.

Logical expressions and commands such as DIN (which check input signals)

return logical values.

 A logical value may have one of two values; TRUE or FALSE. Internally,

logical values are treated as integers with 1 being TRUE and 0 being

FALSE.

 Note: Strictly speaking, 0 is considered as FALSE and everything else is

considered as TRUE.

 (2) Real data

 With SCOL, numbers are treated as real types with the exception of certain

special cases.

 (a) Constants

 SCOL can handle real numbers having an absolute value in the range of

approximately 5.87×10-39 (2-127) to 6.80×1038 {(223-1)×2106 }. The number

significant digits for the mantissa [the mantissa is the part of the number to

the right of the decimal point) is approximately 7 in Base 10. (The precision

is 223).

2020-08-06

– 2-6 –

SM-A20049-A

KSL3000 Robot Language Manual

The number of allowable digits is 9 for the integer and 3 for the decimal.

If a value consisting of more than these digits is entered by the INPUT

command, an error occurs.

 When a real number is used in the program, if it is positive, directly describe

the value; if it is negative, describe the value following the – symbol.

 When the decimal part is 0, it is omissible. However, when the decimal

point is omitted, the data are treated as integer type data. In addition, since

the integer part cannot be omitted, even if the absolute value of a numeric

value is less than 1, it is necessary to designate 0 to the integer part.

 Example:

 1234.567

 –28.16

 0.00985

 1234567.

 –369.

 As mentioned above, the precision of the computer is somewhat limited

when handling decimal values. Usually this is no problem if the number of

decimal places is reasonable. Therefore, when working with the robot, try

to use the following as the minimum set units.

Distance (X, Y, and Z data) 0.001 mm

Angles (C data) 0.001 deg.

Time 0.01 sec.

Rates (Speed, torque, etc.) 1%

Mass 0.01 kg

Inertia 0.01 kgm

 (b) Variables

 Variables are distinguished by identifiers and have the same range as listed

above for constants. The data type of a variable is determined by the data

type of the first number you assign to that variable. For example, if the first

thing you assign to a variable is a real number, that variable will become a

real type.

2020-08-06

– 2-7 –

SM-A20049-A

KSL3000 Robot Language Manual

 (3) Character strings

 Character strings can only handle constants. They are expressed by placing

one or more characters between quotation marks. In the example below, the

character string is SCOL MESSAGE.

 Example: "SCOL MESSAGE"

2.4.2 Vector Data

 As opposed to scalar-type data which only holds one data element, vector-type data

holds multiple data elements. There are three types of vector data in SCOL;

positional vectors, coordinate vectors and load vectors.

 Vector-type data can be expressed by enclosing one to five elements in brackets

{ }. In addition to positional vectors, coordinate vectors, and load vectors,

vector-type data is also specified for TORQUE and GAIN commands by enclosing in

brackets { }.

 Vector type data other than the vector type global variable such as data taught by

the data editor are temporarily stored in the working area of the controller. The

data are not created in the file. Such a vector type variable can be used only in the

declared program. Thus, even if the same variable is used in another program, the

content of the former does not accord with that of the latter. When data are passed

from one program to another program, the passed data should be redefined as the

vector type global variable or it should be an argument. For details of arguments,

see "2.8.2 Subprograms."

 (1) Positional data

 Positional data is used by the robot to describe positions. Positional vectors

have the following format.

(X, Y, Z, C, T, <configuration>)

 X, Y, Z, C and T are coordinate values represented by real numbers. Units

are in millimeters or degrees.

 <Configuration> holds an integer from 0 to 2 that describes the set-up

configuration of the robot.

0 ... Free (Set-up of the system is undefined)

1 ... Left hand system

2 ... Right hand system

2020-08-06

– 2-8 –

SM-A20049-A

KSL3000 Robot Language Manual

 (2) Coordinate data

 Coordinate data is used by the robot to specify coordinate systems.

Coordinate vectors have the following format:

 (X, Y, Z, C)

 X, Y, Z and C are coordinate values represented by real numbers. Units are

in millimeters or degrees.

 Coordinate vectors allow one to convert between different coordinate systems

as shown in Figure 2.1. In the figure, we have an original coordinate system

X, Y and Z. Then, with data provided by a coordinate vector (x, y, z, c), the

original coordinate system is shifted parallel along its axes by the amounts x, y

and z. This forms a new coordinate system centered around O'. Once this

is done, we twist the new coordinate system around the Z axis by an amount c.

We are now finished orientating our new coordinate system X', Y', and Z'.

Fig. 2.1 Coordinate transformation

Z

X

Y

Z’

X’

Y’

O

O’

x

y

z

a

b

c

2020-08-06

– 2-9 –

SM-A20049-A

KSL3000 Robot Language Manual

 (3) Load data

Load data is used to define the physical loads acting on the end effector

(hand) of the robot. Load vectors have the following format.

{<mass>, <center of gravity offset>}

<mass> is the mass of the load acting on the tip of the robot hand. Units are

in kg.

<center of gravity offset> is the amount representing the distance between the

center of gravity applied to the tip of the robot hand and the center of the tool

flange of the robot (unit: mm).

2.4.3 System Variables

The SCOL language provides special variables that are used in the programs to

specify and referent robot operating conditions and system conditions. These

variables are called system variables. Just like other variables, you can refer to

these variables in the program, change their value, etc. However, you have to be

careful when setting or substituting values into system variables since doing this will

directly effect robot operating conditions.

A list of system variables is presented below in Table 2.1.

2020-08-06

– 2-10 –

SM-A20049-A

KSL3000 Robot Language Manual

Table 2.1 List of system variables

Name Description Effective
values

Initial
value

Data type

CONFIG Robot configuration 0, 1, 2 0 Integer type

ACCUR Positioning accuracy 0, 1 1 Integer type

ACCEL Acceleration (during
acceleration)

0 ~ max % 100 Integer type

DECEL Deceleration (during
deceleration)

0 ~ max % 100 Integer type

SPEED Speed of movement 0 ~ max % 100 Integer type

PASS Short-cut movement
parameter

0 ~ 100% 100 Integer type

TORQUE Maximum torque on
each axis

0 ~ max % 300 Vector type

GAIN Servo gain on each
axis

0.1 1 Vector type

TOOL Tool coordinates 0 Coordinate
type

BASE Base coordinates 0 Coordinate
type

WORK Work coordinates 0 Coordinate
type

TIMER Timer 0 ~ – Real type

ERROR Error information – Integer type

PLAYLOAD Load on the robot 0 ~ 0 Load type

SWITCH Multitask 0, 1 1 Integer type

TID Task number 1 ~ – Integer type

PLCDATAR1 ~ 8 Simplified PLC
interface

0 ~ 65535 0 Integer type

PLCDATAW1 ~ 8 Simplified PLC
interface

0 ~ 65535 0 Integer type

 Note: Maximum values are set separately for each system.

When you change the contents of a system variable related to movement control,

that change will not take effect until the next motion; it will have no effect at all on a

motion in progress at the time; However, by using a WITH construct, it is possible

to temporarily set a system variable with regards to one motion command. For

example:

MOVE A1 WITH SPEED = 50

2020-08-06

– 2-11 –

SM-A20049-A

KSL3000 Robot Language Manual

Furthermore, be warned that SCOL does not check to see whether a value

substituted into a system variable is within the permissible range. When the value

not be in the permissible range, the system sets a value according to the following

rules.

 • When you try to insert a value less than the minimum permissible value, the

minimum permissible value will be entered in its place.

 • When you try to insert a value greater than the maximum permissible value, the

maximum permissible value will be entered in its place.

See Section 3 for details on how to use system variables.

2.4.4 System Constants

In order to make programs easier to read, SCOL provides the system constants

shown in Table 2.2. These names can be substituted into the program in place of

numbers in order to make it easier to see what you are doing. However, be sure to

use them only in the locations specified in the Comments column of Table 2.2.

Table 2.2 List of system constants

Name Value Comments (Locations for use)

FREE

LEFTY

RIGHTY

0

1

2

In the system variable CONFIG

In the POINT command

COARSE

FINE

0

1

In the system variable ACCUR

OFF

ON

0

1

In the system variable GAIN

In the SETGAIN command

PAI 3.141593 Pi value

CONT

CYCLE

SEGMENT

0

1

2

In the MODE command

2020-08-06

– 2-12 –

SM-A20049-A

KSL3000 Robot Language Manual

2.5 Expressions

This paragraph describes expressions provided by SCOL for substitution, calculation

and judgment.

In SCOL language, expressions can be not only used independently to perform

substitution and calculation, but also used within commands. Expressions include

computational expressions where the calculation result is substituted into a variable

and logical expressions that determine greater than/less than or true/false results.

The operands shown below can be used. Please note that execution result of 0/0

is -1 and of 0 ^ 0 is 0 instead of an error as would normally be expected.

Table 2.3 Operands

Type Operand Function Example

Arithmetic
functions

^

–

*, /

+, –

MOD

=

Exponentiation

Minus sign

Multiplication,
division

Addition,
subtraction

Remainder

Substitution

A ^ B (A to the B power)

–A

A * B, A / B

A + B, A – B

A MOD B (The remainder when A is
divided by B.)

A = B (Puts the value of B into A.)

Relational
function

= =

< >, > <

<

>

< =, = <

> =, = >

Equal

Not equal

Less than

Greater than

Less than or equal

Greater than or
equal

A = = B

A < > B, A > < B

A < B

A > B

A < = B, A = < B

A > = B, A = > B

Logical
operands

AND

OR

NOT

Logical product

Logical sum

Negation

A AND B

A OR B

NOT A

Functions SIN

COS

TAN

ASIN

ACOS

Sine

Cosine

Tangent

Arcsine

Arccosine

SIN (A)

COS (A)

TAN (A)

ASIN (A)

ACOS (A)

2020-08-06

– 2-13 –

SM-A20049-A

KSL3000 Robot Language Manual

Type Operand Function Example

Functions ATAN

ATAN2

SQRT

ABS

SGN

INT

REAL

LN

LOG10

EXP

Arctangent

Arctangent

Square root

Absolute value

Sign

Changes number to
an integer.

Changes number to
a real number.

Natural logarithm

Common logarithm

Exponential base e

ATAN (A)

ATAN2 (A, B) (Arctangent of A / B)

SQRT (A)

ABS (A)

SGN (A) (Extract and return the
sign of A)

INT (A)

REAL (A)

LN (A)

LOG10 (A)

EXP (A)

Parentheses () may be used inside the expressions.

2.5.1 Computational Expressions

In the SCOL language, the results of computations on the right side of an equal sign

are placed on the left. Variables and constants may be used in the expressions.

 (1) Order of computational priority

In SCOL language, calculation is performed in the same order of priority as

regular computational operations. Specifically, operations are performed

based on the rules below.

• If the expression contains brackets, the operations inside the brackets are

performed first.

• Operations are performed in the order of assignment of negative signs,

calculation of exponents, multiplication and division (*, /), and addition and

subtraction (+, -).

• If two operations have the same priority, the operations are performed from

the left to the right of the expression.

For example:

a = b + c * d / (e –f) – g

2020-08-06

– 2-14 –

SM-A20049-A

KSL3000 Robot Language Manual

The order of computation for the above expression is:

1. Calculate e – f. e–f

2. Calculate c * d. c * d

3. Divide c * d by e – f. (c * d) / (e – f)

4. Add the above result to b. b + (c * d) / (e – f)

5. Subtract g from the above result. (b + (c * d) / (e –f)) – g

Table 2.4 presents the order of computational priority for various operations.

Table 2.4 Order of computational priority

Priority Operation Operand Grouping
convention

High

Low

Parenthesis

Assignment of vector elements

Assignment of negative signs and negations

Multiplication, division, remainder, exponentiation

Addition, subtraction

Comparison

Equality, inequality

Logical product, logical sum

Substitution

()

.

–, NOT

*, /, MOD, ^

+, –

<, >, < =, > =,
= <, = >

= =, < >, > <

AND, OR

=

Left to right

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Note: Explanation of grouping convention:

Left to right 1 + 2 – 3 is interpreted as (1 + 2) – 3.

Right to left NOT–3 is interpreted as NOT (–3).

2020-08-06

– 2-15 –

SM-A20049-A

KSL3000 Robot Language Manual

(2) Computation of scalar type data

Scalar type data can be used in calculations in combination with computational

operands. However, when even one number in an expression is a real

number, the output of that expression will also be a real number. Also, the

following functions will all return a real number.

SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, REAL, LN, LOG10, EXP

When the variable on the left side of the equation is an integer type and the

output of the calculation is not an integer, the output will be converted into an

integer before being assigned to the variable. Do not forget, however, that all

decimal points are chopped off when a real number is converted to an integer.

On the other hand, when converting from an integer to a real number, the

number of significant digits is limited. When you want to make it clear what

kind of data type you are dealing with, use the INT or REAL command. Note

that character strings cannot be used in calculations.

Calculations may be carried out between the elements of vector-type variables

and scalar data. In this case, an element specifier is appended to the end of a

vector-type variable to specify the element which is involved in the calculation.

The value of the element is then drawn out from the vector-type variable and

used in the calculation.

As element specifiers, ".X", ".Y", ".Z", ".C" and ".T" may be used. You may

also numerically specify the element position with ".1", ".2", ".3", ".4" and ".5."

Examples:

A = POINT1.X/25

GAIN={GAIN. 1,GAIN.2,0,0,0}

Note: You can only use this to return the value of an element from the inside

of a vector-type variable. You cannot change the value of the element

itself.

2020-08-06

– 2-16 –

SM-A20049-A

KSL3000 Robot Language Manual

(3) Computation of vector-type data

You can add and subtract corresponding elements of two vectors.

Computation is a possible only between the same type variables. The

<CONFIG> element is not involved in the calculations but rather takes the

value of the variable substituted into it.

Example: Given the following two position vectors and two coordinate

vectors;

P1: (10, 20, 30, 40, 50, RIGHTY)

P2: (–5, 10, –15, 20, –25, LEFTY)

H1: (100, 50, –50, 0)

H2: (12, 34, 56, 78)

and performing the following operations,

P3 = P1 – P2

H3 = H1 – H2

we obtain:

P3: (15, 10, 45, 20, 75, RIGHTY)

H3: (88, 16, –106, –78)

Note: The <CONFIG> element in P3 is indeterminant.

(4) Substitution into vector type data

The following methods are available to substitute (insert) a constant, a variable

or the result of a computation into an element of vector-type data.

 (a) Commands to convert a row of scalar-type data into vector-type data

A POINT command and a TRANS command are available to convert rows of

scalar data into a vector data. POINT converts scalar data into positional

vector data, and TRANS converts scalar data into coordinate vector data. If

an element is not included in the expression, that element is treated as 0

within the expression. For details on how to use these commands, see

"Section 3."

Example:

P1 = POINT(P2.X, P2.Y, P2.Z + 50, 0, 0)

H1 = H2 + TRANS(100, 100)

2020-08-06

– 2-17 –

SM-A20049-A

KSL3000 Robot Language Manual

Generally, vector-type data declarations are made as shown below.

Positional data POINT (X, Y, Z, C, T, <CONFIG>)

Coordinate data TRANS (X, Y, Z, C)

X, Y, Z, C and T are coordinate values represented by real numbers. Units

are in millimeters or degrees.

<CONFIG> stands for "configuration" and holds an integer from 0 to 2 that is

used to describe the set-up of the robot.

0 ... Free (Set-up of the system is undefined)

1 ... Left hand system

2 ... Right hand system

Any omitted elements are taken as "0".

Note 1: In order to make it clear just what kind of data type you are using,

always try to use the POINT command when creating positional type

data and the TRANS command when creating coordinate type data.

Note 2: When position data which have not been taught are used in a program

of the robot language, the position data are temporarily stored in the

controller memory. Thus, when the program is reset, the position data

are cleared. The position data are only valid in the program which uses

data. Therefore, to use the position data in a subprogram, it is

necessary to pass it as an argument. For details of arguments, see

"2.8.2 Subprograms."

Note 3: The substitution and reference to the array type data (type of variable

name [index number]) are dealt in the same manner as the original data

type (scalar type and vector type) of the array type data.

2020-08-06

– 2-18 –

SM-A20049-A

KSL3000 Robot Language Manual

2.5.2 Logical Expressions

With SCOL, logical expressions can be used in combination with the commands IF,

WAIT and ON. Also, six relational operands are available (<, >, < = (or = <), > = (or

= >), < > (or > <), and = =). Also, logical expressions may be combined using the

logical operands AND, OR and NOT. Scalar constants, scalar variables and the

results of calculations may be used as data in logical expressions.

When evaluating equivalence, use the "= =" sign and not the "=" sign. When

comparing real numbers, differences of 0.001 or less will be ignored.

Logical expressions will return an integer value of 1 if true and 0 if false. The

calculation result is an integer type number.

Examples:

1) IF K = =K2 * K3 THEN K = K2

ON MOTION > = 50 DO DOUT (1,2)

2) When IF J1 THEN GOTO TRUE1 ELSE GOTO FALSE1 is executed, If J1 is

an integer 0, or a real number with absolute value J1 is equal or less than

0.001, the comparison is considered as FALSE, then the program branches

off to FALSE1.

If J1 is a value other than an integer 0, or an real number with absolute

value J1 is greater than 0.001, the comparison is considered as TRUE, then

the program branches off to TRUE1.

2.6 Labels

With the SCOL language, program branches are specified by labels placed at the

beginning of the branch destination. When labeling a statement as a branch, put a

colon at the end of the identifier.

When directing the program to branch to another location with the GOTO command,

do not put a colon at the end of the label.

Program branching may only be carried out within a single program. You cannot

branch from one program to another. Also, you may use the same labels in

different programs, but you cannot use the same label in a single program.

Examples:

LOOP1: MOVE P1

GOTO LOOP1

2020-08-06

– 2-19 –

SM-A20049-A

KSL3000 Robot Language Manual

2.7 Remarks and Comments

The SCOL language allows you add comments to your program in order to make it

easier to understand. Comments can be entered by using the teach pendant to

type in whatever you want to say. Remarks and comments are written in any one

of the following formats.

(1) REMARK command

You can write what you want to say after a REMARK command. In the

REMARK command, everything written until the end of the line (until the [EXE]

key is pressed) is treated as a comment, and it is not executed as a program.

Because the REMARK command is an independent command, it cannot be

written after another command.

Example:

REMARK SCOL SAMPLE PROGRAM

(2) Single quotation mark

Text written after a single quotation mark (') is treated as a comment. This

method enables you to insert comments after other commands. Everything

written after the single quotation mark (') until the end of the line (until the [EXE]

key is pressed) is treated as a comment, and it is not executed as a program.

Example:

MOVE P1 'MOVES THE ROBOT TO P1

'*** SCOL COMMENT SAMPLE ***

2020-08-06

– 2-20 –

SM-A20049-A

KSL3000 Robot Language Manual

2.8 Programs

This paragraph describes SCOL programs.

2.8.1 Program Declaration

Declaration of a combination program of SCOL commands is written in the following

format.

PROGRAM <name of your program>

Contents of your program

END

A program is made up of everything from the PROGRAM statement to the END

statement. Write a program name after the PROGRAM statement. The program

name is expressed using an identifier. Put the content of the program between the

PROGRAM statement and the END statement.

Example:

PROGRAM SAMPLE Program name "SAMPLE"

REMARK SAMPLE Comment

SPEED=20 Set the movement speed to 20% of the maximum

speed.

MOVE Al Move the robot to position A1.

DELAY 0.5 Wait for 0.5 sec.

MOVE A2 Move the robot to position A2.

DELAY 0.5 Wait for 0.5 sec.

END End of program

As shown in the example, the body of the program is composed of statements made

up of an arrangement of SCOL commands. A new line is created every time the

EXE key is pressed. Up to 130 characters can be contained in a single line. You

may add spaces as you wish in order to make the program neater and easier to

read. You can write a remark and comment using the symbol (') in a statement.

Note: No spaces can be placed between characters structuring a word of a

command and identifier.

2020-08-06

– 2-21 –

SM-A20049-A

KSL3000 Robot Language Manual

2.8.2 Subprograms

You can call up a subprogram by just writing its name in the main program.

Example:

Main program

PROGRAM MAIN

REMARK *** SAMPLE 1 ***

SUB1

END

Sub program

PROGRAM SUB1

REMARK *** SUBPROGRAM NO. 1 ***

Body of subprogram

RETURN

END

A RETURN command should be inserted in subprograms to send control back to the

main program. If you forget to write RETURN, SCOL will forgive you and pretend

that there is a RETURN command in front of the END statement.

When wishing to pass data between subprograms and the main program, you have

to first specify arguments for the subprogram. When an argument is specified in a

subprogram, the program statement should be written like this:

PROGRAM <program name> (<names of arguments>)

The argument is specified within parentheses () following the program name of the

subprogram. The argument values are inserted to the specified variable names in

the subprogram. When using multiple arguments, write commas (,) to separate the

variable names in parentheses (). The maximum number of arguments is 10.

In the main program, specify the data to be transferred when the subprogram is

called in parentheses () after the subprogram name. The data specified in

parentheses () is transferred in the specified order to the variable names of the

subprogram. The argument data from the main program is substituted within the

subprogram, and when the data is changed, the data corresponding to the variables

in the main program is also changed at the same time.

2020-08-06

– 2-22 –

SM-A20049-A

KSL3000 Robot Language Manual

Example:

Main program

PROGRAM MAIN

REMARK *** SAMPLE 2 ***

K1 = 15

K2 = 28

SUB2(K1, K2, K)

PRINT K

END

Sub program

PROGRAM SUB2(N1, N2, N3)

REMARK *** SUBPROGRAM NO. 2 ****

N3 = N1 + N2

RETURN

END

In the above example, three arguments are being passed off between the main

program and subprogram. Specifically, K1 of the main program is passed over as

N1 of the subprogram. Similarly, K2 of the main program is passed over as N2 of

the subprogram. The subprogram adds N1 and N2, and puts the result in a

variable called N3. When this happens, the value of K in the main program also

changes.

When this program is executed, the values for K1=15 and K2=28 are added in the

subprogram, and the result K=43 is displayed on the teach pendant using the PRINT

command in the main program.

Note that subprograms may not call themselves. Also, when you call a

subprogram which is in another file, the controller will not understand you and

instead will treat the name of that subprogram as an error.

2020-08-06

– 2-23 –

SM-A20049-A

KSL3000 Robot Language Manual

 Note 1: An expression itself, result of vector data expression such as position data

and vector data element cannot be designated as an argument.

 Note 2: When a constant is used as an argument, it cannot be substituted into a

variable according to a subprogram.

 Note 3: For a variable which is an argument to a subprogram, a value should be

substituted into the variable before the subprogram is executed.

2.8.3 Library

The SCOL language does not allow you to use subprograms which are not in the

same file as the main program. However, by putting especially useful subprograms

in the library file, you can access the subprogram from the main program.

When writing your own subprogram to add to the library file, enter the program in

that file just like you would enter any other subprogram. For information on how to

enter a program into a file, refer to the Operator’s Manual.

The library comes in the following two (2) kinds.

 [1] System library

This library is always loaded at program execution.

The file name is “SCOL.LIB” which cannot be changed, but the contents can be

added or changed when necessary.

The OPEN1 and CLOSE1 commands are the subprograms which are included

in this library file. The contents of the library file which is the standardly

provided in the robot controller system disk are shown in Appendix C.

When you create a new subprogram in the system library, add it to the end of

the current library file (SCOL.LIB).

 [2] Dynamic link library

 This is the library file that the user can load when necessary.

 The name of library file is _______.LIB.

 The dynamic link library is the user program and you should declare its loading.

You can declare the loading of a library file in the GLOBAL area of the user

program in the following manner.

2020-08-06

– 2-24 –

SM-A20049-A

KSL3000 Robot Language Manual

GLOBAL
 LOADLIB PALLET.LIB
END
PROGRAM SAMPLE1
 ~ ~ ~ ~ ~ ~
 Omitted
 ~ ~ ~ ~ ~ ~
END

 Declaration of loading library

 Up to five (5) dynamic link libraries can be loaded at the same time.

 Some SCOL commands use this dynamic link library.

 Even when such a command is used, declaration of loading is necessary with the

command of “LOADLIB + file name.”

 When a program which uses the dynamic link library is executed, the controller

creates a temporary file named “SCOLLIB.TMP (SCOL.LIB + dynamic link library).”

When a sufficiently free space is not available in the user program area, the

program may not be executed.

 Caution:

If a name of program to be executed in the selected file is the same name as the

subprogram included in the library file, the subprogram included in the selected file

is executed in the automatic operation.

Operation of dynamic link library function

When a program which requires the dynamic link library (i.e., program including the

LOADLIB command) is selected, the system operates in the following manner.

 [1] Open the user program.

 [2] Check of the LOADLIB command (i.e., check of the file name).

 [3] Joining SCOL.LIB with the dynamic link library to make SCOLLIB.TMP.

 [4] Program check. Unless there is a problem, the SELECT command finishes.

 [5] When the SELECT command has finished normally, SCOLLIB.TMP is deleted

automatically. (When an error occurs, SCOLLIB.TMP is not deleted.)

2020-08-06

– 2-25 –

SM-A20049-A

KSL3000 Robot Language Manual

If an error occurs in the library due to some cause, the system displays the message

saying “LINE???:LIB>ERROR–***”.

Shown in “LINE???” is the line number of SCOLLIB.TMP. Confirm the contents of

SCOLLIB.TMP, then modify the library file.

Join

System library

SCOL.LIB

Dynamic link library

*****.LIB

User program

Program check

SCOLLIB.TMP

Temporary file

2020-08-06

– 2-26 –

SM-A20049-A

KSL3000 Robot Language Manual

2.8.4 Multitask Processing

This paragraph describes how to use the multitask function of the SCOL language

together with the relevant commands and system variables.

Program execution of single task and multitask operation is shown in Fig. 1 and Fig.

2. The number in the figure designates the order of the program execution.

Specific timing of change-over from program to program (task change) is described

later.

 [1] [2] [3] [4]
Program Program 1 Program 2 Program 3

A1

B1

C1

A2

B2

C2

A3

B3

A4

Fig. 1 Single task

operation
Fig. 2 Multitask operation

In Fig. 1, program A is executed continuously from the start to the end (single task

operation and no subroutine call).

A program which uses no multitask command is executed in the manner as shown

in Fig. 1 (no subroutine call).

Execution of a program which uses the multitask command is shown in Fig. 2.

As shown in Fig. 2, the multitask operation is realized, changing over a plural

number of individual programs by time sharing, as if the programs were executed in

parallel.

2020-08-06

– 2-27 –

SM-A20049-A

KSL3000 Robot Language Manual

The order of program execution is shown in the following table.

Order Program to be executed

1 A1 Program 1 start

2 B1 Program 2 start

3 C1 Program 3 start

4 A2

5 B2

6 C2 1-cycle end of program 3

7 A3

8 B3 1-cycle end of program 2

9 C1 Program 3 start

10 A4 1-cycle end of program 1

11 B1 Program 2 start

12 C2

13 A1 Program 1 start

: :

Next, the start of multitask is described.

A program that can be treated as multitask is the program block containing no

arguments. The program block means an area between the PROGRAM command

and END command, which consists of the SCOL language statements. The

subroutine without argument can be dealt with as a task. The argument cannot be

kept in the task.

To deal with a program as task, use the TASK command. The TASK command

executes a program specified in the argument as a task. Unless the program starts

by the TASK command, the program is not performed as a task.

The program block (statements between the PROGRAM command and the END

command) described at the head of the program file is an exception. Even if the

TASK command is not used, the program is performed as a task.

To execute the program 2 as a task in the Fig. 2, the TASK (“PROG2”) is required to

be executed in the program 1. (The program 1 is described at the head of the file,

and the program starts as a task without TASK command.)

To execute the program 3 as a task, a new task (“PROG 3”) is required to be

executed in the task (in the program 1 or 2 in this case) which has been already

started.

If the task and program which have been started are reset or the task operation is

released by the SCOL language, the task is kept active.

2020-08-06

– 2-28 –

SM-A20049-A

KSL3000 Robot Language Manual

The task ID (the number assigned to the task) is described.

The characteristic numbers (task ID) are assigned to the tasks which have been

started by the TASK command respectively. In the example of Fig. 2, “1” is

assigned to the program 1, “2” is assigned to the program 2 and “3” is assigned to

the program 3. This task ID starts from 1 in sequence and this ID increases one by

one every time the task starts (every time the task executes). If the task is

managed by the SCOL language, this task ID is used.

To get the task ID, see the following examples.

Example: I1 = TASK (“PROG 2”)

“I1” is a desired variable of integer type. The task ID of PROG 2 can be obtained.

This command is executed in the program 1. The task ID of its own cannot be

referred to in the program 2 in this example.

Example: I2 = TID

“I2” is a desired variable of integer type. If the system variable TID is referred to,

the task ID of its own can be acquired. If this command is executed in the program

2, the task ID of its own can be seen in the program 2 (“2” in this occasion).

If this command is executed in the program 1, the task ID of program 1 (“1” in this

occasion) is substituted for “I2”.

If the task ID other than the own task is referred to from other tasks, variables of

examples 1 and 2 are required to be defined as the global variable.

Change-over of task is described.

As shown in the Fig. 2, the system executes the program 1 ~ 3 by time sharing.

When this happens, timing of program change-over depends on the following three

conditions.

(1) When the program change-over is specified clearly by the SWITCH command

of the SCOL

The SWITCH command is used if the task is changed over clearly by the

SCOL language. Even if the task change-over conditions specified in the

system are not satisfied while the SWITCH command is used, the task can be

changed over.

(2) When a new task starts by the TASK command of the SCOL

If a new task starts by the TASK command, the program control is changed

over to the newly started task.

2020-08-06

– 2-29 –

SM-A20049-A

KSL3000 Robot Language Manual

(3) When the task terminates by the KILL command of the SCOL

If the task of its own terminates by the KILL command, the program control is

changed over to the next task.

(4) When the predetermined conditions specified in the system are satisfied and

the program is changed over by the system

The task change-over conditions specified in the system are as follows:

(1) A program in a task is executed for more than 100 msec.

(2) When the data area for movement command becomes full

Up to four data can be read beforehand by the movement command. If this

internal area for prior reading becomes full, the task is changed over.

(3) When a command required for communication with the external device has

been executed

The INPUT, PRINT and RESTORE commands are not executed by the active

SCOL program alone. They take time to execute the TP operation and RAM

file operation by an operator. The active program waits for the reply of

processing finish from the operator and changes over the task.

To cancel the task changeover by the system, specify DISABLE for system

variable SWITCH.

 Note: During step execution or when task changeover has been cancelled, only

the program executed currently continues and the program of another task

already started will not run. (The single task operation becomes effective.)

 Cautions on creating a multitask program

 (1) Motion commands can be used in the main task only. If they are used in the

subtask, an error is generated.

The motion commands are MOVEI, MOVEA, MOVE, MOVES, MOVEC,

MOVEJ and DELAY.

 (2) As each task has system variables TIMER, TID and NOWAIT separately, they

can be set arbitrarily in each task, or referred to.

For NOWAIT, separate or common use of it can be selected by means of the

user parameter [U02].

2020-08-06

– 2-30 –

SM-A20049-A

KSL3000 Robot Language Manual

 It is recommended to use NOWAIT separately and set ENABLE NOWAIT in the

subtask.

The following system variables are commonly used among the tasks. A value

set in one task remains effective in another task. Careful precautions should

be taken, therefore, when setting a plural number of tasks.

 CONFIG, ACCUR, ACCEL, DECEL, SPEED, PASS, TORQUE, GAIN, TOOL,

BASE, WORK, PAYLOAD, NOWAIT

 (3) When a command for waiting for the finish of a movement as shown below has

been executed while the motion command was currently executed in the main

task, the subtask waits for the finish of the active motion command in the main

task.

 1) Execution of input/output commands in DISABLE NOWAIT mode

The input/output commands includes INPUT, PRINT, DIN, DOUT, BDCIN,

BCDOUT and POUT.

 2) Execution of WAIT MOTION command.

 (4) If execution of an INPUT or PRINT command has been commanded in another

task while the same command was executed in one task for different

communication channel, the INPUT or PRINT command started first is

executed to the last and the another task should wait until the command has

been executed.

2020-08-06

– 2-31 –

SM-A20049-A

KSL3000 Robot Language Manual

2.8.5 Global Variable Definition

If the global variable which can be referred to from the entire program is defined,

obey the following rules.

(1) Global variable declaration

If the global variable is used, the type and identifier (variable name) of the

variable to be used is required to be defined.

This definition must be performed before the first PROGRAM statement.

To define the variable A of real number type and the variable B of integer type,

the definition is as follows:

 GLOBAL

A = 1.0 (This value is the initial value of the variable.)

B = 2

END

PROGRAM

:

END

(2) Global variable declaration by type

To define the global variable of each type, use the following formats.

Integer type: A = 1

Real number
type:

B = 1.0

Array type: DIM D(10) AS INT Array of ten integer type
elements is defined. (Note 1)

DIM E(10, 3) AS REAL Array of 10  3 real number type
elements is defined.

DIM F(5) AS POINT Array of five position type
elements is defined.

In the global block between reserved words GLOBAL and END, only variables

of a scalar type and array type should be described, and the variables of a

vector type should be described in the data block between reserved words

DATA and END which are edited by the data editor.

2020-08-06

– 2-32 –

SM-A20049-A

KSL3000 Robot Language Manual

(3) Setting of initial value of array type variable

Like the global variable other than the array, specify the initial value of the

scara type array variable by the global block, and specify the initial value of

vector type array variable by the data block.

Note 1: The initial value of the array type global variable, which is not set clearly, is

indefinite. The variable is required to be initialized by the user program.

2.8.6 Array Type Variable

For the variables of a scalar type and vector type, each name represents one (1)

data. If one (1) name can signify multiple data, however, programming becomes

easier, and the array type variable can be used for this purpose.

To use the array type variable, the type and number of all elements should be

predetermined by the DIM command. The array type variable bearing the same

name cannot have a type with different elements.

For details, see the descriptions on the DIM command.

The variable which is declared as the array type by the DIM command should be

described in the program according to the following format.

Variable name (<element> [. <element>] ···)

For the element number following the variable name, any value ranging from 1 to a

number specified by the DIM command can be selected. However, if the total

number of "variable name + "(" + element + ")" exceeds twenty (20) characters, an

execution error is generated.

When the SCOL program is executed, specific one (1) data is selected from multiple

data based on the variable name and element number.

When 25 positions (5  5) are processed as the array variable named "P" and each

axis is moved to respective positions in turn, the program is as follows:

 GLOBAL

 DIM P(5, 5) AS POINT

END

PROGRAM SAMPLE

FOR I = 1 TO 5

 FOR J = 1 TO 5

 MOVE P(I, J)

2020-08-06

– 2-33 –

SM-A20049-A

KSL3000 Robot Language Manual

 NEXT J

 NEXT I

END

DATA

 POINT P(1,1) = 650, 0, 100, 0, 0 / LEFTY

 POINT P(1,2) = 650, 0, 100, 0, 0 / LEFTY
 •

 •
 •

 POINT P(5,5) = 650, 0, 100, 0, 0 / LEFTY

END

Direct access to or substitution of elements X and Y of vector type array variable is

not possible. In the example above, the following command cannot be executed

for array type variable P as given above.

 PRINT P(1,1).X, CR

When this happens, copy the value to the normal vector type variable, then execute

the command.

 PP=P(1,1)

PRINT PP.X

Also, if the movement to position P (I, J) is commanded by mistake while I = 5 and J

= 6, an execution error is generated because access to or substitution of an element

other than specified by the DIM command is not possible. The type of array index

is only integer. If the data of a real number type and vector type is used, an error

occurs at execution.

2020-08-06

– 3-1 –

SM-A20050-A

KSL3000 Robot Language Manual

Section 3

Explanation of Robot Commands

Here we describe in detail what each SCOL command means and does.

These commands are listed in alphabetical order.

3.1 Command Explanations

Commands are explained as follows.

(1) Purpose

This paragraph gives a simple explanation of what the command does.

(2) Format

This paragraph describes how to write down the command. The symbols used

in the paragraph have the meaning that follows:

[] Indicates that the content therein can be omitted. The commands are

specified as necessary.

< > Indicates the content of the data to be described.

{ } Indicates that one among the data in this bracket should be selected.

... Indicates that a plurality of data elements can be specified.

The above symbols are used here for purposes of explanation, and they are not

actually written in the program. If these symbols need to be used in a particular

case, this will be explained.

(3) Examples

This paragraph presents samples showing how to use the command.

(4) Analysis and advice

This paragraph presents an analysis of the command and describes warnings

and restrictions for its use.

2020-08-06

– 3-2 –

SM-A20050-A

KSL3000 Robot Language Manual

(5) Sample program

This paragraph presents a short program example using the command.

The meaning of the data in the command format is shown below. An

expression can also be used as data.

<Position> Specifies positional data.

<Axis> Specifies a joint-controlled axis. The data must be an

integer from 1 to 5.

<Absolute position> Specifies the absolute position of each axis. Data is in

units of 0.001 mm or 0.001 degrees. Variables or

expressions may also be used as data.

<Relative position> Specifies the travel of each axis in terms of relative

position. Data is in units of 0.001 mm or 0.001

degrees. Variables or expressions may also be used

as data.

<Time> Specifies time in units of 0.01 seconds. Variables or

expressions may also be used.

<Logical expression> Specifies a logical expression.

<Statement> Specifies a statement to be executed. As long as it is a

normal SCOL statement, you can specify anything you

want.

<Monitoring condition> With an ON statement, specifies condition(s) to be

monitored.

<Label> Specifies a label for branching the program.

<Comment> Shows comments written in the program.

<Variable> Indicates a variable.

<Expression> Indicates a calculation. Individual variables may also

be substituted for a calculation.

<Signal name> Specifies the name of an I/O (Input/Output) signal. The

signal name is to be given as an integer. A positive

value shows that the signal is ON and a negative value

shows that the signal is OFF. Variables and

expressions may also be used.

2020-08-06

– 3-3 –

SM-A20050-A

KSL3000 Robot Language Manual

<Mass> Specifies the mass of the load acting on the robot hand.

<Center of gravity offset> Specifies the distance between the center of gravity of

the load applied to the tip of robot hand and the center

of the tool of the hand.

<Configuration> Specifies the robot configuration with an integer. "0"

means the configuration is undefined (not fixed), "1"

specifies a left hand configuration, and "2" specifies a

right hand configuration.

<Switch> Specifies the system switch. There are two system

switches available.

PASS This system switch specifies shortcut

movement.

NOWAIT This system switch directs signal I/O to be

performed without waiting for the completion

of a previous movement command.

<State> Specifies what is to be reset by the RESET command.

2020-08-06

– 3-4 –

SM-A20050-A

KSL3000 Robot Language Manual

Table 3.1 presents a list of commands classified by purpose.

Table 3.1 SCOL commands

Type Command Purpose

Movement
control
commands

BREAK Suspends movement immediately.

CLOSE1, CLOSE2 Closes hand after completion of movement.

CLOSEI1 Closes hand.

 CLOSEI2 Closes hand.

 DELAY Pauses for specified time.

 MOVE Synchronous movement

 MOVES Linear interpolation movement

 MOVEC Circular interpolation movement

 MOVEA Absolute single axis movement

 MOVEI Relative single axis movement

 MOVEJ Arch movement

 OPEN1, OPEN2 Opens hand after completion of movement.

 OPENI1, OPENI2 Opens hand.

 PAUSE Suspends a movement.

 READY Moves to machine coordinate origin.

 RESUME Restarts an interrupted movement.

Program

control
commands

FOR ~ TO ~ STEP ~ Repeats movement.

GOTO Branches unconditionally.

GOTO () Branches in accordance with the value of an
expression.

 IGNORE Cancels monitoring.

 IF ~ THEN ~ ELSE ~ Judges conditions.

 NEXT Repeats movement.

 ON ~ DO ~ Registers conditions monitor.

 PROGRAM Marks beginning of program.

 RCYCLE Label for cycle reset

 RETURN Returns to main program.

 STOP Stops the program.

 WAIT Waits for establishment of conditions.

 END End of program

 KILL Task standstill

 MAXTASK Maximum number of tasks

 REMARK Comments

 SWITCH Task change-over

TASK Task start

TID Task ID

2020-08-06

– 3-5 –

SM-A20050-A

KSL3000 Robot Language Manual

Type Command Purpose

I/O control
commands

BCDIN Inputs a BCD signal.

BCDOUT Outputs a BCD signal.

CR Outputs a CR code

 DIN Reads an input signal.

 DOUT Outputs a signal.

 HEXIN Reads signals in hexadecimal notation.

 HEXOUT Outputs signals in hexadecimal notation.

 PULOUT Outputs a pulse signal.

 RESET Resets the controller.

 PRINT Outputs communication data.

 INPUT Inputs communication data.

Movement
condition

commands

ACCEL Specifies acceleration (during acceleration).

ACCUR Specifies positioning accuracy.

CONFIG Specifies configuration.

 DECEL Specifies acceleration (during deceleration).

 DISABLE System switch off

 ENABLE System switch on

 FREELOAD Cancels load data.

 GAIN Each axis gain

 NOWAIT Does not wait for the completion of
positioning for previous movement.

 OVERRIDE Speed override

 PASS Short-cut movement parameter

PAYLOAD Sets load data.

 SMOOTH (option) Smooth movement

 SPEED Specifies speed.

 MOVESYNC Specifies movement command
synchronization/unsynchronization mode.

 SWITCH Prohibits or allows task change-over.

 SLOWDOWN Slowdown

 SLWSPD Slowdown speed

 WITH Specifies operating conditions.

2020-08-06

– 3-6 –

SM-A20050-A

KSL3000 Robot Language Manual

Type Command Purpose

Calculator
commands

COS Cosine

SIN Sine

 TAN Tangent

 ABS Absolute value

 ACOS Arccosine

 AND Logical product

 ASIN Arcsine

 ATAN Arctangent

 ATAN2 Arctangent

 DEST Destination position

 EXP Exponent to power e

 HERE Present position

 INT Changes number to an integer.

 LN Natural logarithm

 LOG10 Common logarithm

 MOD Remainder

 NOT Negation

 OR Logical sum

 POINT Creates positional type data.

 REAL Changes number to a real number.

 SGN Extracts and returns the sign.

 SQRT Square root

 TRANS Creates coordinate type data.

Movement
reference
commands

BASE Base coordinate system

MODE System operating mode

MOTION Amount of movement which has been
executed

 MOTIONT Time expended for a motion

 REMAIN Amount of movement remaining to be
executed

 REMAINT Time remaining for a motion

 TIMER Timer

TOOL Tool coordinate system

WORK Work coordinate system

2020-08-06

– 3-7 –

SM-A20050-A

KSL3000 Robot Language Manual

Type Command Purpose

Data
definition
commands

DATA Starts data definition.

DIM ~ AS Array variable definition

GLOBAL Global variable definition

RESTORE Saves an initial value of the global variable to
a file.

 SAVEEND Saves data at power OFF.

Palletize
command

INITPLT Initializes a pallet.

MOVEPLT Moves to pallet specified position.

Positional
data latch
function

(Options of
TS3000)

LATCH Position latch function ON/OFF

LATCHTRG 1 ~ 8 Detected edge direction

LATCHSIG 1 ~ 8 Signal state

LATCHPSN 1 ~ 8 Latched position

System
constants

COARSE Coarse positioning accuracy

COM0, TP Communication channel (teach pendant)

 COM1 Communication channel 1

 CONT Continuous operation mode

 CYCLE Cycle operation mode

 FINE Fine positioning accuracy

 OFF Each axis gain OFF

 ON Each axis gain ON

 PAI Pi

 SEGMENT Segment operation mode

Simplified
PLC

PLCDATAR 1 ~ 8 Simplified PLC interface

PLCDATAW 1 ~ 8 Simplified PLC interface

Special
variables

SAVEF 1 ~ 4 Real number-type variable (backup)

SAVEI 1 ~ 4 Integer-type variable (backup)

2020-08-06

– 3-8 –

SM-A20050-A

KSL3000 Robot Language Manual

Type Command Purpose

Mathemati-
cal symbols

^ Exponentiation

– Negative sign

 *, / Multiplication and division

 +, – Addition and subtraction

 = Substitution

 = = Equal

 < >, > < Not equal

 < Less than

 > Greater than

 < =, = < Less than or equal

 > =, = > Greater than or equal

 ‘ Comments

 . Designation of vector element

3.2 Explanation of Commands

SCOL commands are explained in the following pages. Commands are arranged in

alphabetical order.

2020-08-06

– 3-9 –

SM-A20050-A

KSL3000 Robot Language Manual

ABS

The ABS function will return the absolute value of a number.

ABS(<expression>)

AK = ABS(–20.345)

K = ABS(K1)

J1 = K – ABS(N – 28.5)

This function returns the absolute value of the <expression>.

You may use a constant, variable or result of calculation for the

<expression> term. However, you may not use vector data.

This command must be used in an expression.

PROGRAM MAIN

ABSSAMPLE (3, 5, K)

PRINT TP, K, CR

END

PROGRAM ABSSAMPLE(K1, K2, K)

K = ABS(K1 – K2)

RETURN

END

This program takes the arguments K1 and K2, subtracts K2 from

K1, finds the absolute value of the result, calls it K, and sends

program execution back to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-10 –

SM-A20050-A

KSL3000 Robot Language Manual

ACCEL

This command sets the fraction of full acceleration for the robot.

ACCEL = (<expression>)

ACCEL = 80

ACCEL = 0. 8*ACCEL

MOVE A1 WITH ACCEL = 90

ACCEL is a system variable used to specify the acceleration of

the robot when the robot is accelerating.

Acceleration is expressed as a percentage of the standard (full)

acceleration. In the SCOL language, acceleration during

acceleration and acceleration during deceleration are set

separately. In order to set the acceleration during deceleration,

use the DECEL commands.

This is used to lower the acceleration as needed when the robot

is carrying a heavy load. In this case, change the acceleration

during both acceleration and deceleration. For the setting value

of the acceleration according to the load, see the "Transportation

and Installation Manual."

You may use a constant, a variable or a calculation for the

<expression>. However, you may not use vector-type data.

This command must be used in an expression.

An upper limit on acceleration is set in the controller to protect

the robot. The robot will not exceed this limit even if you enter a

value larger than the upper limit.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-11 –

SM-A20050-A

KSL3000 Robot Language Manual

Values of 0 or less are taken as 1.

The current acceleration during acceleration can be viewed by

viewing this system variable.

This initial value for acceleration is 100%.

PROGRAM ACCELSAMPL

FOR K = 1 TO 100

ACCEL = K

DECEL = K

MOVE A1

MOVE A2

NEXT K

END

This program increases the acceleration from 1% to 100% in

steps of 1%.

Sample
program

2020-08-06

– 3-12 –

SM-A20050-A

KSL3000 Robot Language Manual

ACCUR

This command specifies the positioning accuracy of the robot.

ACCUR = (<expression>)

ACCUR = 1

N = ACCUR

MOVE A1 WITH ACCUR = COARSE

ACCUR is a system variable used to specify the positioning

accuracy of the robot. A coarse positioning accuracy is marked

by 0 and a fine positioning accuracy is marked by 1.

When the positioning accuracy is set to COARSE, the robot

executes the subsequent command before the positioning of the

robot is completed. The robot tact time can be reduced by

setting the positioning accuracy to COARSE for operations

where waiting for high positioning accuracy is unnecessary.

The system constants FINE and COARSE can be used to

specify the positioning accuracy. The positioning accuracy is

set to fine by ACCUR=FINE and set to coarse by

ACCUR=COARSE.

You may use a constant, a variable, or a calculation for the

<expression>. However, you may not use vector-type data.

The ACCUR command must be used in an expression.

When specifying the positioning accuracy, anything entered that

is less than 0 will be taken as 0 and anything greater than 1 will

be taken as 1.

You can find the positioning accuracy under which the system

currently is operating by referring to ACCUR. An ACCUR value

of 0 means coarse, and a value of 1 means fine.

The initial setting for the positioning accuracy is FINE.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-13 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM ACCURSMPL

ACCUR = COARSE

MOVE A1

MOVE A2

MOVE A3 WITH ACCUR = FINE

MOVE A4

END

The robot will move with fine positioning accuracy only for

movement to point A3. It will move with coarse positioning

accuracy for other movements increasing cycle time.

Sample
program

2020-08-06

– 3-14 –

SM-A20050-A

KSL3000 Robot Language Manual

ACOS

This function returns the arccosine of an entered value.

ACOS(<expression>)

K = ACOS (0.577)

J1 = 90 – ACOS (X/L)

This function returns the arccosine of the value in the brackets

(). The returned value is in units of degrees.

You may enter a constant, variable or calculation for the

<expression>. However, you may not enter vector-type data.

This command must be used in an expression.

PROGRAM MAIN

ACOS2 (2.0, 1.0, K)

PRINT TP, K, CR

END

PROGRAM ACOSSAMP (L, X, K)

K = ACOS (X/L)

RETURN

END

This program takes the arguments L and X, divides X by L, takes

the arccosine of the result, calls it K, and returns to the main

program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-15 –

SM-A20050-A

KSL3000 Robot Language Manual

AND

AND calculates the logical product of expressions.

<Logical expression> AND <Logical expression>

IF DIN (1) AND K < = 3 THEN J = 0

WAIT DIN (5) AND TIMER==0

The AND statement is used to find the logical product of two

logical expressions. If both logical expressions are true, a

TRUE value will be returned.

This command must be used in a logical expression.

PROGRAM ANDSAMPLE

FOR K=1 TO 50

IF K==50 AND DIN (1) THEN J=1 ELSE J=0

PRINT TP, J, CR

NEXT K

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-16 –

SM-A20050-A

KSL3000 Robot Language Manual

ASIN

This function finds the arcsine of the value entered.

ASIN ((expression>)

K = ASIN (0.577)

J1 = 90 – ASIN (Y/L)

This function returns the arcsine of the value in the brackets ().

The returned value is in units of degrees.

You may enter a constant, variable or calculation for the

<expression> term. However, you may not enter vector-type

data.

This command must be used in an expression.

PROGRAM MAIN

ASIN2 (5.0, 2.0, K)

PRINT TP, K, CR

END

PROGRAM ASIN2 (L, Y, K)

K = ASIN (Y/L)

RETURN

END

This program takes the arguments L and Y, divides Y by L, takes

the arcsine of the result, calls it K, and returns to the main

program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-17 –

SM-A20050-A

KSL3000 Robot Language Manual

ATAN/ATAN2

This function returns the arctangent for the value(s) entered.

ATAN (<expression>)

ATAN2 (<expression>, <expression>)

K = ATAN (0.577)

J1 = 90 – ATAN (Y/X)

N = ATAN2 (0.3, 0.5)

D = ATAN2 (100/K, 50/J)

L3 = ABS (180 – ATAN2 (A1, Y, A1, X))

This function returns the arctangent of the value(s) in the

brackets ().

The ATAN2 takes the first expression in the brackets, divides it

by the second expression in the brackets, and finds the

arctangent of the result.

For both functions, the returned value is in units of degrees.

(Be warned that ATAN2 (0, 0) will return a 0 instead of an error.)

You may enter a constant, variable or calculation for the

<expression> term. However, you may not enter vector-type

data. This command must be used in an expression.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-18 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM MAIN

ATANSAMPLE (5.0, 3.0, K)

PRINT TP, K, CR

END

PROGRAM ATANSAMPLE (X, Y, K)

K = ATAN (Y/X)

RETURN

END

This program takes the arguments X and Y, divides Y by X, takes

the arctangent of the result, calls it K, and returns to the main

program.

PROGRAM MAIN

ATAN2SMPL (K)

PRINT TP, K, CR

END

PROGRAM ATAN2SMPL (K)

K = ATAN2 (A1. Y, A1. X)

RETURN

END

This program takes the elements X and Y from taught point A1,

divides Y by X, takes the arctangent of the result, calls it K, and

returns to the main program.

Sample
program

2020-08-06

– 3-19 –

SM-A20050-A

KSL3000 Robot Language Manual

BASE

BASE is a system variable used to specify the base coordinate

system.

BASE

BASE = TRANS (0, 0, 0, 0)

BASE1 = BASE

MOVE A1 WITH BASE = BASE + TRANS (,, 100)

BASE is a system variable used to specify the base coordinate

system. It can be handled as normal coordinate-type data. By

referring to the BASE, you can find the values (location) of the

present base coordinate system.

You can directly designate values for the base coordinates with

one of the following two methods:

BASE = TRANS (X, Y, Z, C)

BASE = {X, Y, Z, C}

In order to make it clear just what kind of data type you are

using, always try to use the TRANS command.

X, Y, Z, C: X, Y, Z and C are real numbers representing the

position of the base coordinate system. Units are of

millimeters or degrees.

The BASE coordinate system is created by "sliding" a distance of

X, Y and Z along the respective axes of the WORLD coordinate

system and then twisting the new Z axis by an amount C.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-20 –

SM-A20050-A

KSL3000 Robot Language Manual

BASE must be used in an expression.

Be aware that if you change base coordinate systems within a

program, there may be some misalignment between the

positions as taught and the positions where the robot actually

moves.

PROGRAM BASESAMPLE

MOVE A1

MOVE A2

BASE = BASE + TRANS (,, 200)

MOVE A1

MOVE A2

BASE = TRANS ()

END

The BASE command shifts the BASE coordinate system 200 mm

along the Z axis and after that, the robot moves to a point below

200 mm from the taught position.

Sample
program

2020-08-06

– 3-21 –

SM-A20050-A

KSL3000 Robot Language Manual

BCDIN

This command is used to read in signals as BCD (Binary Coded

Decimal) notation.

BCDIN (<signal name>, <signal length>)

K = BCDIN (1, 2)

J2 = BCDIN (N, N + 2)

GOTO (BCDIN (20, 1)) L1, L2, L3

The command causes an input signal to be read in as BCD

notation. The signal will start from the signal name and

continue to a place 4 times the value of the specified signal

length. For example, "K = BCDIN (1, 2)" tells the controller to

read in, as BCD notation, an eight unit signal starting from the

1st unit (bit) and continuing to the 8th unit (bit).

Higher signal numbers correspond to bits with a higher digit.

Input signals are divided into units of 4 bits (in order of low to

high place value (signal number)) and converted into Base 10.

Signals are coded as 1 for ON and 0 for OFF.

Example:

In the case where input signals 1 to 12 indicate the state shown

below, the value of BCDIN(1,3) is 329.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-22 –

SM-A20050-A

KSL3000 Robot Language Manual

Input signal
number

12 11 10 9 8 7 6 5 4 3 2 1

Input signal
state

OFF OFF ON ON OFF OFF ON OFF ON OFF OFF ON

Base 2
expression

0 0 1 1 0 0 1 0 1 0 0 1

Base 10
expression

 3 2 9

You may use constants, variables or calculation expressions for

<signal name> and <signal length>. However, you may not use

vector-type data.

This command must be used in an expression.

When an input signal is coded based on 4 bits and if it exceeds 9

(1001 in binary notation), the signal is coded in the binary

notation. In other words, if signal “1111” is input in the binary

notation, it is read as “15”.

PROGRAM BCDINSAMPL

K = BCDIN(1, 2)

SPEED = K

MOVE A1

MOVE A2

END

This program reads in a single made up of eight bits, sets the

movement speed in accordance with that signal.

Sample
program

2020-08-06

– 3-23 –

SM-A20050-A

KSL3000 Robot Language Manual

BCDOUT

This command will put a signal into BCD notation and output the

result.

BCDOUT(<signal name>, <signal length>, <expression>)

BCDOUT(1, 4, 3) BCDOUT(N, N+4, K)

This command will take the value of the expression and change

it into a BCD signal having the name <signal name> and a signal

length four times the value of <signal length>.

For example, the command BCDOUT(1, 1, 3) will produce an

output signal which is four bits long and starts from signal

position 1. The output signal will express the value 3 as a

binary number. Therefore, the first two bits (output signal

numbers 1 and 2) will be ON.

Higher signal numbers correspond to bits with a higher digit.

Each digit of <expression> is broken down one at a time and

converted into a 4 bit code. The 4 bit code itself is built up in

order of smaller to larger output signal number.

When there not be enough room to hold all the bit code

corresponding to the Base 10 <expression>, the excess digits of

the Base 10 <expression> will be ignored.

Signals are considered as 1 when ON and 0 when OFF.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-24 –

SM-A20050-A

KSL3000 Robot Language Manual

Example:

The command BCDOUT(1, 3, 952) will create an output signal

like that shown below.

Base 10
expression

 9 5 2

Base 2
expression

1 0 0 1 0 1 0 1 0 0 1 0

Output signal
number

12 11 10 9 8 7 6 5 4 3 2 1

Output signal
state

ON OFF OFF ON OFF ON OFF ON OFF OFF ON OFF

You may use constants, variables or calculation expressions for

<signal name>, <signal length> and <expression>. However,

you may not use vector-type data.

If the same signals are output consecutively, the signal output

last becomes valid.

Be careful of agreement's there being in the signal range by

which it is possible to guarantee simultaneous-ness.

The simultaneous-ness of BCDOUT to the range of the 16 bit

carving from DOUT1, DOUT101, and DOUT301 can be

guaranteed but the simultaneous-ness of BCDOUT which strides

the boundary can not be guaranteed.

PROGRAM BCDOUTSAMPL

J = 0, 0

FOR K = 1 TO 4

J = 2 ^ (K = 1)

BCDOUT (1, 1, J)

TIMER = 0.5

WAIT TIMER = = 0

BCDOUT (1, 1, 0)

NEXT K

END

This program will output a number from 1 to 4 in steps of 1 at

intervals of 0.5 seconds.

Sample
program

2020-08-06

– 3-25 –

SM-A20050-A

KSL3000 Robot Language Manual

BREAK

This command immediately suspends robot operation.

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

ON DIN(1) BREAK DO SUB

The BREAK command will stop robot movement immediately

when the specified monitoring condition has been satisfied, and

execute the statement following the DO statement. The robot

will decelerate and stop the movement.

For more information, see the ON command.

The RESUME command can be used to restart operation

interrupted by the BREAK command.

This command allows you to stop the robot and take appropriate

reaction should any problems occur with the system.

PROGRAM BREAKSMPL

REMARK *** MAIN PROGRAM ***

ON DIN(24) BREAK DO BREAKSUB

MOVE A1

MOVE A2

MOVE A3

WAIT MOTION >= 100

IGNORE DIN(24)

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-26 –

SM-A20050-A

KSL3000 Robot Language Manual

When something go wrong with the system and Input Signal 24

turn ON, the robot will stop immediately and control will shift to

BREAKSUB, a subroutine designed specifically for such a case.

PROGRAM BREAKSUB

REMARK *** SUBROUTINE ***

WAIT DIN(–24)

RESUME

END

The subprogram BREAKSUB will sit and wait until Input Signal

24 turns OFF.

After the problem has been removed, the program resumes the

movement.

2020-08-06

– 3-27 –

SM-A20050-A

KSL3000 Robot Language Manual

CLOSE1, CLOSE2, CLOSEI1, CLOSEI2

These commands close the robot hand.

CLOSE1

CLOSE2

CLOSEI1

CLOSEI2

CLOSE1

CLOSEI2

These commands are used to close the robot hand. The

numbers 1 and 2 refer to Hand1 and Hand2. These commands

close the hand by changing the state of the output signal which

controls the robot hand.

The CLOSE command directs the robot to close its hand after it

completes the motion in progress.

The CLOSEI command directs the robot to close its hand

immediately.

Note that these commands will not work if the file SCOL.LIB is

not in the controller RAM drive.

Also, keep in mind that there is a slight delay from when a

CLOSE command is executed until the robot actually closes its

hand.

Corresponding commands OPEN1, OPEN2, OPENI1 and

OPENI2 are provided in order to open the hand.

These commands execute a program written in the system

library (SCOL. LIB). The data of SCOL. LIB should be changed

according to the robot hand specifications.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-28 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM CLOSESMPL

OPENI1

MOVE A1

CLOSE1

DELAY 0.5

MOVE A2

END

This program closes the hand1 after the robot has finished

moving to point A1. The robot waits 0.5 seconds until the hand

is closed completely after the CLOSE command has been

executed.

PROGRAM CLOSEISMPL

ENABLE NOWAIT

OPENI1

DELAY 0.5

MOVE A1

CLOSET 1

DELAY 0.5

MOVE A2

END

Here, the robot will close the hand1 while moving to point A1.

Sample
program

2020-08-06

– 3-29 –

SM-A20050-A

KSL3000 Robot Language Manual

COARSE

COARSE is a system constant used to set the positioning

accuracy to coarse.

COARSE

ACCUR = COARSE

MOVE A1 WITH ACCUR = COARSE

The COARSE statement sets positioning accuracy to COARSE,

using with the ACCUR command.

As a system constant, COARSE has a value of 0. If you

wanted to, you could use it in your program as a constant having

the value 0. However, you should not do things like that since it

makes your program extremely hard to read.

You cannot substitute into system constants such as COARSE.

For information on positioning accuracy, refer to the ACCUR

command.

PROGRAM COARSESMPL

MOVE A1

ACCUR = COARSE

MOVE A2

MOVE A3

END

This program sets the positioning accuracy to coarse before

moving around the robot.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-30 –

SM-A20050-A

KSL3000 Robot Language Manual

COM0, COM1

These commands specify the communication channel to be

taken by a PRINT or INPUT command.

PRINT [{COM0 | COM1 | TP},]

{<character string> | <expression>} [,{<character string>|

<expression>}]...[, CR]

INPUT [{COM0 | COM1 | TP},]

<variable> [, <variable>] ...

PRINT COM0, "*** INPUT N ***"

PRINT COM1, N, N * 10

INPUT COM1, K

COM statements are used to designate a communications

channel when using a PRINT or INPUT command.

COM0 is a communications channel used solely for the teach

pendant.

COM1 corresponds to the communication channel of controller

connector COM1.

If you do not specify a communication channel for a PRINT or

INPUT command, the controller inputs or outputs data to or from

the communication channel used solely for the teach pendant.

See the PRINT and INPUT commands for communication

processing.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-31 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM COMSAMPLE

PRINT COM0, "*** INPUT N ***"

INPUT COM0.N

PRINT COM1.N, CR

END

This program inputs a value from the teach pendant and sends it

out on the No. 1 communications channel.

Sample
program

2020-08-06

– 3-32 –

SM-A20050-A

KSL3000 Robot Language Manual

CONFIG

This command is used to specify the robot configuration.

CONFIG = <expression>

CONFIG = 1

MOVE A1 WITH CONFIG = RIGHTY

CONFIG is a system variable used to express the configuration

of the robot. You should specify the robot configuration when

there is a chance of peripheral equipment interfering with the

robot motion.

The robot configuration is undefined at 0, left handed at 1 and

right handed at 2. In order to specify the system configuration,

you may use these numbers or the system constants FREE,

LEFTY and RIGHTY.

As you would probably guess, the configuration is undefined at

CONFIG = FREE, left handed at CONFIG = LEFTY, and right

handed at CONFIG = RIGHTY.

The configuration is included in positional data fed into the robot

while teaching. Therefore, when CONFIG = FREE, the robot

will move with the same configuration it had when it was being

taught.

Unless there is a good reason otherwise, you should leave the

configuration undefined, i.e. CONFIG = FREE. This is the initial

value that the robot will assume.

The robot configuration may change upon executing a

movement command.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-33 –

SM-A20050-A

KSL3000 Robot Language Manual

When conducting linear or circular interpolation (with the MOVES

or MOVEC command), the robot configuration cannot be

changed and an error will result if you try.

Designation of the configuration for an orthogonal coordinate

robot is ignored.

A constant, a variable or a calculation can be used for the

<expression> term. However, you may not use vector-type

data.

Even if it refers to this system variable, the posture of the present

robot can not be referred to.

It is possible for the posture of the present robot to be acquired

by the HERE command.

N=HERE.6

The value of the present posture is stored in N.

For SCARA type robots, the value of HERE.6 is undefined at 0,

left handed at 1, and right handed at 2. When the starting point

position of the robot isn't correctly set, it works in the position

where a robot was shifted with the position to have instructed in

when changing the posture of the robot.

Therefore, when instructing a robot in the position, the robot

actually goes in the working posture.

PROGRAM CONFIGSMPL

CONFIG = RIGHTY

MOVE A1

MOVE A2

MOVE A3 WITH CONFIG = LEFTY

MOVE A4

END

The robot moves with a left hand configuration only when moving

to A3, and moves with a right hand configuration for other

movements.

Sample
program

2020-08-06

– 3-34 –

SM-A20050-A

KSL3000 Robot Language Manual

CONT

CONT is a system constant which is used to refer to the system

operating mode.

CONT

IF MODE < > CONT THEN STOP

CONT is used along with the MODE command to refer to the

system operating mode. When MODE = = CONT, the system is

operating in the continuous operation mode.

As a system constant, CONT has a value of 0. If you wanted to,

you could use it in your program as a constant having the value

0.

However, you should not do it since it will make your program

hard to understand.

You cannot substitute into system constants.

For information on operating modes, refer to the MODE

command.

PROGRAM CONTSAMPLE

IF MODE <>CONT THEN STOP

MOVE A1

MOVE A2

MOVE A3

END

If the system changes out of the continuous operation mode,

program execution will stop and the robot will not move.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-35 –

SM-A20050-A

KSL3000 Robot Language Manual

COS

This function returns the cosine of an entered value.

COS (<expression>)

K = COS(60)

J1 = 1 – COS(180 – D)

This function returns the cosine of the value in the brackets

(). Calculations are handled in units of degrees.

You may enter a constant, variable or calculation for the

<expression> term. However, you may not enter vector-type

data.

This command must be used in an expression.

PROGRAM MAIN

COSSAMPLE (2, 30, K)

PRINT TP, X, CR

END

PROGRAM COSSAMPLE (L, R, X)

LOOP:

IF R > 180 THEN R = R – 360

IF R < –180 THEN R = R + 360

IF R > 180 OR R < –180 THEN GOTO LOOP

X = L * COS(R)

RETURN

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-36 –

SM-A20050-A

KSL3000 Robot Language Manual

Given (as arguments) a line segment L with a length L and

forming an angle R with the X-axis, this program finds the length

of the x-component of the line segment L and sends it back to

the main program as argument X.

 Y

 X

L

 R

 L cos R

2020-08-06

– 3-37 –

SM-A20050-A

KSL3000 Robot Language Manual

CR

This function outputs a CR (carriage return) code to the

communication channel.

PRINT [{COM0 | COM1 | TP},] {<character string> |

<expression>} [, {<character string> | <expression>}] ··· [, CR]

PRINT COM1, K, CR

PRINT TP, CR

This function outputs a CR (carriage return) code to the

communication channel. For the communication channel,

select only one (1) from COM0, COM1, and TP. COM0 and TP

are the communication channels exclusively used for the teach

pendant. COM1 corresponds to the COM1 communication

channel of the controller.

Unless the communication channel is specified by the PRINT

command, data is output to the communication channel

exclusive to the teach pendant.

When CR is specified at the end of the PRINT command, a CR

code (0DH) is attached to the last of the data.

When the data has been output to COM0 (TP), it is displayed by

line feed.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-38 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM COMSAMPLE

 PRINT TP, "*** INPUT N ***", CR

 INPUT TP, N

The characters are
displayed on the
teach pendant, which
are then subject to
line-feed.

 PRINT TP, N, CR

END

The value of "N" is displayed
on the teach pendant, which is
then subject to line-feed.

Sample
program

2020-08-06

– 3-39 –

SM-A20050-A

KSL3000 Robot Language Manual

CUROVRD

This function is used to reference the override value currently

being set.

CUROVRD

IF CUROVRD==10 THEN OVERRIDE = 20

The override value currently being set can be referenced by

referencing this system variable.

This system variable is used for reference only and no value

can be substituted into it.

PROGRAM CUROVRDSAMPLE

IF CUROVRD <> 20 THEN OVERRIDE = 20

MOVEA 1,90

END

If the override value currently being set is not 20, this

program sets the override value to 20 and moves Axis 1

to the position of 90 degrees.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-40 –

SM-A20050-A

KSL3000 Robot Language Manual

CYCLE

CYCLE is a system constant which is used to refer to the system

operating mode.

CYCLE

IF MODE < > CYCLE THEN GOTO LOOP

CYCLE is used along with the MODE command to refer to the

system operating mode. When MODE = = CYCLE, the system

is operating in the cycle operation mode.

As a system constant, CYCLE has a value of 1. If you wanted

to, you could use it in your program as a constant having the

value 1. However, this is not a good idea since it makes your

program unnecessarily hard to understand.

You cannot substitute into system constants such as CYCLE.

For information on operating modes, refer to the MODE

command.

PROGRAM CYCLESMPL

LOOP:

MOVE A1

MOVE A2

MOVE A3

IF MODE <> CYCLE THEN GOTO LOOP

END

If the system is not operating in the cycle operation mode,

execution of the program will keep on returning to the beginning

of the loop and the robot will move over and over again.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-41 –

SM-A20050-A

KSL3000 Robot Language Manual

DATA

This function designates the start of a data block which defines

the position and coordinate data for the taught point. For details

of the data block, see Para. 5.3.5.

DATA

DATA

The data block is edited by the data editor rather than the

program editor. If a format error occurs, the program editor is

used for editing.

PROGRAM MAIN

MOVE HOME

END

DATA

POINT HOME = 650, 0, 100, 0, 0 /RIGHTY

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-42 –

SM-A20050-A

KSL3000 Robot Language Manual

DECEL

This command sets the fraction of full deceleration for the robot.

DECEL = <expression>

DECEL = 80

DECEL = 0.8 * DECEL

MOVE A1 WITH DECEL = 90

DECEL is a system variable used to specify the acceleration of

the robot when the robot is decelerating. Acceleration is

expressed as a percentage of the standard (full) acceleration.

In the SCOL language, acceleration during acceleration and

acceleration during deceleration are set separately. In order to

set the acceleration during acceleration, use the ACCEL

command.

This is used to lower the acceleration as needed when the robot

is carrying a heavy load. In this case, change the acceleration

during both acceleration and deceleration. For the setting value

of the acceleration according to the load, see the "Transportation

and Installation Manual."

You may use a constant, variable or calculation for the

<expression> term. However, you may not enter vector-type

data.

This command must be used in an expression.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-43 –

SM-A20050-A

KSL3000 Robot Language Manual

An upper limit on deceleration is built into the controller to protect

the robot. The robot will not go over this limit even if you enter

a value larger than the upper limit. When you enter such a

value, the robot will operate at the upper limit.

Values of 0 or less are taken as 1.

The current acceleration during acceleration can be viewed by

viewing the system variables.

The initial value for acceleration is 100%.

PROGRAM DECELSMPL

FOR K = 1 TO 100

DECEL = K

MOVE A1

MOVE A2

NEXT K

END

This program increases the acceleration from 1% to 100% in

steps of 1 %.

Sample
program

2020-08-06

– 3-44 –

SM-A20050-A

KSL3000 Robot Language Manual

DELAY

The DELAY command stops the movement of the robot arm for a

specified time.

DELAY <time>

DELAY 0.5

DELAY T * 0.2

The DELAY command stops the movement of the robot arm for a

specified length of time.

The <time> designation is specified in units of seconds.

Since the execution precision is limited, try to keep your time

designation in units of 0.01 second or more. A constant,

variable or calculation may be used for the <time> designation.

However, you may not use vector-type data.

When the program stop operation is conducted while the DELAY

command is being executed, after the specified time elapsed, the

automatic operation is stopped. On the other hand, when the

automatic operation is cancelled with the servo off operation or

the emergency stop operation while the DELAY command is

being executed, the DELAY command is executed again when

the program is restarted.

DELAY is a movement control command in that it stops the

movement of the robot arm for a specified period of time. Keep

in mind that the DELAY command stops movement of the robot

and does not stop execution of the program itself.

When you want to delay the program itself, use the TIMER or

WAIT command.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-45 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM DELAYSMPL

MOVE A1

DELAY 2

MOVE A2

DELAY 2

MOVE A3

DELAY 2

END

The robot will stop moving for 2 seconds after it completes each

move.

Sample
program

2020-08-06

– 3-46 –

SM-A20050-A

KSL3000 Robot Language Manual

DEST

The DEST command returns the destination of the present robot

command.

DEST

A1 = DEST

X = DEST. X

The DEST command is used to refer to the destination of the

movement being executed on the world coordinate system at

that time.

DEST can be used just like any other positional vector-type data.

However, you can only refer to the values it contains and cannot

change the values themselves.

When the robot have come to rest after having positioned itself,

DEST will return the location of that position.

PROGRAM DESTSAMPLE

AA = A

MOVE A

ON DIN(1) DO AA = DEST

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA = ", AA.X, AA.Y, AA.Z

END

Purpose

Format

Examples

Analysis

and

advice

Sample
program

2020-08-06

– 3-47 –

SM-A20050-A

KSL3000 Robot Language Manual

This program moves the robot from point A1 to point

A4 while monitoring Input Signal 1. When the signal turn on,

the target position (at that time) will be displayed on the teach

pendant.

2020-08-06

– 3-48 –

SM-A20050-A

KSL3000 Robot Language Manual

DIM …. AS ….

This function defines an array variable.

DIM <array variable> (<number of elements>, <number of

elements>, …) AS <type>

DIM A (5) AS INT

This command is used to define the type and number of

elements of array variable.

The array variable can be defined only as the global variable

which can be accessed and modified from any position of the

defined program. The value of index of the array is 1 ~ No. of

elements. That is, in this example, it is 1 ~ 5.

If the initial value set is outside the index range, an error occurs

at the execution of SELECT command. Also, access and

substitution outside the index range cause an error at program

execution.

A total of five (5) types can be specified; INT (integer type),

REAL (real number type), POINT (position type), TRANS

(coordinate type) and PAYLOAD (load type).

The initial value of INT and REAL type array variables should be

described in the global block, and the initial value of POINT,

TRANS and PAYLOAD type array variables in the data block.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-49 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

DIM ICHI (3) AS POINT One dimensional array of position

type is declared.

END

PROGRAM DIMSAMPLE

ICHI (1) = P0

ICHI (2) = POINT (500.0, 0.0, 100.0, 0.0, 0.0, 0)

ICHI (3) = {500.0, –200.0, 100.0, 0.0, 0.0, 0}

FOR I = 1 TO 3

MOVE ICHI (I)

NEXT I

END

DATA

POINT P0 = 500.0, 200.0, 100.0, 0.0, 0.0 / LEFTY

POINT ICHI (I) = 650.0, 0.0, 100.0, 0.0, 0.0 / LEFTY

END

Sample
program

2020-08-06

– 3-50 –

SM-A20050-A

KSL3000 Robot Language Manual

DIN

The DIN command reads in the state (ON or OFF) of an input

signal (or signals).

DIN(<signal name> [,<signal name>]...)

IF DIN(1) THEN GOTO LOOP

WAIT DIN (1, –2, 3)

ON DIN (J, J + 1, J + 2) DO RETURN

The DIN command reads in the state (ON or OFF) of an input

symbol. DIN is used in conjunction with an IF, WAIT or ON

command to judge external signals.

<signal name> specifies the signal number of a signal to be read

into the controller. A positive signal is considered to be ON and

a negative signal is considered to be OFF. Up to 10 signal

names can be specified. (Extra signal names exceeding 10

signal names are ignored.)

When the state of all the signals becomes as specified, DIN will

return a value of TRUE (1). If even one of the signals is not as

specified, DIN will return FALSE (0).

A constant, variable or calculation may be used for the <signal

name> specification. However, you may not use vector type

data.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-51 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM DINSAMPLE

WAIT DIN(1)

MOVE A1

MOVE A2

MOVE A3

END

The robot will wait until Input Signal 1 turns on before starting to

move.

Sample
program

2020-08-06

– 3-52 –

SM-A20050-A

KSL3000 Robot Language Manual

DISABLE

The DISABLE command is used to disable system switches.

DISABLE <switch> [, <switch>]...

DISABLE PASS

DISABLE PASS, NOWAIT

The DISABLE command is used to disable system switches

related to robot movement. There are six system switches.

(1) PASS

PASS is used to specify short-cut movement. Short-cut

movement is an operating mode in which the robot is

directed to begin its next move before completing the

positioning of its previous move. The timing for switching

over from the present movement to the next movement is

specified with the system variable PASS command.

Short-cut movement allows you to reduce the time it takes

the robot to get from one place to another. For more

information, refer to Section 5.

A DISABLE PASS statement will cancel short-cut

movement. The initial setting for the controller is DISABLE

PASS.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-53 –

SM-A20050-A

KSL3000 Robot Language Manual

(2) NOWAIT

NOWAIT specifies whether the controller should wait for the

robot to finish positioning itself before sending out (or taking

in) external signals. Signal output timing is explained in

Section 5.

A DISABLE NOWAIT statement directs the controller to wait

for the robot to finish positioning itself before send out (or

taking in) an external signal. The initial setting for the

controller is DISABLE NOWAIT.

(3) SWITCH

SWITCH determines whether the task change-over is

performed or not in the multitask operation.

The task change-over is prohibited by the DISABLE

SWITCH. In the initial setting, ENABLE SWITCH is

effective.

(4) MOVESYNC

Specifies the motion command synchronous mode or

motion command asynchronous mode. In the DISABLE

MOVESYNC state (i.e., motion command asynchronous

mode), the system pre-executes commands all the way to

just before four (4) (max.) motion commands ahead and

waits for the finish of positioning. If the system variable

PASS is set to “ENABLE”, short-cut (pass) motion is

allowed. The initial status is specified by the user

parameter [U03].

(5) SMOOTH

Specifies the smooth operation. The motion command

with SMOOTH specified continues movement without

deceleration. The next motion command starts movement

without acceleration regardless of whether SMOOTH is

specified.

ENABLE SMOOTH starts smooth operation, and DISABLE

SMOOTH cancels the smooth operation.

DISABLE SMOOTH is specified by default.

2020-08-06

– 3-54 –

SM-A20050-A

KSL3000 Robot Language Manual

Only interpolation motion commands (MOVES, MOVEC)

are controlled by the smooth operation

(6) SLOWDOWN

Specifies the slowdown operation. In the slowdown

operation, the speed can be changed (decreased) during

movement.

Subsequent motion commands after ENABLE

SLOWDOWN change the speed along the movement

according to the specified parameter.

DISABLE SLOWDOWN cancels the slowdown operation.

DISABLE SLOWDOWN is specified by default.

To make the system switch effective, use the ENABLE

command.

PROGRAM DISABLESPL

MOVE A1

PASS = 80

ENABLE PASS

MOVE A2

MOVE A3

DISABLE PASS

MOVE A4

MOVE A5

END

The robot will move from point A1 to point A4 with short-cut

movement. From point A4 onward, the robot will move

normally.

Sample
program

A1 A2 A3 A5 A4

MOVE A1

2020-08-06

– 3-55 –

SM-A20050-A

KSL3000 Robot Language Manual

DO

The DO command is used in conjunction with the ON command

to monitor conditions.

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

ON DIN (1) DO RETURN

ON TIMER DO MOVE A1

Should the <monitoring condition> be satisfied, the statement

following the DO command will be executed.

Condition monitoring is carried out no matter what kind of

movement the robot happens to be doing at the time.

The ON command is processed in parallel with robot motion

commands. When a MOTION, MOTIONT, REMAIN or

REMAINT command be used as the monitoring condition,

monitoring of conditions for subsequent movement commands

will be performed. When TIMER or ERROR be used as the

monitoring condition, conditions will be monitored independently

of robot movement.

When monitoring input signals with DIN or other such

commands, the timing with which monitoring begins will vary

depending on the setting of the NOWAIT system switch. When

an ENABLE NOWAIT statement is in effect, signals will be

monitored independently of robot movement.

When the DISABLE NOWAIT statement is in effect, monitoring of

the signal will start after the robot has completed the movement it

was executing at the time.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-56 –

SM-A20050-A

KSL3000 Robot Language Manual

The execution of the statement following the DO command will

start immediately after the execution of the command in effect

when the monitoring condition was satisfied. However, if you

happened to be executing a WAIT command, the WAIT

command will be cancelled immediately and program control will

shift to the statement following the DO command.

There are three types of execution timing you can specify for the

robot while in operation:

BREAK: BREAK will immediately stop all robot movement and

shift control to the statement following the DO

command.

PAUSE: The statement following the DO command is

executed after the movement now in progress

finishes. During arm movement, however, normal

program execution continues, except for the

subprogram call command, return command to main

program and motion command. At execution of

these commands, program execution stops until the

arm has stopped.

Default: The default setting will cause the movement in

progress to be completed while simultaneously

executing statements following the DO command.

When the statement following the DO command is a movement

command, always include a BREAK or PAUSE statement in the

DO command line.

If the execution of the statement following the DO command (i.e.,

DO statement) was stopped and the motion command in the DO

statement were executed, after the arm movement has finished,

program execution will restart in accordance with conditions just

before the condition for the ON command was satisfied.

2020-08-06

– 3-57 –

SM-A20050-A

KSL3000 Robot Language Manual

(When a WAIT command have been interrupted, program

execution will restart from the position where the WAIT command

was interrupted. However, when a program branch to a label

have been carried out with the statement following the DO

command, execution will start from the statement having that

label.

Ten sets of conditions can be monitored at once. Furthermore,

a maximum of four input signals may be specified with a single

ON command.

When multiple monitoring conditions become true at once, the

DO statement corresponding to the ON command having the

highest priority is executed. This priority is determined by the

order in which the ON commands were encountered in the

program, with the first ON command encountered having the

highest priority. DO statements corresponding to all other ON

commands are ignored.

Monitoring of a condition specified by one ON command will be

cancelled when execution shift to a DO statement corresponding

to another ON command. Also, conditions are not monitored

while program execution is halted due to a STOP command or

an error.

When the system timer is specified as the monitoring condition,

the condition is checked only when the monitoring conditions

have changed. When monitoring an external signal, an error

condition or a movement reference command (such as the

amount of a motion remaining to be performed), the controller

monitors the state, not the change, of that signal.

2020-08-06

– 3-58 –

SM-A20050-A

KSL3000 Robot Language Manual

The IGNORE command will cancel the monitoring of conditions

specified by an ON command. Monitoring of conditions will also

stop when a condition is satisfied and a statement following a

DO command is executed.

[Note 1]

At present, ON and DO commands may be combined only in the

ways shown below:

ON TIMER DO <statement>

When the timer becomes 0, execute the statement.

ON DIN () DO <statement>

When the state of the input signal(s) in the brackets () becomes

as specified, execute the statement. You cannot monitor more

than four signals at once with one such statement. Up to four

input signals can be specified. Extra input signals exceeding

four signals are ignored.

ON MOTION > = <expression> DO <statement>

Execute the statement when the amount of a motion which is to

be executed next to this command exceeds the specified value.

The only relational operand you can use with MOTION is > =.

ON MOTIONT > = <expression> DO <statement>

Execute the statement when the time required for a motion which

is to be executed next to this command exceeds the specified

time. The only relational operand you can use with MOTIONT

is > =.

ON REMAIN < = <expression> DO <statement>

Execute the statement when the remaining amount of a motion

which is to be executed next to this command is smaller than the

specified value.

The only relational operand you can use with REMAIN is < =.

ON REMAINT < = <expression> DO <statement>

Execute the statement when the remaining time required for a

motion which is to be executed next to this command is smaller

than the specified time.

2020-08-06

– 3-59 –

SM-A20050-A

KSL3000 Robot Language Manual

The only relational operand you can use with

REMAINT is < =.

[Note 2]

In a statement following the DO statement, the following

commands relating to the task control cannot be used.

TASK, KILL, SWITCH

If these commands are used in the DO statement and after, they

are inoperative. Condition monitor by the ON command is not

possible in the subtask.

[Note 3]

If a motion monitored under the condition of ON MOTION, ON

MOTIONT, ON REMAIN or ON REMAINT has been stopped, or

if the slow speed command has been specified during execution

of a monitored motion, the ON condition is cancelled.

PROGRAM MAIN

DOSAMPLE

MOVE P

END

PROGRAM DOSAMPLE

ON DIN(1) PAUSE DO RETURN

MOVE A1

MOVE A2

MOVE A3

WAIT MOTION >= 100

IGNORE DIN(1)

RETURN

END

Should signal 1 turn ON while a movement is being executed,

control will be returned to the main program after that movement

has been completed.

Sample
program

2020-08-06

– 3-60 –

SM-A20050-A

KSL3000 Robot Language Manual

Cautions on DO statement:

For ON ~ DO command, the ON conditions to be monitored and

the DO statement which starts when the conditions are satisfied

are registered.

PRGRAM MAIN

SIG = 1

ON DIN (1) DO INPUT SIG

SUB

IGNORE DIN(1)

PRINT SIG

END

PROGRAM SUB

MOVE P

WAIT MOTION >= 100

END

In the above SCOL program, if DIN(1) is set ON during traverse

to P, the DO statement cannot be executed because the variable

SIG is not defined in the program SUB and there is no space for

saving the variable as input by the INPUT command. In this

case, the relevant DO statement can be executed normally by

defining the variable SIG as the global variable.

GLOBAL
SIG = 0

END
PROGRAM MAIN

SIG = 1
ON DIN(1) DO INPUT SIG
SUB
IGNORE DIN(1)
PRINT SIG

END
PROGRAM SUB

MOVE P
WAIT MOTION >= 100

END

2020-08-06

– 3-61 –

SM-A20050-A

KSL3000 Robot Language Manual

In the DO statement, even if the task changeover conditions are

established or the SWITCH command is executed, the task

cannot be changed over. If the TASK command or KILL

command is executed, an error occurs.

2020-08-06

– 3-62 –

SM-A20050-A

KSL3000 Robot Language Manual

DOUT

DOUT is used to output external signals.

DOUT (<signal name> [,<signal name>] ...)

DOUT (1, 2, –3)

DOUT (J, J + 1, J + 2)

DOUT is used to output external signals.

<signal name> specifies the number (name) of a signal to be

output from the controller.

A positive signal is considered to be ON and a negative signal is

considered to be OFF. Up to ten signal names may be

specified in a signal DOUT command.

A constant, variable or calculation may be used for the <signal

name> specification. However, you may not use vector-type

data.

When the same signal is output consecutively after execution of

the DO command, signal output is not guaranteed. When

output of multiple signals is specified, the simultaneousness of

signal output timing is not guaranteed.

DOUT(-4,3,-2,1) Robot program in turn from the head DOUT(-4)

DOUT(3), DOUT(-2), DOUT(1) Resolving and being executed by

the robot program

In other words, it changes and the signal becomes a value for

the purpose with "1010""0010""0011""0001""0101" at

the number - the interval degree of hundreds of ms, being final

when executing the robot program which is called

DOUT(-4,3,-2,1) behind DOUT(4,-3,2,-1).

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-63 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM DOUTSAMPLE

FOR K = 1 TO 16

DOUT(K)

TIMER = 0.5

WAIT TIMER == 0

DOUT(–K)

NEXT K

END

This program will send out (turn on) output signals 1 to 16 in

order and in 0.5 second intervals.

Sample
program

2020-08-06

– 3-64 –

SM-A20050-A

KSL3000 Robot Language Manual

ELSE

The ELSE statement is used in combination with

IF ~ THEN constructions in order to judge conditions.

IF <logical expression> THEN <statement> [ELSE <statement>]

IF DIN (1) THEN K = K + 1 ELSE K = 0

ELSE is used in an IF statement to specify a statement to be

executed if the IF condition is not satisfied.

An ELSE statement is not mandatory in an IF construction. If

the IF condition is not satisfied and there is no ELSE statement,

program

execution will shift to the next command following the IF

command.

The <statement> following the THEN and ELSE statements

cannot contain PROGRAM, END, IF, FOR, NEXT or WAIT. For

more information on judging conditions, refer to the IF command.

PROGRAM ELSESAMPLE

IF DIN (1) THEN SPEED = 100 ELSE SPEED = 50

MOVE A1

MOVE A2

MOVE A3

END

Should Input Signal 1 be ON, the robot will operate at full (100%)

speed. If OFF, the robot will operate at half (50%) speed.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-65 –

SM-A20050-A

KSL3000 Robot Language Manual

ENABLE

The ENABLE command is used to put system switches into

effect.

ENABLE <switch> [, <switch>]...

ENABLE PASS

ENABLE PASS, NOWAIT

The ENABLE command is used to put system switches related

to robot movement into effect. There are six (6) system

switches.

(1) PASS

PASS is used to specify short-cut movement. Short-cut

movement is an operating mode in which the robot is

directed to begin its next move before completing its

previous move. The timing for switching over from the

present movement to the next movement is specified with

the PASS command.

Short-cut movement allows you to reduce the time it takes

the robot to get from one place to another. For more

information, see Section 5.

An ENABLE PASS statement specifies short-cut

movement. The initial setting for the controller is DISABLE

PASS.

(2) NOWAIT

NOWAIT specifies whether the controller should wait for the

robot to finish positioning itself before sending out (or taking

in) external signals. Signal output timing is explained in

Section 5.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-66 –

SM-A20050-A

KSL3000 Robot Language Manual

An ENABLE NOWAIT statement directs the controller to

send out (or take in) external signals without waiting for the

robot to finish positioning itself. The initial setting for the

controller is DISABLE NOWAIT.

(3) SWITCH

SWITCH determines whether the task change-over is

performed or not in the multitask operation.

The task change-over is prohibited by the DISABLE

SWITCH. In the initial setting, ENABLE SWITCH is

effective.

(4) MOVESYNC

 Specifies the motion command synchronous mode or

motion command asynchronous mode.

In the ENABLE MOVESYNC state (i.e., motion command

synchronous mode), the system executes all the way to just

before the next motion command and waits for the finish of

positioning. The initial status is specified by the user

parameter [U03].

In the MOVESYNC mode, short-cut (pass) motion is not

allowed, irrespective of the status of system variable PASS.

If the system variable PASS is set to “DISABLE” in the

SCOL program, short-cut (pass) motion is allowed.

(5) SMOOTH

Specifies the smooth operation. The motion command

with SMOOTH specified continues movement without

deceleration. The next motion command starts movement

without acceleration regardless of whether SMOOTH is

specified.

ENABLE SMOOTH starts smooth operation, and DISABLE

SMOOTH cancels the smooth operation.

DISABLE SMOOTH is specified by default.

Only interpolation motion commands (MOVES, MOVEC)

are controlled by the smooth operation

2020-08-06

– 3-67 –

SM-A20050-A

KSL3000 Robot Language Manual

(6) SLOWDOWN

Specifies the slowdown operation. In the slowdown

operation, the speed can be changed (decreased) during

movement.

Subsequent motion commands after ENABLE

SLOWDOWN change the speed along the movement

according to the specified parameter.

DISABLE SLOWDOWN cancels the slowdown operation.

DISABLE SLOWDOWN is specified by default.

To make the system switch ineffective, use the DISABLE

command.

PROGRAM ENABLESMPL

MOVE A1

PASS = 80

ENABLE PASS

MOVE A2

MOVE A3

DISABLE PASS

MOVE A4

MOVE A5

END

This program directs the robot to move A1 to point A4 with

short-cut movement. From point A4 onward, the robot moves

without short-cut movement.

Sample
program

A1 A2 A3 A5 A4

MOVE A1

2020-08-06

– 3-68 –

SM-A20050-A

KSL3000 Robot Language Manual

END

The END statement marks the end of a program.

END

END

The END statement marks the end of a program.

When operating in the cycle operation mode, the program will

stop by the END statement of the main task generated

automatically at the start of the program. In the continuous

operation mode, program execution will be returned to the start

of the program and the program will repeat itself.

When executing a program as a subprogram, you should have a

RETURN command in the line above the END statement. Even

if you forget to put in a RETURN command, however, control will

still be sent back to the main program when the END statement

is encountered.

PROGRAM marks the beginning of a program and END marks

the end. The program itself is sandwiched between the two. If

you do not have an END statement, you will get an error

message.

After the END statement in the main program has been

executed, the values of internal variables are cleared.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-69 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM ENDSAMPLE

MOVE A1

MOVE A2

MOVE A3

END

From PROGRAM to END, this program will be executed as a

single program.

Sample
program

2020-08-06

– 3-70 –

SM-A20050-A

KSL3000 Robot Language Manual

EXP

The EXP function returns the exponent of a number to the power

e.

EXP (<expression>)

K = EXP (3.5)

J1 = N * EXP (L – K)

This function is used to calculate the exponent of an

<expression> to the power e. (e = 2.71828...)

A constant, variable or calculation may be used for the

<expression> term. However, you may not use vector-type

data. This command must be used in an expression.

PROGRAM MAIN

EXPSAMPLE (5, K)

PRINT TP, K, CR

END

PROGRAM EXPSAMPLE (N, K)

K = EXP (N)

RETURN

END

This subprogram takes an argument N, finds the exponent of

that argument to the base e, calls the result K, and sends control

back to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-71 –

SM-A20050-A

KSL3000 Robot Language Manual

FINE

FINE is a system constant used to set the positioning accuracy

to fine.

FINE

ACCUR = FINE

MOVE A1 WITH ACCUR = FINE

The FINE statement is used with ACCUR command to set

positioning accuracy to FINE. The system constant has a value

of 1. This value can be used as constant 1 in the expression.

However, do not do it since it makes your program unnecessarily

complicated.

You cannot substitute into system constants.

For information on positioning accuracy, refer to the ACCUR

command.

PROGRAM FINESAMPLE

ACCUR = FINE

MOVE A1

MOVE A2

MOVE A3

END

This program sets the positioning accuracy to FINE before

moving around the robot.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-72 –

SM-A20050-A

KSL3000 Robot Language Manual

FOR

FOR directs a section of the program to repeat itself.

FOR <variable> = <expression 1> TO <expression 2>

[STEP<express ion 3>)

 • • • •

NEXT [<variable>)

FOR K = 1 TO 4

 • • • •

NEXT K

FOR N = K1 TO K1 + K2 STEP K3

 • • • •

NEXT N

The FOR commands directs a part of the program to repeat

itself.

The program block between the FOR command and the NEXT

command is executed repeatedly. The block will keep on

repeating itself until the condition specified by the FOR statement

is satisfied.

When a FOR statement is executed, the value of <expression 1>

is substituted into the <variable>. When the NEXT statement is

executed, the value of <expression 3> specified by the STEP

statement is added on to the <variable>.

Should the value of the <variable> become greater than the

value of <expression 2> at this time, the execution of the

program will shift to the statement following the NEXT command.

If <variable> is not greater than <expression 2>, the program

execution will branch (go back) to the statement following the

FOR statement.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-73 –

SM-A20050-A

KSL3000 Robot Language Manual

The values of <expression 1>, <expression 2> and <expression

3> used in the FOR construct are those in effect when the FOR

statement was first executed. Therefore, even should these

values be changed while executing the loop, the number of times

the loop is repeated will not change.

The <variable> should be used only to control the number of

times the loop is repeated. Therefore, do not change the value

of the <variable> while executing the loop.

If the value of <expression 3> is 1, you may omit statements

after the STEP statement.

A constant, variable or calculation may be used for <expression

1>, <expression 2> or <expression 3>. However, you may not

use vector-type data.

For the corresponding NEXT statement, you should specify the

variable specified by the FOR statement.

If you do not specify <variable> in the NEXT statement, a loop is

made between the nearest FOR statement (executed finally) and

the NEXT statement.

When another FOR command (being nested) is used in a FOR ~

NEXT loop, the number of nesting levels should be 127 levels or

less.

When the number of nesting levels exceeds 127 levels, an error

occurs.

Note 1: A FOR loop is ended by the NEXT command.

Therefore, no matter what, the loop will be executed at

least once.

2020-08-06

– 3-74 –

SM-A20050-A

KSL3000 Robot Language Manual

Note 2: Real numbers may be used for the <variable>,

<expression 1>, <expression 2> or <expression 3>.

However, since there is a certain imprecision when

handling real numbers, try to use integers when telling

the FOR statement how many times to repeat itself.

Furthermore, values substituted into the <variable>,

<expression 1>, <expression 2> or (expression 3> are

converted into the data type when the loop is executed.

Data types are converted as shown below.

(1) When the <variable> data type is undefined when a FOR

statement is executed:

The data type of a variable will be undefined should the

identifier used for the <variable> appear for the first time

in the program in the FOR command. In such a case, all

data will be converted to and processed as the data type

of <expression 1>.

(2) When the <variable> data type has been defined before a

FOR statement is executed:

When the identifier (used for the variable) has been used

in the program beforehand, the data type of the

<variable> will be the same as the data type of the data

which was first entered into that <variable>.

Example:

PROGRAM SAMPLE

J1 = 5

FOR J1 = 0.1 TO 0.9 STEP 0.01

MOVE A1

MOVE A2

NEXT J1

END

2020-08-06

– 3-75 –

SM-A20050-A

KSL3000 Robot Language Manual

When the above program is executed, the data type of J1

is defined as the integer type before the FOR command

is executed. Therefore, all variables used in the FOR

command are converted into the integer type.

Therefore, the controller will interpret the above FOR

statement as:

FOR J1 = 0 TO 0 STEP 0

Consequently, the FOR loop will only be executed once.

Note 3: When the FOR statement is used in the following

manner, an error will occur.

(1) FOR J1 = ...

FOR J2 = ...

 ...

NEXT J1

Here, you are missing a NEXT statement corresponding

to the FOR J2 statement.

 (2) FOR K = ...

...

IF DIN(1) THEN GOTO L1

...

NEXT K

...

L1:

A branch command from the inside to the outside of the

loop or vice versa is not allowed.

2020-08-06

– 3-76 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM FORSAMPLE

FOR K = 1 TO 100

MOVE A1

MOVE A2

NEXT K

END

The robot will make 100 trips back and forth between A1 and A2.

Sample
program

2020-08-06

– 3-77 –

SM-A20050-A

KSL3000 Robot Language Manual

FREE

FREE is a system constant used to make the robot configuration

as undefined.

FREE

CONFIG FREE

MOVE A1 WITH CONFIG = FREE

The FREE system constant is used along with the CONFIG

command in order to specify the robot configuration as

undefined.

FREE has the value of 0. If you wanted to, you could use

FREE in your program as a constant having the value 0.

However, do not do this since it makes your program hard to

read.

You cannot change (substitute into) system constants including

FREE.

For information on robot configuration, see the "CONFIG

command."

PROGRAM FREESAMPLE

CONFIG = FREE

MOVE A1

MOVE A2

END

This program will make the robot configuration undefined before

beginning to move the robot.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-78 –

SM-A20050-A

KSL3000 Robot Language Manual

FREELOAD

The FREELOAD command will zero the data for the load acting

on the end of the robot hand.

FREELOAD

FREELOAD

The FREELOAD command will zero the data for the load acting

on the end of the robot hand.

In order that the robot operate effectively under various loads,

the SCOL language makes it possible to set load data acting on

the end of the robot hand. It is important that the robot know

this information so that it does not damage itself by swinging

around too quickly.

Loads acting on the robot hand are set with the system variable

PAYLOAD. The controller uses these values to calculate

control constants for robot acceleration and deceleration that are

appropriate for the load.

Load data consists of values for the load mass and the load

moment of inertia.

When a FREELOAD command is executed, all load data will

become 0. This is true for both mass load data and inertia load

data.

This command will not work if you do not have the file SCOL.LIB

in the controller RAM drive.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-79 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM FREELOADSL

PAYLOAD=HAND

MOVE A1

CLOSE1

DELAY 0.5

MOVE A2 WITH PAYLOAD=HAND + MOTOR

OPEN1

DELAY 0.5

MOVE A3

FREELOAD

MOVE A2

MOVE A3

END

This program sets the load data to zero before moving around

the robot.

Sample
program

2020-08-06

– 3-80 –

SM-A20050-A

KSL3000 Robot Language Manual

GAIN

The GAIN command is used to specify whether the gain (for

servo control) is ON or OFF for each axis.

GAIN = {<expression>, <expression>, <expression>,

<expression>, <expression>}

GAIN = {0, 0, 1, 0, 0}

MOVE A1 WITH GAIN = {,, ON}

The GAIN command is used to specify whether the gain (servo

control) of each axis is to be ON or OFF.

Should the GAIN be specified as OFF, servo control for that axis

will stop the next time a movement command is executed.

Axes for which servo control has been stopped are in the servo

free state (in which positioning control is not carried out) and can

be moved around freely by external forces.

Positioning checks are not performed for axes for which the gain

is OFF. Furthermore, should you give a movement command to

one of those axes, the axis will not move.

This command is used when, for example, one is fitting a part

into a hole in a workpiece.

By turning off all the gains except for the Z-axis (which must be

on so you can move the hand up and down), all the axes (except

for the Z-axis) are free (i.e., not locked up) and the robot hand

can move freely in the horizontal direction. This allows the

robot to move horizontally along with the workpiece and fit in the

part in the hole even should the workpiece and part not be

aligned exactly.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-81 –

SM-A20050-A

KSL3000 Robot Language Manual

The GAIN command is treated as a system variable having five

values (that correspond to the five axes). The programmer

specifies which gains are to be on and off for each axis in the

{ } brackets following the GAIN commands.

Specifications are divided by commas with the first specification

corresponding to Axis 1, the second to Axis 2, and so on. A "0"

means that the gain is to be OFF and a "1" means that the gain

is to be ON. Should specifications be abbreviated (for example,

{,, ON}), the controller will assume all non-specified gains to be

OFF.

You may use constants, variables or calculation expressions for

the (expression> terms. You may also use the system variables

ON and OFF. (ON sets the gain on, and OFF sets the gain off.)

However, you may not use vector-type data.

You must always synchronize the execution of a GAIN command

with the movement of the robot. That is, be sure that the GAIN

command is executed after the previous movement command is

completed (as seen in the sample program).

Should you execute a GAIN command while the robot is still

moving, the robot may move incorrectly. For more information

on setting gains in synchronization with the robot movement, see

the "SETGAIN command."

Even should you complete automatic operation and switch over

to the manual mode, the GAIN settings will not change. In

order to turn on gains which have been turned off in the manual

mode, push the corresponding guide keys for those axes while in

the guide mode.

When a selected gain value is not more than 0 for ON and not

less than 1 for OFF, 0 and 1 are considered to be specified.

2020-08-06

– 3-82 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM GAINSAMPLE

MOVE A1

WAIT MOTION > = 100

GAIN = {OFF, OFF, ON, OFF, OFF}

MOVE A2

OPEN1

DELAY 0.5

MOVE A1

WAIT MOTION > = 100

GAIN = {ON, ON, ON, ON, ON}

READY

END

This program turns off all gains except that for the Z-axis (Axis 3)

before moving the robot to point A2.

PROGRAM GMOVE

G = GAIN

GAIN = {,, ON}

MOVE P1

WAIT MOTION > = 100

GAIN = G

MOVE P2

END

This program turns off the gains on all axes except Axis 3 (the

Z-axis), and later restores the gains to their original state after

moving.

Sample
program

2020-08-06

– 3-83 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

This function specifies the global variable area.

GLOBAL

GLOBAL

A = 10

END

The global variable which can be referred to and substituted from

any part of the program is defined. To identify the type of a

variable other than the array, setting of an initial value in the

substitution format is required.

As the array variable defines the type and number of elements

by DIM command and sets the initial value separately, some may

not have an initial value.

The following types can be used for the global variable area.

Integer type, real number type, position type, coordinate type

and load type.

Combination of the above variables with the array.

Specify the variable definition of integer type and real number

type, and initial values of integer type and real number type

arrays in global blocks, and the variable definition of position

type, coordinate type and load type, and initial values of position

type, coordinate type and load type arrays in data blocks.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-84 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

A = 1

END

PROGRAM TEST

A = A + 1

PRINT “A=”, A, CR

END

Sample
program

2020-08-06

– 3-85 –

SM-A20050-A

KSL3000 Robot Language Manual

GOTO

The GOTO command specifies that the execution of the program

is to be branched to the location marked by the label of the

GOTO command.

GOTO <label>

IF DIN(1) THEN GOTO L1

GOTO LOOP

GOTO RESTART

The GOTO command specifies that the execution of the program

is to be branched to the location marked by the label of the

GOTO command.

Branching locations for the GOTO command are limited to

statements in the same program. Should there be no location in

the program corresponding to the GOTO label, you will get an

error. Furthermore, should you have several statements with

the same label in the same program, the controller will not know

where to go and you may get an error.

In order to label a branching location, put the label name

(identifier) at the beginning of the statements you wish to

execute. Be sure to put a colon after the identifier.

Purpose

Format

Analysis
and

advice

Examples

2020-08-06

– 3-86 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM GOTOSAMPLE

MOVE A1

LOOP:

MOVE A2

MOVE A3

GOTO LOOP

END

When the program is executed finally, the program goes back to

the label LOOP.

Sample
program

2020-08-06

– 3-87 –

SM-A20050-A

KSL3000 Robot Language Manual

GOTO ()

This command will cause the execution of the robot to branch off

depending on the value of the expression in the brackets.

GOTO (<expression>) <label> [, <label>]….

GOTO (K) LABEL1, LABEL2, LABEL3

GOTO (N1 – N2) L1, L2, L3, L4, L5

The GOTO () command will cause the execution of the

program to be branched off in accordance with the value in the

brackets ().

When the value in the brackets (i.e., the <expression>) is 1, the

program will branch off to the <label> furthest to the left. When

the value in the brackets is 2, the program will branch off to the

<label> second furthest to the left, and so on. Up to 10 labels

can be specified. Extra labels exceeding 10 labels are ignored.

If the value in the brackets is greater than the number of labels

or should the value be zero or less, program execution will

proceed to the statement following the GOTO statement. If the

value in the brackets is a real number, all decimal points will be

cut off and what remains will be treated as an integer.

You may use constants, variables or calculation expressions for

the <expression> term However, you may not use vector-type

data.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-88 –

SM-A20050-A

KSL3000 Robot Language Manual

Branching locations for the GOTO () command are limited to

statements in the same program. Should there be no location in

the program corresponding to the specified GOTO () label, you

will get an error. Furthermore, should you have several

statements with the same label in the same program, the

controller will not know where to go and you may get an error.

In order to label a branching location, put the label name

(identifier) at the beginning of the statements you wish to

execute. Be sure to put a colon after the identifier.

PROGRAM MAIN

INPUT N

GOTOSAMPL2 (N)

END

PROGRAM GOTOSAMPL2 (N)

GOTO (N) L1, L2, L3

RETURN

L1: MOVE A1

RETURN

L2: MOVE A2

RETURN

L3: MOVE A3

RETURN

END

If the argument N is 1, 2 or 3, the robot will move to point A1, A2

or A3 respectively. If N is not 1, 2 or 3, program execution will

be sent back to the main program without moving the robot.

Sample
program

2020-08-06

– 3-89 –

SM-A20050-A

KSL3000 Robot Language Manual

HERE

The HERE statement returns the current position of the robot.

HERE

MOVE HERE

A1 = HERE

X = HERE. X

The HERE command returns the current position of the robot on

the world coordinate system.

HERE can be handled just like any other positional- type data

with the exception that you can only refer to the values contained

inside and cannot change the values themselves.

When a HERE command is executed while the robot is moving,

the commanded position HERE at the time of HERE command

execution is returned.

Note: The position returned with the HERE command is the

position commanded to the robot. Note that while the robot is

moving, the actual current position of the robot has a delay from

the commanded position.

It is possible to acquire the posture of the present robot by the

HERE command.

N=HERE.6

The value of the present posture is stored in N.

With a SCARA robot, the value of HERE.6 is 0 for Free

(undefined), 1 for Left-handed system, or 2 for Right-handed

system.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-90 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM HERESAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=HERE

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=",AA.X,AA.Y,AA.

END

The input signal 1 is monitored during movement from A1 to A4,

and the current position when the signal was turned on is

displayed on the teach pendant.

Sample
program

2020-08-06

– 3-91 –

SM-A20050-A

KSL3000 Robot Language Manual

HEXIN

This function reads input signals in the hexadecimal notation.

HEXIN (<signal name>, <signal length>)

K = HEXIN (1, 2)

J2 = HEXIN (N, N+2)

GOTO (HEXIN (20, 2)) L1, L2, L3

This function reads the input signals of <signal length> in the

hexadecimal notation, starting with the signal specified by

<signal name>.

When K = HEXIN (1, 2), for instance, the state of two (2) input

signals 1 and 2 is read as the HEX code.

The signal length can be specified in the range of 1 ~ 32. As

the input signal number increases, it corresponds to higher-order

bit accordingly. Each signal is coded as follows.

ON = 1, OFF = 0

Example: When the state of input signals 1 ~ 12 is as shown in

the table below, the value of "HEXIN (1, 12)" is 809

(i.e., 329 in the hexadecimal notation).

Input signal
number

12 11 10 9 8 7 6 5 4 3 2 1

Input signal
state

OFF OFF ON ON OFF OFF ON OFF ON OFF OFF ON

Binary
expression

0 0 1 1 0 0 1 0 1 0 0 1

Hexadecimal
expression

 3 2 9

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-92 –

SM-A20050-A

KSL3000 Robot Language Manual

You can use a constant, variable, expression and calculation for

<signal name> and <signal length>. You cannot use the

vector-type data, however.

This command is used in the expression.

PROGRAM HEXINSAMPL

K = HEXIN (1, 7)

SPEED = K

MOVE A1

MOVE A2

END

The state of input signals 1 ~ 7 is coded, the motion speed is set

according to such a value, then the robot moves at the set

speed.

Sample
program

2020-08-06

– 3-93 –

SM-A20050-A

KSL3000 Robot Language Manual

HEXOUT

This function outputs signals by coding them in the hexadecimal

notation.

HEXOUT (<signal name>, <signal length>, <expression>)

HEXOUT (1, 4, 3)

HEXOUT (N, N+4, K)

This function codes the value of <expression> in the

hexadecimal notation and outputs the digits specified by <signal

length> to the number of the signals as specified by <signal

length>, starting with the signal specified by <signal name>.

When HEXOUT (1, 4, 3) is commanded, for instance, the value

of "3" which is coded in the hexadecimal notation is output to the

four signals (1 ~ 4), and output signals 1 and 2 become ON.

As the output signal number increases, it corresponds to

higher-order bit accordingly. The signal length can be specified

in the range of 1 ~ 32. If the value of <expression> exceeds the

value specified by <signal length>, the high-order digit or digits

are ignored. As the input signal number increases, it

corresponds to higher-order bit.

Each signal is coded as follows.

ON = 1, OFF = 0

Example: When HEXOUT (1, 12, 952) is commanded, the

output signals are as shown below.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-94 –

SM-A20050-A

KSL3000 Robot Language Manual

Decimal
expression

 952

Hexadecimal
expression

 3 B 8

Binary
expression

0 0 1 1 1 1 0 1 1 0 0 0

Output signal
number

12 11 10 9 8 7 6 5 4 3 2 1

Output signal
state

OFF OFF ON ON ON ON OFF ON ON OFF OFF OFF

You can use a constant, variable, expression and calculation for

<signal name>, <signal length> and <expression>. You cannot

use the vector-type data, however. If the same signals are

output consecutively, the signal output last becomes effective.

Be careful of agreement's there being in the signal range by

which it is possible to guarantee simultaneous-ness.

The simultaneous-ness of HEXOUT to the range of the 16 bit

carving from DOUT1, DOUT101, and DOUT301 can be

guaranteed but the simultaneous-ness of HEXOUT which strides

the boundary can not be guaranteed.

PROGRAM HEXOUTSMPL

FOR K = 1 TO 4

J = 2 ^ (K–1)

HEXOUT (1, 4, J)

TIMER = 0.5

WAIT TIMER == 0

HEXOUT (1, 4, 0)

NEXT K

END

Output signals 1 ~ 4 are output in turn at intervals of 0.5 second.

Sample
program

2020-08-06

– 3-95 –

SM-A20050-A

KSL3000 Robot Language Manual

IF

The IF statement is used for judging conditions.

IF <logical expression) THEN <statement> [ELSE <statement>]

IF DIN (1) THEN K = K + 1 ELSE K = 0

If the conditions of the <logical expression> following IF are

satisfied, the <statement> following THEN will be executed. If

the conditions are not satisfied, the statement following ELSE will

be executed.

An ELSE statement is not mandatory in an IF construction. If

the IF condition is not satisfied and there is no ELSE statement,

program execution will shift to the next step following the IF

command.

The <statement> following the THEN or ELSE statement may

not contain PROGRAM, END, IF, FOR, NEXT or WAIT.

IF ~ THEN ~ ELSE constructs are considered as a single unit,

and for that reason they all have to be on the same line. (That

means you must write everything following the ELSE statement

on that line.)

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-96 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM IFSAMPLE

IF DIN (1) THEN K = 1 ELSE K = 0

MOVE A1

MOVE A2

MOVE A3

PRINT TP, K, CR

END

Should Input Signal 1 be ON, K will equal 1.

Should Input Signal 1 be OFF, K will equal 0.

Sample
program

2020-08-06

– 3-97 –

SM-A20050-A

KSL3000 Robot Language Manual

IGNORE

The IGNORE command is used to cancel the monitoring of a

condition specified by a previous ON command.

IGNORE <monitoring condition>

IGNORE DIN (1)

IGNORE TIMER

The IGNORE command is used to cancel the monitoring of a

condition specified by a previous ON command.

In the <monitoring condition> specification, use the exact same

logical expression as you used for the corresponding ON

statement.

However, the ON condition statement that can be ignored should

be specified before the IGNORE command line. At this time,

the same ON condition should not be specified on two (2) or

more lines.

When the IGNORE statement is executed, monitoring of the

condition will cease.

For more information on condition monitoring, refer to the ON

command.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-98 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM MAIN

IGNORESMPL

MOVE P

MOVE P2

END

PROGRAM IGNORESMPL

ON DIN (1) PAUSE DO RETURN

MOVE A1

MOVE A2

WAIT MOTION > = 100

IGNORE DIN (1)

RETURN

END

Should Input Signal 1 go on, execution will return to the main

program after the motion in progress at the time is completed.

Monitoring of Input Signal 1 will cease when the movement from

point A1 to point A2 is completed.

Sample
program

2020-08-06

– 3-99 –

SM-A20050-A

KSL3000 Robot Language Manual

INITPLT

Initializes a pallet.

INITPLT (<pallet number>, <i>, <j>, <k>)

INITPLT (1, 5, 4, 3)

This function is used to initialize the pallet to execute the

palletizing command (MOVEPLT).

Pallet number : Number assigned to the pallet, starting with

number "1" (i.e., any integer larger than "1").

 i : Number of elements from pallet home point to

point I (i.e., any integer larger than "1").

 j : Number of elements from pallet home point to

point J (i.e., any integer larger than "1").

 k : Number of elements from pallet home point to

point K (i.e., any integer larger than "1").

If the value of i, j or k is zero (0) or less, the program stops with

an error message saying “ERR!! ELEMENT IS TOO SMALL”

shown on the teach pendant display.

The INITPLT command is available in the dynamic link library.

When executing this command, library build-in and global

variable should be declared in the GLOBAL area.

For further information, see Appendix G–1.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-100 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

LOADLIB PALLET.LIB Library build-in declaration.

DIM PLTP (1, 7) AS POINT Global variable declaration.

END

PROGRAM SAMPLE

INITPLT (1, 3, 4, 2) Pallet initialization to "3  4  2"

with teach points PLTP (1, 1) ~

PLTP (1, 4).

MOVEPLT (1, 1, 0, 0, 0, 0) Move to pallet No. 1, element No.

1.

END

Sample
program

2020-08-06

– 3-101 –

SM-A20050-A

KSL3000 Robot Language Manual

INPSTSTP
INPSTSIP1
INPSTSIP2
INPSTSCM1
INPSTSCM2

Reference the time-out monitoring results of INPUT commands

on each communication channel.

INPSTSTP

INPSTSIP1

INPSTSIP2

INPSTSCM1

INPSTSCM2

IF INPSTSTP==1 THEN GOTO ERR

These functions reference the time-out monitoring results of

INPUT commands.

0: The INPUT command was executed successfully.

1: The INPUT command was executed by time-out.

Note: The time-out monitoring result is always 0 if the time-out

is not specified for the INPUT command.

To reference the time-out monitoring results, set the time-out

time for the INPUT command.

Time-out monitoring result languages corresponding to INPUT

command communication channels are as follows.

Communication
channel

Time-out time
language

Time-out monitoring
result language

TP INPTMOTP INPSTSTP

IP1 INPTMOIP1 INPSTSIP1

IP2 INPTMOIP2 INPSTSIP2

COM1 INPTMOCM1 INPSTSCM1

COM2 INPTMOCM2 INPSTSCM2

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-102 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM INPTMOTPSAMPLE

X1=0.0

INPTMOIP1=0.1

INPUT IP1,X1

IF INPSTSIP1==1 THEN PRINT “NG”,CR ELSE PRINT

“OK”,CR

END

Set the INPUT time-out time to 0.1 second and run the INPUT

command. Then, if the INPUT status instruction is 1, time-out is

determined and NG is shown on the teaching pendant. If the

INPUT status information is not 1, the command has succeeded

and OK is shown on the teaching pendant.

Sample
program

2020-08-06

– 3-103 –

SM-A20050-A

KSL3000 Robot Language Manual

INPTMOTP

INPTMOIP1

INPTMOIP2

INPTMOCM1

INPTMOCM2

Set the time-out time for the INPUT command in seconds on

each communication channel.

INPTMOTP

INPTMOIP1

INPTMOIP2

INPTMOCM1

INPTMOCM2

INPTMOTP=10.0

INPTMOIP1=0.01

Set the time-out time for the INPUT command in seconds.

For INPUT, TP, specify the time-out time for INPTMOTP.

After executing an INPUT command, if the data cannot be

loaded from the communication channel before the designated

timeout time elapses, substitute 0 into the variable specified in

the INPUT command and then proceed to the next step.

If the communication channel specified for the INPUT command

and the time-out communication channel are not consistent, the

time-out time is not monitored.

Note: If the specified value is 0.001 or less, the time-out time is

not monitored.

Time-out time languages corresponding to INPUT command

communication channels are as follows.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-104 –

SM-A20050-A

KSL3000 Robot Language Manual

Communication
channel

Time-out time
language

Time-out monitoring
result language

TP INPTMOTP INPSTSTP

IP1 INPTMOIP1 INPSTSIP1

IP2 INPTMOIP2 INPSTSIP2

COM1 INPTMOCM1 INPSTSCM1

COM2 INPTMOCM2 INPSTSCM2

PROGRAM INPTMOTPSAMPLE

X1=0.0

INPTMOIP1=0.1

INPUT IP1,X1

IF INPSTSIP1==1 THEN PRINT “NG”,CR ELSE PRINT

“OK”,CR

END

Set the INPUT time-out time to 0.1 second and run the INPUT

command. Then, if the INPUT status instruction is 1, time-out is

determined and NG is shown on the teaching pendant. If the

INPUT status information is not 1, the command has succeeded

and OK is shown on the teaching pendant.

Sample
program

2020-08-06

– 3-105 –

SM-A20050-A

KSL3000 Robot Language Manual

INPUT

The INPUT command reads in data from a specified

communications channel.

INPUT[{COM0 | COM1 | TP},] <variable> [, <variable>]…

INPUT K1, K2, K3

INPUT COM1, K

The INPUT command is used to read in data from a

communication channel. This data may be either real or integer

numbers.

Specify one (1) communication channel from COM0, COM1, and

TP. COM0 and TP are channels used solely for the teach

pendant. COM1 corresponds to controller COM1

communication channel.

If you do not specify a communication channel in your INPUT

statement, data will be read in from the teach pendant

communication channel.

When an INPUT command is executed, the program will wait

until the data is read in from the communication channel.

Data which has been read in will be placed in the assigned

variable(s). If there is more data than there are variables,

excess data will be ignored. If there is less data than there are

variables, the program will wait until the remaining data comes

in.

When inputting data from the teach pendant, keep real numbers

separate with commas. When you are done entering the

numbers, push the EXE key.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-106 –

SM-A20050-A

KSL3000 Robot Language Manual

When inputting data from anywhere other than the teach

pendant, the data will be processed when transmission is

completed. For information on data communication, refer to the

Communication Manual.

After the moving arm has stopped, this command is not

executed.

PROGRAM INPUTSMPL

PRINT COM0, "*** INPUT N1, N2, N3 ***"

INPUT COM0, N1, N2, N3

PRINT (N1 + N2 + N3)/3, CR

END

This program will read in three values (N1, N2 and N3) from the

teach pendant, find the average, and display the average on the

teach pendant.

Sample
program

2020-08-06

– 3-107 –

SM-A20050-A

KSL3000 Robot Language Manual

INT

The INT command changes a numerical value into an integer.

INT (<expression>)

AK = INT (–20.345)

N = INT (K)

J1 = K – INT (N – 28.5)

The INT command converts the number or calculation result in

the brackets () to an integer.

Note that the INT command simply cuts off real numbers to the

right of the decimal point and converts them into integer.

This command is used when one wants to specify the data type

of a variable as an integer-type.

You may use constants, variables or calculation expressions for

the <expression> term. However, you may not use vector-type

data.

The INT command must be used in an expression.

PROGRAM MAIN

INTSAMPLE (2, 30, K)

PRINT TP, K, CR

END

PROGRAM INTSAMPL (L, R, K)

K = INT (L * COS (R))

RETURN

END

This program takes in arguments L and R, finds the value of (L *

COS (R)), cuts off any decimal places and returns the result as

argument K to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-108 –

SM-A20050-A

KSL3000 Robot Language Manual

IP1 and IP2

Specifies the communication channel used for the PRINT and

INPUT commands.

PRINT [{IP1 | IP2 | TP},]

{<Character string>|<Equation>} [,{<Character

string>|<Equation>}]…[, CR]

INPUT [{IP1 | IP2 | TP},]

<Variable>[,<Variable>]...

PRINT IP1, "*** INPUT N ***"

PRINT IP2,N,N*10

INPUT IP2,K

These are used to specify the communication channel for the

PRINT and INPUT commands.

IP1 and IP2 support TCP/IP communication of the controller.

If the communication channel is not specified for the PRINT or

INPUT commands, data input/output is performed using the

dedicated communication channel of the teach pendant.

For details on the communication process, see the sections on

the PRINT and INPUT commands.

PROGRAM IPSAMPLE

PRINT IP1,"*** INPUT N ***"

INPUT TP,N

PRINT IP1,N,CR

END

The number entered from the teach pendant is output to IP1.

Purpose

Format

Examples

Sample
program

Analysis
and

advice

2020-08-06

– 3-109 –

SM-A20050-A

KSL3000 Robot Language Manual

IPCLOSE

Run the close processing for each channel.

IPCLOSE(<Integer>)

IPCLOSE(0)

IPCLOSE(1)

IPCLOSE(2)

IPCLOSE(3)

Run the close processing for each channel.

Use any of the following integer values to specify a relevant

channel.

0:TCP/IP0

1:TCP/IP1

2:TCP/IP2

3:TCP/IP3

The system variables IP1 and IP2 cannot be used for this

command.

To run the IPCLOSE command, ensure that the communication

channel status is not CLOSED.

Example: To run IPOPEN(1), ensure that IP1STATUS > 1 (not

closed).

* The communication channel status is not CLOSED after

running the IPCLOSE command, check the cables for

electrical discontinuity.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-110 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM IPCLOSESAMPLE

START:

X1=0.0

IF IP1STATUS>1 THEN IPCLOSE(1)

IF IP1STATUS<>1 THEN GOTO START

IF IP1STATUS==1 THEN IPOPEN(1)

IF IP1STATUS<>2 AND IP1STATUS<>3 THEN GOTO

START

INP:

IF IP1STATUS==5 THEN INPUT IP1,X1 ELSE GOTO INP

END

Set IP1 to CLOSE if the IP1 status is not non or Closed.

After running IPCLOSE(1), move to the START label if the IP1

status is not Closed.

Set IP1 to OPEN if the IP1 status is Closed.

After running IPOPEN(1), move to the START label if the IP1

status is not Listen or Syn_Sent.

Run INPUT IP1 if the IP1 status is Established.

Move to the INP label if the IP1 status is not Established.

* To refer to the status of each channel, see IP0STATUS,

IP1STATUS, IP2STATUS, and IP3STATUS.

Sample
program

2020-08-06

– 3-111 –

SM-A20050-A

KSL3000 Robot Language Manual

IPOPEN

Run the open processing for each channel.

IPOPEN(<Integer>)

IPOPEN(0)

IPOPEN(1)

IPOPEN(2)

IPOPEN(3)

Run the open processing for each channel.

Use any of the following integer values to specify a relevant

channel.

0: TCP/IP0

1: TCP/IP1

2: TCP/IP2

3: TCP/IP3

The system variables IP1 and IP2 cannot be used for this

command.

To run the IPOPEN command, ensure that the communication

channel status is CLOSED.

Example: To run IPOPEN(1), ensure that IP1STATUS == 1

(closed).

* The communication channel status is Listen or Syn_Sent after

running the IPOPEN command, check the cables for electrical

discontinuity.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-112 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM IPOPENSAMPLE

START:

X1=0.0

IF IP1STATUS>1 THEN IPCLOSE(1)

IF IP1STATUS<>1 THEN GOTO START

IF IP1STATUS==1 THEN IPOPEN(1)

IF IP1STATUS<>2 AND IP1STATUS<>3 THEN GOTO

START

INP:

IF IP1STATUS==5 THEN INPUT IP1,X1 ELSE GOTO INP

END

Set IP1 to CLOSE if the IP1 status is not non or Closed.

After running IPCLOSE(1), move to the START label if the IP1

status is not Closed.

Set IP1 to OPEN if the IP1 status is Closed.

After running IPOPEN(1), move to the START label if the IP1

status is not Listen or Syn_Sent.

Run INPUT IP1 if the IP1 status is Established.

Move to the INP label if the IP1 status is not Established.

* To refer to the status of each channel, see IP0STATUS,

IP1STATUS, IP2STATUS, and IP3STATUS.

Sample
program

2020-08-06

– 3-113 –

SM-A20050-A

KSL3000 Robot Language Manual

IP0STATUS

IP1STATUS

IP2STATUS

IP3STATUS

Reference the communication status on each channel.

IP0STATUS

IP1STATUS

IP2STATUS

IP3STATUS

IF IP0STATUS==0 THEN GOTO ERR

Reference the communication status on each channel.

0: non 6: Fin Wait1

1: Closed 7: Fin Wait2

2: Listen 8: Close wait

3: Syn Sent 9: Closing

4: Syn Received 10: Last ACK

5: Established 11: Time Wait

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-114 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM IPSTATUSSAMPLE

STRT:

X1=0.0

IF IP1STATUS<>5 THEN GOTO ERR

INPUT IP1,X1

GOTO STRT

ERR:

PRINT “IP1 NG”,CR

END

Run the INPUT command if the IP1 communication status is

Established.

If the status is not Established, jump to ERR and show "IP1 NG"

on the teaching pendant.

Sample
program

2020-08-06

– 3-115 –

SM-A20050-A

KSL3000 Robot Language Manual

KILL

This function determines the multitask operation.

KILL (<expression>)

KILL (TASKID)

The KILL command terminates the task which has the task

number specified by the calculation result of the expression in

brackets ().

If the task ID (settled on 1) of main task generated automatically

at the start of program or the non-existing task ID is specified,

NOP operation is effective. The task terminated by the KILL

command starts by the TASK command. When this happens, a

new number is assigned to the task number.

The constant, variable and arithmetic expression can be used for

the <expression>. The vector type data cannot be used.

The task for which stop is specified is to be deleted from the

system at the time when it is executed. That is, if system

variable SWITCH is DISABLE, task changeover will not occur

and other tasks cannot be stopped. To execute the KILL

command, set system variable SWITCH to ENABLE.

This command is invalid during step execution

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-116 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

MAXTASK=2

K=0

END

PROGRAM MAIN

TID1=0

LOOP:

IF DIN(1) AND TID1==0 THEN TID1=TASK(“SUB1”)

IF DIN(–1) AND TID1<>0 THEN KILL(TID1)ELSE GOTO

LOOP1

TID1=0

LOOP1:

MOVEA 1, –90

MOVEA 1,90

GOTO LOOP

END

PROGRAM SUB1

K=K+1

PRINT K,CR

END

A task is created when the input signal 1 is turned on, which is

cleared when the same signal is turned off.

Sample
program

2020-08-06

– 3-117 –

SM-A20050-A

KSL3000 Robot Language Manual

LATCH (Option of TS3000)

This function specifies ON/OFF of the position latch function,

using the exclusive input port signals.

LATCH

DISABLE LATCH

ENABLE LATCH

This function specifies whether the exclusive input port signals

should be monitored or not monitored to latch the position.

To turn on and off the system switches, use the ENABLE and

DISABLE commands, respectively.

When the ENABLE LATCH command is specified, the position

latch function, using the exclusive input port signals, becomes

effective.

When the DISABLE LATCH command is specified, the same

function becomes ineffective.

In the initial state, the DISABLE LATCH command takes effect.

If the start edge detection of the exclusive input port signal is

specified and the ENABLE LATCH command is used during the

exclusive port signal ON, the operation of the position latch

function cannot be guaranteed.

The same is also applicable if the fall edge detection of the

exclusive input port signal is specified and the ENABLE LATCH

command is used during the exclusive port signal OFF. When

this happens, however, no error is generated and the processing

continues.

Only after confirming the state of the exclusive input port signal

by means of the DIN command, program the ENABLE LATCH

command. The exclusive input port signals are assigned to 53

through 56.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-118 –

SM-A20050-A

KSL3000 Robot Language Manual

Also, after confirming the state of LATCHSIG1 and 2, acquire the

latch position.

When you use this function, you should provide an exclusive

board. If the ENABLE LATCH command is executed while the

system is not provided with an extension board, an error occurs.

This function cannot be added to the TSL3000.

PROGRAM LATCHSMP

DISABLE NOWAIT

MOVE A0

LATCHTRG1 = 1

IF DIN (49) THEN GOTO FINI

ENABLE LATCH

MOVES A1

WAIT MOTION >= 100

IF LATCHSIG1 == 1 THEN LP = LATCHPSN1

ELSE LP = HERE

DISABLE LATCH

FINI:

MOVE LP

END

Sample
program

2020-08-06

– 3-119 –

SM-A20050-A

KSL3000 Robot Language Manual

LATCHTRG1 ~ 8 (Option of TS3000)

This function specifies the detected edge direction of the position

latch function, using the exclusive input port signals.

LATCHTRG1 = {0 | 1}

LATCHTRG3 = {0 | 1}

LATCHTRG1 = 1

A = LATCHTRG8

These are the system variables for specifying the detected edge

direction which serves as the trigger of the position latch, using

the exclusive input port signals.

LATCHTRG1 ~ 8 specify the detected edge direction of the

exclusive input ports.

When "0" is specified, the signal falls (ON  OFF). Likewise,

when "1" is specified, the signal starts up (OFF  ON).

A numeric value other than the integers cannot be specified for

LATCHTRG1 ~ 8. If a value other than "0" is specified, the

system takes it as "1".

When you refer to this system variable, you can refer to the

current edge direction detected. The default of the detected

edge direction is "1" (OFF  ON).

If the detected edge direction is changed during execution of the

ENABLE LATCH command, the operation of the position latch

function cannot be guaranteed. When this happens, however,

no error is generated and the processing continues.

To identify the programmed operation, execute the DISABLE

LATCH command, then change the detected edge direction.

When you use this function, you should provide an exclusive

board. If LATCHTRG1 ~ 8 is specified in the system without an

extension board, however, the operation is not affected at all.

This function cannot be added to the KSL3000.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-120 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM LATCHSMP

DISABLE NOWAIT

MOVE A0

LATCHTRG1 = 1

IF DIN (49) THEN GOTO FINI

ENABLE LATCH

MOVES A1

WAIT MOTION >= 100

IF LATCHSIG1 == 1 THEN P1 = LATCHPSN1

ELSE P1 = HERE

DISABLE LATCH

LATCHTRG2 = 0

IF DIN (–50) THEN GOTO FINI

ENABLE LATCH

MOVES A2

WAIT MOTION >= 100

IF LATCHSIG2 == 1 THEN P2 = LATCHPSN2

ELSE P2 = HERE

DISABLE LATCH

FINI:

MOVE A0

END

Sample
program

2020-08-06

– 3-121 –

SM-A20050-A

KSL3000 Robot Language Manual

LATCHSIG1 ~ 8 (Option of TS3000)

This function refers to the position latch state, using the

exclusive input port signals.

LATCHSIG1

LATCHSIG5

A = LATCHSIG1

IF LATCHSIG2 ==0 THEN GOTO ERR

This function refers to whether the position has been latched,

using the exclusive input port signals.

LATCHSIG1 ~ 8 refer to the position latch state of the exclusive

input ports. When the position is latched, the system returns

"1". Otherwise, it returns "0". During execution of the

DISABLE LATCH command, the system returns "0", irrespective

of the exclusive signal state. Also, if the exclusive signal has

turned off during edge detection at signal startup, the state of

LATCHSIG1 ~ 8 becomes "0". Likewise, if the exclusive signal

has turned on during edge detection at signal fall, the state of

LATCHSIG1 ~ 8 becomes "0".

LATCHSIGN1 ~ 8 can only be referred to and cannot be

substituted. Also, LATCHSIGN1 ~ 8 cannot be used as the ON

condition.

If you wish to refer to the signal under the ON condition, you

should refer to 49 ~ 56, using the DIN command.

When you use this function, you should provide an exclusive I/O

board. If LATCHSIG1 ~ 8 is referred to in the system without

extension I/O board, however, the system always returns "0".

This function cannot be added to the KSL3000.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-122 –

SM-A20050-A

KSL3000 Robot Language Manual

Note: The latch state identified by LATCHSIG1 ~ 8 is the

current robot state. Real robot motion is delayed due

to processing of the SCOL program.

It is recommended to get the latch state and latch

position only after execution of "WAIT MOTION >=

100".

PROGRAM LATCHSMP

DISABLE NOWAIT

MOVE A0

LATCHTRG1 = 1

IF DIN (49) THEN GOTO ERR

ENABLE LATCH

MOVES A1

WAIT MOTION >= 100

IF LATCHSIG1 == 0 THEN GOTO ERR

LP = LATCHPSN1

DISABLE LATCH

GOTO FINI

ERR:

PRINT "LATCH ERROR", CR

LP = HERE

FINI:

MOVE LP

END

Sample
program

2020-08-06

– 3-123 –

SM-A20050-A

KSL3000 Robot Language Manual

LATCHPSN1 ~ 8 (Option of TS3000)

This function gets the latch position, using the position latch

function.

LATCHPSN1

LATCHPSN2

P1 = LATCHPSN1

AX = LATCHPSN2. X

This function gets a position in the world coordinate system

when the edge of the exclusive input port signal has been

detected.

LATCHPSN1 ~ 8 get the detected edge position of exclusive

input ports 1 ~ 8 in the world coordinate system.

Specify the detected edge direction by LATCHTRG1 ~ 8.

Processing of edge detection becomes effective in the ENABLE

LATCH mode, which is ineffective in the DISABLE LATCH mode.

LATCHPSN1 ~ 8 can be referred to when the state of

corresponding LATCHSIG1 ~ 8 is "1". Even if the state of

LATCHSIG1 ~ 8 is "0", LATCHPSN1 ~ 8 can be referred to, but

the value cannot be guaranteed.

When you use this function, you should provide an exclusive

board. If LATCHPSN1 ~ 8 is referred to in the system without

an extension board, however, the origin of the world coordinate

system is indicated.

This function cannot be added to the KSL3000.

Note: The latch state identified by LATCHSIG1 ~ 8 is the

current robot state. Real robot motion is delayed due

to processing of the SCOL program.

It is recommended to confirm the latch state and latch

position only after execution of "WAIT MOTION >=

100".

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-124 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM LATCHSMP

DISABLE NOWAIT

MOVE A0

LATCHTRG1 = 1

IF DIN (49) THEN GOTO ERR

ENABLE LATCH

MOVES A1

WAIT MOTION >= 100

IF LATCHSIG1 == 0 THEN GOTO ERR

LP = LATCHPSN1

DISABLE LATCH

GOTO FINI

ERR:

PRINT "LATCH ERROR", CR

LP = HERE

FINI:

MOVE LP

END

Sample
program

2020-08-06

– 3-125 –

SM-A20050-A

KSL3000 Robot Language Manual

LEFTY

LEFTY is a system constant used to change over the

configuration of the robot to a left handed system.

LEFTY

CONFIG = LEFTY

MOVE A1 WITH CONFIG = LEFTY

LEFTY is used in conjunction with CONFIG in order to set the

robot configuration to a left handed system.

As a system constant, LEFTY has the value of 1. If you wanted

to, you could use it in your program as a constant having the

value 1.

However, this is not a good idea since it makes your program

unnecessarily complicated.

You cannot substitute into system constants.

For Cartesian coordinate robots, designation of robot

configuration is ignored.

For information on robot configuration, refer to the CONFIG

command.

PROGRAM LEFTYSMPL

CONFIG = LEFTY

MOVE A1

MOVE A2

END

This program will set the robot configuration to a left handed

system before moving the robot on its way.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-126 –

SM-A20050-A

KSL3000 Robot Language Manual

LN

This function calculates the natural logarithm of a number.

LN (<expression>)

K = LN (100)

J1 = 1 – N (50 – D)

The LN command will return the natural logarithm of the number

in the brackets (). However, be warned that the result of LN

(0) will be returned as 0 (when in fact it is undefined and would

be expected to be returned as an error).

You may use constants, variables or calculation expressions for

the <expression> term. However, you may not use vector-type

data.

The LN command must be used in an expression.

PROGRAM MAIN PROGRAM LNSMPL (N, K)

LNSMPLE (3, K)

PRINT TP, K, CR

END

PROGRAM LNSMPL (N,K)

K = 10 ^ N

K = LN (K)

RETURN

END

This program will take the value of a constant logarithm given by

the argument N, convert this value into a natural logarithm, and

send the result back to the main program as argument K.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-127 –

SM-A20050-A

KSL3000 Robot Language Manual

LOADLIB

This function reads a dynamic link library.

LOADLIB <file name>

LOADLIB PALLET.LIB

Be sure to declare the LOADLIB command in the GLOBAL area.

The library file name is ********.LIB.

Up to five (5) libraries can be read in the same program.

For the dynamic library, see Para. 2.8.3 and Appendix G.

GLOBAL

LOADLIB PALLET.LIB Library build-in declaration

END

PROGRAM MAIN

INPUT N

GOTOSAMPL2 (N)

END

PROGRAM GOTOSAMPL2 (N) Example of library file

GOTO (N) L1, L2, L3

RETURN

L1

MOVE A1

RETURN

L2:

MOVE A2

RETURN

L3:

MOVE A3

RETURN

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-128 –

SM-A20050-A

KSL3000 Robot Language Manual

LOG10

This function calculates the common logarithm of a number.

LOG10 (<expression>)

K = LOG10 (100)

J1 = 1 – LOG10 (50 – D)

The LOG10 command will return the common logarithm of the

number in the brackets (). However, be warned that the

result of LOG10 (0) will be returned as some undefined number

(when in fact it would be expected to be returned as an error).

You may use constants, variables or calculation expressions for

the <expression> term. However, you may not use vector-type

data.

The LOG10 command must be used in an expression.

PROGRAM MAIN

LOG10SAMPLE (3, K)

PRINT TP, K, CR

END

PROGRAM LOG10SMPL (N,K)

K= EXP (N)

K= LOG10 (K)

RETURN

END

This program will take the value of a natural logarithm given by

the argument N, convert this value into a common logarithm, and

send the result back to the main program as argument K.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-129 –

SM-A20050-A

KSL3000 Robot Language Manual

MAXTASK

This function specifies the maximum number of tasks that can be

executed at the same time in the program containing the

multitask function.

MAXTASK

MAXTASK = 4

This variable can be used only in the global data block.

Normally, specify the value of "No. of TASK commands + 1" for

this variable. The maximum value is four (4).

If a plural number of tasks are used, only the last value takes

effect.

Unless the multitask function is used, this variable need not be

used. When this happens, the default value is 1 and the work

area of only the main task is maintained.

The work area of the controller is assigned to each task, divided

equally by this variable. If a large value is specified, the work

area that can be used by one (1) task reduces and a large-sized

program cannot be executed.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-130 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

A=0

MAXTASK=2

END

PROGRAM MAIN

ID=0

ID=TASK ("SUB")

LOOP:

IF DIN(1) THEN A=1 ELSE A=0

GOTO LOOP

END

PROGRAM SUB

ENABLE NOWAIT

IF A==0 THEN PRINT "A", A, CR

END

As one (1) subtask is

used, "2" is set.

A loop is formed in the

GOTO statement to

prevent repeated call

of the task command.

Sample
program

2020-08-06

– 3-131 –

SM-A20050-A

KSL3000 Robot Language Manual

MOD

The MOD function returns the remainder of a division operation.

<expression> MOD <expression>

N = K MOD 3

J = K + (L MOD M)

The MOD function will take the <expression> on the left, divide it

by the <expression> on the right, and send back the remainder.

You may use constants, variables or calculation expressions for

the <expression>. However, you may not use vector-type data.

The MOD command must be used in an expression.

PROGRAM MAIN

MODSAMPLE (5.0, 3.0, K)

PRINT TP, K, CR

END

PROGRAM MODSAMPLE (N1, N2, K)

K = N1 MOD N2

RETURN

END

This program argument N2, main program takes argument N1,

divides it by and sends the result back to the as argument K.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-132 –

SM-A20050-A

KSL3000 Robot Language Manual

MODE

MODE is used to refer to the system operating mode

MODE

IF MODE < > CONT THEN STOP

MODE is used to refer to the system operating mode.

Should the value of MODE be 0, the system is in the continuous

operation mode. If 1, the system is in the cycle operation mode,

and if 2, the system is in the segment operation mode.

When referring to the system operating mode, you may use the

system constants CONT, CYCLE and SEGMENT. As you

would expect, MODE = = CONT puts the system in the

continuous operation mode, MODE = = CYCLE puts the system

in the cycle operation mode, and MODE = = SEGMENT puts the

system in the segment operation mode.

The monitor command MODE MOTION can be used to specify

segment operation.

PROGRAM MODESAMPLE

MOVE A1

MOVE A2

IF MODE <> CONT THEN STOP

MOVE A3

END

This program will stop executing itself should the system change

out of the continuous operation mode.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-133 –

SM-A20050-A

KSL3000 Robot Language Manual

MOTION

The MOTION statement is used to refer to the amount of a

motion that has been completed.

MOTION

K = MOTION

ON MOTION > = 50 DO DOUT (1)

The MOTION statement can be used to see what percentage of

a robot motion has been completed.

The "amount of motion" is defined as the percentage of a motion

completed by the robot with respect to the total distance to be

covered by that motion. Calculations for the amount of motion

are carried out for the axis that has the greatest distance to

travel.

The amount of motion is returned as a real number.

By combining the MOTION statement with an ON command, the

robot can be made to send out signals while a motion is still in

progress. This statement must be used in an expression.

Note: The amount of motion referenced with this command is

the position commanded to the robot. Note that while

the robot is moving, the current position of the robot has

a delay from the command position.

Be careful because == can't be used for the comparative

operator.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-134 –

SM-A20050-A

KSL3000 Robot Language Manual

With ENABLE PASS when using, be careful because an infinite

loop is worked depending on how to use.

Because the path orbit formation wait to P2 has occurred from

P1, the following example becomes an infinite loop.

By replacing with the WAIT sentence, it is possible to avoid an

infinite loop.

ENABLE PASS

PASS=50

MOVE P1 

LOOP1:

IF MOTION < 95 THEN GOTO LOOP1

MOVE P2

ENABLE PASS

PASS=50

MOVE P1

WAIT MOTION >= 95

MOVE P2

PROGRAM MOTIONSMPL

ENABLE NOWAIT

ON MOTION > = 50 DO DOUT (1)

MOVE A1

ON MOTION > = 80 DO DOUT (2)

MOVE A2

END

When the robot hand is 50% of the way to point A1, Signal 1 will

be output. When the robot hand is 80% of the way to point A2,

Signal 2 will be output.

Sample
program

2020-08-06

– 3-135 –

SM-A20050-A

KSL3000 Robot Language Manual

MOTIONT

The MOTIONT statement is used to refer to the amount of time

passed since a motion has begun.

MOTIONT

K = MOTIONT

ON MOTIONT > = 5 DO DOUT (1)

The MOTIONT statement can be used to see how much time

has passed since a certain motion has started.

Execution time is given as a real number in units of seconds.

The execution time will change to 0 when the robot has

completed final positioning for that movement.

By combining the MOTIONT statement with an ON command,

the robot can be made to send out signals while a motion is still

in progress. When this statement monitors travel time per one

movement of the robot over the specified time, it can handle the

error.

The MOTIONT command must be used in an expression.

Be careful because == can't be used for the comparative

operator.

Note: The amount of motion referred with the MOTION

command is the position commanded to the robot. Note

that while the robot is moving the current position of the

robot has a delay from the command position.

Be careful because == cannot be used for the

comparative operator.

With ENABLE PASS when using, be careful because an

infinite loop is worked depending on how to use.

Because the path orbit formation wait to P2 has occurred

from P1, the following example becomes an infinite loop.

By replacing with the WAIT sentence, it is possible to

avoid an infinite loop.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-136 –

SM-A20050-A

KSL3000 Robot Language Manual

ENABLE PASS

PASS=50

MOVE P1 

LOOP1:

IF MOTION < 5 THEN GOTO LOOP1

MOVE P2

ENABLE PASS

PASS=50

MOVE P1

WAIT MOTION >= 5

MOVE P2

PROGRAM MOTIONTSMPL

ENABLE NOWAIT

ON MOTIONT > = 10 DO DOUT (1)

MOVE A1

MOVE A2

END

Should the robot take more than 10 seconds to complete a

motion to A1, Signal 1 will be output immediately.

Sample
program

2020-08-06

– 3-137 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVE

The MOVE command moves the robot to a specified position.

MOVE <position> [WITH clause]

MOVE A1

MOVE A1 WITH SPEED = 50

The MOVE command moves the robot to the specified position

in synchronous motion.

All the robot joints will start and stop moving at the same time.

The controller will adjust the speeds of the joints relative to the

slowest joint for that motion accordingly. This is called

synchronous motion (or sometimes joint angle interpolation).

You may use a positional vector for <position>. Also, you may

directly specify the coordinate values for <position> in either of

the two ways shown below.

You cannot use either coordinate type data or load type data for

<position>.

MOVE POINT (X, Y, Z, C, T, <configuration>)

MOVE {X, Y, Z, C, T} WITH CONFIG = <configuration>

(You should try to use the POINT command whenever possible

to make it clear what data type you are handling.)

For both methods shown above:

X, Y, Z, C, T : Coordinate values X, Y, Z, C and T are

specified with real numbers (in units of

millimeters or degrees).

<Configuration>: The configuration of the robot is specified by

an integer value of 0, 1 or 2.

(0 = undefined (FREE); 1 = left hand system;

2 = right hand system)

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-138 –

SM-A20050-A

KSL3000 Robot Language Manual

You may use a constant, a variable or a calculation for each

individual element. However, you may not use vector-type data

for an element. Anything less than 0 which is entered as the

<configuration> will be treated as 0, and anything greater than 2

will be treated as 2.

Individual data elements may be omitted, but these omitted

elements will all be treated as 0. For example, the two

statements below mean the same thing:

MOVE POINT (100, 100, 0, 0, 0, RIGTHY)

MOVE POINT (100, 100)

(Everything from Z to <configuration> will be taken as 0.)

When entering positional data from the teaching pendant, work

coordinate system data specified at the time of teaching will also

be recorded. When a movement command is executed, the

work coordinate system will change over to that specified at the

time the positional data was taught. Note, however, that base

and tool coordinates will stay as they were before the command

was executed.

When directly specifying the coordinate values of <position>

(sometimes along with creating or manipulating positional data

with commands such as DEST, HERE and POINT), movements

are performed with the work coordinate system in effect before

the command was executed.

The controller will figure out movement conditions such as speed

and acceleration using the system variable values in effect at the

time. Should you wish to change a movement condition for one

operation, use a WITH command to specify that condition.

Refer to the WITH command for more information.

2020-08-06

– 3-139 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM MOVESAMPLE

MOVE A1

MOVE A2

END

This program will move the robot to point A1 with synchronous

motion.

Sample
program

2020-08-06

– 3-140 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVEA

MOVEA moves a specified robot joint to a specified position.

MOVEA <axis>, <absolute position> [WITH clause]

MOVEA 1, 60

MOVEA 3, 0 WITH GAIN = {,, ON}

The MOVEA command moves a specified robot joint to a

specified position. Such movement is called "absolute single

axis motion."

The <axis> designation contains an integer from 1 to 5 and

specifies the robot joint to be moved. All other axes besides

that specified will not move.

The <absolute position> designation specifies the destination of

that movement relative to the origin of that axis. For rotary

joints, <absolute position> is in terms of degrees. For linear

(direct drive) joints, <absolute position> is in terms of millimeters.

Should you specify an <absolute position> outside of the range

of that joint, the robot will move to the position just before the

end of that limit. Constants, variables or calculation

expressions may be used for the <axis> and <absolute position>

designations. However, you may not use vector-type data.

Should you use anything other than 1 to 5 for the <axis>

specification, or should you designate an axis which your robot

does not have, the robot does not move.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-141 –

SM-A20050-A

KSL3000 Robot Language Manual

The controller will figure out movement conditions such as speed

and acceleration with the system variable values in effect at the

time. Should you wish to change a movement condition for one

operation, use the WITH command to specify that condition.

Refer to the WITH command for more information.

PROGRAM MOVEASAMPL

MOVEA 1, 0

MOVEA 2, 90

END

This program will move Axis 1 to its 0 degree position.

Sample
program

2020-08-06

– 3-142 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVEC

MOVEC moves the robot hand to a specified position through a

specified passing position in circular interpolation.

MOVEC <passing position> <position> [WITH clause]

MOVEC A1 A2

MOVEC A1 A2 WITH SPEED = 10

The tip of the robot hand is moved in a circular path connected

among the current position, <passing position> and <position>.

The tip of the hand is moved in the direction from the current

position to <position> at a constant angular velocity.

Specify position type data to <passing position> and <position>.

Like the MOVE and MOVES commands, with the POINT

command, a coordinate value can be directly specified.

You cannot use either coordinate type data or load type data for

<passing position> and <position>.

[Work coordinate system]

In the work coordinate system, the tip of the robot hand is moved

as taught for both <passing position> and <position>.

When the work coordinate system is specified with the WITH

clause, the tip of the hand will be moved work coordinate

system. When a coordinate value is directly specified for

<passing position> and <position>, the tip of the hand will be

moved in the work coordinate system when the command is

executed.

[WITH clause]

When the robot is moved, the moving conditions such as speed

and acceleration will be determined depending on the setting

values of the system variables at the time. To change the

moving conditions for one motion, use the WITH clause.

Refer to the WITH command for more information.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-143 –

SM-A20050-A

KSL3000 Robot Language Manual

[Limitation of restoration after canceling circular interpolation]

After a motion of circular interpolation is cancelled by "ON ~

BREAK ~ DO ~," feed hold, emergency stop, or a trouble, when

the execution is resumed without resetting the program (when a

motion is cancelled by "ON ~ BREAK ~ DO ~" and resumed with

the RESUME command), the cancelled command is

re-executed. At that time, the motion of circular interpolation

works as linear motion of interpolation to <position>.

[Limitation of position relationship of three points]

When three or two positions of three points forming an arc

(present position, <passing position>, and <position>) are the

same or very close, the tip of the robot hand may be moved

along an arc which differs from that expected.

When a motion of circular interpolation is used during a short-cut

motion, the path of the robot should be connected to the tangent

of the circular. When the angle becomes sharp, at a joint of

circular interpolation of the short-cut motion, an abrupt

acceleration may be applied to the robot.

[Tool offset]

When the hand is moved linearly or in circular interpolation with

a tool being offset while changing the orientation of the tool,

unless the tool offset is properly set, the specified motion may

not be obtained.

The tool offset is used in teaching positions. Before teaching

the positions, it is necessary to check that the tool offset is

correctly set.

(For the selecting method of the tool coordinate system, see

"6.7.6 Tool Coordinate Selection" of the "Operator’s Manual.")

When a tool being offset is used, before teaching the positions, it

is necessary to set the tool offset. In addition, at the beginning

of the robot language program, with the TOOL command,

securely specify the correct tool offset.

2020-08-06

– 3-144 –

SM-A20050-A

KSL3000 Robot Language Manual

Example: PROGRAM MAIN

TOOL=TOOL1 Use "TOOL1" as tool offset after

that.

...

END

[About the 5th axis addition (the option)]

When adding (the option) the 5th axis, be careful because it

isn't possible for an arc interpolation to be worked about the 5th

axis. Among the other axes, an arc interpolation is worked.

PROGRAM MOVECSAMPL

MOVES A1

MOVEC A2 A3

END

Moves the hand from A1 to A2 in arc interpolation.

Sample
program

2020-08-06

– 3-145 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVEI

MOVEI moves a specified robot joint by a specified amount from

its present position.

MOVEI <axis>, <relative position) [WITH clause]

MOVEI 1, 60

MOVEI 3, 10 WITH SPEED = 50

The MOVEI command moves a specified robot joint by a

specified amount from its position at the time. Such movement

is called "relative single axis motion."

The <axis> designation contains an integer from 1 to 5 and

specifies the robot joint to be moved. All other axes besides

that specified will not move.

The <relative position> designation specifies the amount of that

movement relative to the position of that joint at the time. For

rotary joints, <relative position> is in terms of degrees. For

linear (direct drive) joints, <relative position> is in terms of

millimeters. Should you specify an <relative position> outside

of the range of that joint, the robot will move to the position just

before the end of that limit.

Constants, variables or calculation expressions may be used for

the <axis> and <relative position> designations. However, you

may not use vector-type data.

Should you use anything other than 1 to 5 for the <axis>

specification, or should you designate an axis which your robot

does not have, the robot does not move.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-146 –

SM-A20050-A

KSL3000 Robot Language Manual

The controller will figure out movement conditions such as speed

and acceleration with the system variable values in effect at the

time. Should you wish to change a movement condition for one

operation, use the WITH command to specify that condition.

Refer to the WITH command for more information.

PROGRAM MOVEISAMPL

MOVEI 1, 30 This program will move Axis 1 to a

position 30 degrees from its current

position.

MOVEI 2, 30 This program will move Axis 2 to a

position 30 degrees from its current

position.

MOVEI 3, 30 This program will move Axis 3 to a

position 30 degrees from its current

position.

MOVEI 4, 30 This program will move Axis 4 to a

position 30 degrees from its current

position.

END

Sample
program

2020-08-06

– 3-147 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVEJ

Moves the robot to the specified position along an arch.

MOVEJ <position> <definition of arch>

MOVEJ A1 AC WITH SPEED=30

MOVEJ A1 {50.0, 20.0, 30.0}

This function is used to move the robot to the specified position

along an arch.

Like the MOVE command, the robot moves by PTP

(point-to-point) control. That is, at horizontal movement in the

arch motion, the robot will not move along a straight line.

<Position> specifies the final target position in the MOVEJ

motion. The positional data can be used for <position>.

<definition of arch> defines the profile of the arch motion by

value. The positional data is used for <definition of arch>.

Only three (3) elements are valid for <definition of arch>.

(Values of elements 4 ~ 6 are ignored.)

<definition of arch> = {<recess move distance>, <Z-axis move

distance 1>, <Z-axis move distance 2>}

The coordinate data and load data cannot be used for <position>

and <definition of arch>.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-148 –

SM-A20050-A

KSL3000 Robot Language Manual

<Recess move distance>

<Z-axis move distance 1>

Motion start point

<Z-axis move distance 2>

<Position>

<recess move distance> signifies the distance from the motion

start point to the highest position in the Z-axis direction in units of

"mm". The value of <recess move distance> should be a real

number larger than 0.0. If a negative value is specified for

<recess move distance>, an error is generated.

<Z-axis move distance 1> designates the move distance of axis

3 only in the up direction in units of "mm". The value of <Z-axis

move distance 1> should be a real number larger than 0.0. If a

negative value is specified for <Z-axis move distance 1>, an

error is generated.

If <Z-axis move distance 1> is larger than the move distance in

the up direction, the system interprets that the move distance in

the up direction is designated.

<Z-axis move distance 2> designates the move distance of axis

3 only in the down direction in units of "mm". The value of

<Z-axis move distance 2> should be a real number larger than

0.0. If a negative value is specified for <Z-axis move distance

2>, an error is generated.

If <Z-axis move distance 2> is larger than the move distance in

the down direction, the system interprets that the move distance

in the down direction is designated.

It is also possible to directly designate the values for <position>

and <definition of arch> in the following manner.

2020-08-06

– 3-149 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVEJ POINT(X,Y,Z,C,T, <configuration>) POINT (Z1,Z2,Z3)

MOVEJ {X,Y,Z,C,T} {Z1,Z2,Z3} WITH CONFIG=<configuration>

(To identify the type of data, use the POINT command.)

X, Y, Z, C, T : Specify a real number for each coordinate

of X, Y, Z, C, T. (Unit: mm, degree)

<Configuration> : Specify the robot configuration by an

integer of 0 ~ 2.

(0: Undefined, 1: Lefty, 2: Righty)

Z1, Z2, Z3 : Specify a real number for defining the arch

profile. (Unit: mm)

The MOVEJ command composes the movements in the up,

horizontal and down directions, and will not draw an arc. Also,

to give priority to the highest position in the Z-axis direction, the

movements in the up and down directions are not composed.

If the move distance in the up or down direction is smaller than

the movement in the horizontal direction, the Z-axis move

distance may be larger than the specified value.

If the configuration at the motion start point of the MOVEJ

command differs from the target configuration, the configuration

changes in the horizontal movement.

The value of already moved distance shown by the MOTION

command at the execution of the MOVEJ command is the

percentage of the lapse of time to the total movement time of the

MOVEJ command. Likewise, the value of distance to go shown

by the REMAIN command is the percentage of the remaining

time to the total movement time of the MOVEJ command.

When the MOVEJ command has been interrupted by BREAK,

the distance to go in the up direction, distance to go in the down

direction, distance to go of Z-axis in each direction and target

position are maintained.

2020-08-06

– 3-150 –

SM-A20050-A

KSL3000 Robot Language Manual

To resume the operation, the MOVEJ command is created again

based on these data. Therefore, if the robot has been moved

by manual guide, etc. during interruption by BREAK, the midway

pass cannot be assured.

The MOVEJ command cannot allow a short-cut movement in the

interval with other motion command (including the MOVEJ

command).

PROGRAM MOVEJSAMPL

P1 = POINT (300.0, 350.0, 50.0, 0.0, 0.0)

P2 = POINT (300.0, –350.0, 100.0, 0.0, 0.0)

ARCH = POINT (100.0, 40.0, 50.0)

MOVE P1

MOVEJ P2 ARCH

END

Sample
program

2020-08-06

– 3-151 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVEPLT

Moves the robot to the specified position on the pallet.

MOVEPLT (<pallet number>, <element number> X, Y, Z, C)

MOVEPLT (1, 10, 0, 0, 50, 0)

This function is used to move the robot to the position which is

specified by the pallet number and element number and includes

X, Y, Z, C offsets. The offset value zero cannot be omitted.

Before executing the MOVEPLT command, appropriate pallet

should be initialized by means of the INITPLT command.

The MOVEPLT command is available in the dynamic link library.

When executing this command, library build-in and global

variable should be declared in the GLOBAL area.

If the element number is zero (0) or less or larger than the

maximum number of elements, the program stops with the

following error message shown on the teach pendant display.

When element number < 1: “ERR!! ELEMENT NO. IS TOO

SMALL”

When element No. > i  j  k of INITPLT:

“ERR!! ELEMENT NO. IS TOO

LARGE”

For further information, see Appendix G–1.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-152 –

SM-A20050-A

KSL3000 Robot Language Manual

GLOBAL

LOADLIB PALLET.LIB Library build-in declaration.

DIM PLTP (1, 7) AS POINT Global variable declaration.

END

PROGRAM SAMPLE

INITPLT (1, 3, 4, 2) Pallet initialization to "3 42"

with teach points PLTP (1, 1) ~

PLTP (1, 4).

MOVEPLT (1, 1, 0, 0, 50, 0) Move to position of 50 mm of

pallet 1, element No. 1.

OPEN1

MOVEPLT (1, 1, 0, 0, 0, 0) Move to pallet 1, element No. 1.

CLOSE1

MOVEPLT (1, 1, 0, 0, 50, 0) Move to position of 50 mm of

pallet 1, element No. 1.

END

Sample
program

2020-08-06

– 3-153 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVES

The MOVES command moves the robot by linear interpolation to

a specified position.

MOVES <position> [WITH clause]

MOVES A1

MOVES A1 WITH GAIN = {,, ON}

The MOVES command moves the robot to the specified position

along a path determined by linear interpolation.

This command will cause the robot to move from its current

position to a specified position along a straight line which ties the

two together. This kind of movement is called linear

interpolated motion. Under such motion, the linear speed of the

robot hand will remain constant (except during acceleration and

deceleration).

You may use a positional vector for <position>. Also, you may

directly specify the coordinate values for <position> in either of

the two ways shown below.

You cannot use the coordinate type data or load type data for

<position>.

MOVES POINT (X, Y, Z, C, T, <configuration>)

MOVES (X, Y, Z, C, T) WITH CONFIG = <configuration>

(You should try to use the POINT command whenever possible

to make it clear what data type you are handling.)

X, Y, Z, C, T: Coordinate values X, Y, Z, C and T are

specified with real numbers (in units of

millimeters or degrees).

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-154 –

SM-A20050-A

KSL3000 Robot Language Manual

<configuration>: The configuration of the robot is specified by

an integer value of 0, 1 or 2.

(0 undefined (FREE); 1 = left hand system; 2 right hand system)

You may use a constant, a variable or a calculation for each

individual element. However, you may not use vector-type data

for an element. Anything less than 0 which is entered as the

<configuration> will be treated as 0, and anything greater than 2

will be treated as 2.

Individual data elements may be omitted, but these omitted

elements will all be treated as 0. For example, the two

statements below mean the same thing:

MOVES POINT (100, 100, 0, 0, 0, 0)

When entering positional data from the teach pendant, data for

the work coordinate system in effect at the time will also be

recorded. When a movement command is executed, the

current work coordinate system will change over to that in effect

at the time the positional data was taught. Note, however, that

base and tool coordinates will stay as they were before the

command was executed.

When directly specifying the <position> values, (sometimes

along with creating or manipulating positional data with

commands such as DEST, HERE and POINT), movements are

performed with the work coordinate system in effect before the

command was executed.

2020-08-06

– 3-155 –

SM-A20050-A

KSL3000 Robot Language Manual

The controller will figure out movement conditions such as speed

and acceleration with the system variable values in effect at the

time. Should you wish to change a movement condition for one

operation, use the WITH command to specify that condition.

Refer to the WITH command for more information.

[About the 5th axis addition (the option)]

When adding (the option) the 5th axis, be careful because it isn't

possible for a straight line interpolation to be worked about the

5th axis. Among the other axes, a straight line interpolation is

worked.

PROGRAM MOVESSAMPL

MOVES A1

MOVES A2

END

This program will move the robot to point A2 with linear motion.

Sample
program

2020-08-06

– 3-156 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVESYNC

Specifies the motion command synchronous mode or motion

command asynchronous mode.

MOVESYNC

DISABLE MOVESYNC

Assume a motion during ENABLE NOWAIT in the SCOL

program where multiple motion commands and signal

input/output commands line up alternately. In the ENABLE

MOVESYNC status (motion command synchronous mode), the

system executes up to just before the next motion command and

waits for the completion of positioning. Therefore, the second

signal input/output is executed immediately after the second

motion command starts and the third signal input/output

command immediately after the third motion command starts.

In this mode, however, the system does not get into the state of

the system variable PASS, and short-cut motion cannot be

executed. In the DISABLE MOVESYNC state (motion

command asynchronous mode), the system pre-executes up to

just before the maximum four motion commands ahead and

waits for the completion of positioning. Therefore, the second

and subsequent signal input/output commands may be executed

during the first motion By enabling the system variable PASS,

pass motion becomes possible. The value of this system

variable when the SCOL program is actuated, is set by the user

parameter [U03].

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-157 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM MAIN

ENABLE NOWAIT

ENABLE MOVESYNC

MOVEA 1, 90

DOUT (1)

MOVEA 1, – 90

DOUT (2)

DISABLE MOVESYNC

MOVEA 2, 90

DOUT (3)

MOVEA 2, –90

DOUT (4)

END

D1 turns on while axis 1 is

moving to +90° position.

D2 turns on while axis 1 is

moving to –90° position.

D3 turns on while axis 2 is

moving to +90° position.

D4 turns on while axis 2 is

moving to +90° position (not

– 90° position).

Sample
program

2020-08-06

– 3-158 –

SM-A20050-A

KSL3000 Robot Language Manual

NEXT

NEXT is used in combination with the FOR statement to direct a

section of the program to repeat itself for a specified number of

times.

NEXT [<variable>]

NEXT K

The NEXT statement is used with the FOR statement to direct a

part of the program to repeat itself.

The part of the program to be repeated is contained in a block

starting with the FOR command and ending with the NEXT

command. The block will keep on repeating itself until the

condition specified by the FOR statement is satisfied.

Specify the variable specified by the corresponding FOR

statement for <variable>.

If you do not specify <variable> in the NEXT statement, a loop is

made between the nearest FOR statement (executed finally) and

the NEXT statement.

For the repeat conditions of the program, see the FOR

command.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-159 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM NEXTSAMPLE

FOR K = 1 TO 100

MOVE A1

MOVE A2

NEXT K

END

The robot will repeat 100 times a shuttle operation between A1

and A2.

Sample
program

2020-08-06

– 3-160 –

SM-A20050-A

KSL3000 Robot Language Manual

NOT

NOT reverses the judgment of a logical expression.

NOT <logical expression>

IF NOT DIN (1) THEN STOP

NOT reverses the judgment of a logical expression.

The NOT statement must be used in an expression.

PROGRAM NOTSAMPLE

IF NOT DIN (1) THEN DOUT(1)

END

If input signal 1 is OFF, output signal 1 is ON.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-161 –

SM-A20050-A

KSL3000 Robot Language Manual

NOWAIT

NOWAIT is a system switch which directs the controller to

continue processing I/O signals without waiting for the robot to

finish positioning itself.

NOWAIT

DISABLE NOWAIT

ENABLE NOWAIT

NOWAIT is a system constant used to tell the controller not to

wait for the robot to finish positioning itself before processing I/O

(input/output) signals.

Signal output timing is described in detail in Section 5.

The ENABLE and DISABLE commands are used to turn the

system switches (such as NOWAIT) on and off.

ENABLE NOWAIT tells the controller not to wait for the robot to

finish positioning itself before sending out (or taking in) signals.

DISABLE NOWAIT tells the controller to wait for the robot to

finish positioning itself before sending out (or taking in) signals.

The initial setting for the system is DISABLE NOWAIT.

PROGRAM NOWAITSMPL

ENABLE NOWAIT

MOVE A1

DOUT (1)

MOVE A2

DOUT (2)

MOVE A3

END

Here, the controller will send out external signals without waiting

for the robot to finish positioning itself.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-162 –

SM-A20050-A

KSL3000 Robot Language Manual

OFF

OFF is a system constant used to specify axes for which the gain

(servo control) is to be OFF.

OFF

GAIN = {OFF, OFF, ON, OFF, OFF}

MOVE A1 WITH GAIN = {,, OFF}

OFF is a system constant used in conjunction with GAIN in order

to specify the gain (servo control) of a specific axis as off.

Should the GAIN be specified as OFF, servo control for that axis

will stop the next time a movement command is executed.

Axes for which servo control has been stopped are in the "servo

free state" (in which positioning control is not carried out).

As a system constant, OFF has a value of 0. If you wanted to,

you could use it in your program as a constant having the value

0. However, this is not unnecessarily hard to understand.

You cannot substitute into system constants.

For information on gains, refer to the GAIN command.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-163 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM OFFSAMPLE

MOVE A1

WAIT MOTION > = 100

GAIN = {OFF, OFF, ON, OFF, OFF}

MOVE A2

OPEN 1

DELAY 0.5

MOVE A1

WAIT MOTION >= 100

GAIN = {ON, ON, ON, ON, ON}

READY

END

This program turns off all gains except that for the Z-axis (Axis 3)

before the robot moves to point A2.

Sample
program

2020-08-06

– 3-164 –

SM-A20050-A

KSL3000 Robot Language Manual

ON

ON is a system constant used to specify axes for which the gain

(servo control) is to be ON.

ON

GAIN = {OFF, OFF, ON, OFF, OFF}

MOVE A1 WITH GAIN = {,, ON}

ON is a system constant used in conjunction with GAIN in order

to specify the gain (servo control) of a specific axis as ON.

Should the GAIN be specified as ON, servo control for that axis

will start the next time a movement command is executed.

Axes for which servo control has been stopped are in the "servo

free state" (in which positioning control is not carried out).

As a system constant, ON has a value of 1. If you wanted to,

you could use it in your program as a constant having the value

1. However, this is not a good idea since it makes your

program unnecessarily hard to understand.

You cannot substitute into system constants.

For information on gains, refer to the GAIN command.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-165 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM ONSAMPLE

MOVE A1

WAIT MOTION >= 100

GAIN = {OFF, OFF, ON, OFF, OFF}

MOVE A2

OPEN 1

DELAY 0.5

MOVE A1

WAIT MOTION >= 100

GAIN = {ON, ON, ON, ON, ON}

READY

END

Before moving to point A2, this program turns off all gains except

that for the Z-axis (Axis 3). Then, when all motions have been

completed, the program will turn the gains back on for all axes.

Sample
program

2020-08-06

– 3-166 –

SM-A20050-A

KSL3000 Robot Language Manual

ON

ON is used for monitoring conditions. (For the gain ON/OFF

designation, see the descriptions on [ON] above.)

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

ON DIN (1) DO RETURN

ON TIMER DO MOVE A1

Should the <monitoring condition> be satisfied, the statement

following the DO command will be executed.

Condition monitoring is carried out no matter what movement the

robot happens to be doing at the time.

The ON command is processed in parallel with robot motion

commands. Should a MOTION, MOTIONT, REMAIN or

REMAINT command be used as the monitoring condition,

monitoring of conditions for subsequent movement commands

will be performed. Should TIMER be used as the monitoring

condition, conditions will be monitored independently of robot

movement.

When monitoring input signals with DIN or other such

commands, the timing with which monitoring begins will vary

depending on the setting of the NOWAIT system switch. When

an ENABLE NOWAIT statement is in effect, signals will be

monitored independently of robot movement.

When the DISABLE NOWAIT statement is in effect, monitoring of

the signal will start after the robot has completed the movement it

was executing at the time.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-167 –

SM-A20050-A

KSL3000 Robot Language Manual

The execution of the statement following the DO command will

start immediately after the execution of the command in effect

when the monitoring condition was satisfied. However, if you

happen to be executing a WAIT command at the time the

monitoring condition was satisfied, the WAIT command will be

cancelled immediately and program control will shift to the

statement following the DO command.

There are three types of execution timing you can specify for the

robot while in operation:

BREAK: BREAK will immediately stop all robot movement and

shift control to the statement following the DO

command.

PAUSE: The statement following the DO command is

executed after the movement now in progress

finishes. During arm movement, however, normal

program execution continues, except for the

subprogram call command, return command to main

program and motion command. At execution of

these commands, program execution stops until the

arm has stopped.

Default: The default setting will cause the movement in

progress to be completed while simultaneously

executing statements following the DO command.

When the statement following the DO command is a

movement command, always include a BREAK or

PAUSE statement in the ON command line.

If the statement following the DO command (i.e., DO statement)

and the motion command in the DO statement were executed,

after the arm movement has finished, program execution will

restart in accordance with conditions just before the condition for

the ON command was satisfied.

2020-08-06

– 3-168 –

SM-A20050-A

KSL3000 Robot Language Manual

(Should a WAIT command have been interrupted, program

execution will restart from the beginning of that WAIT command,

i.e., the WAIT command will be executed again). However,

should a program branch to a label have been carried out with

the statement following the DO command, execution will start

from the statement having that label.

Ten sets of conditions can be monitored at once. Furthermore,

a maximum of four input signals may be specified with a single

ON command.

When multiple monitoring conditions become true at once, the

DO statement corresponding to the ON command having the

highest priority is executed. This priority is determined by the

order in which the ON commands were encountered in the

program, with the first ON command encountered having the

highest priority. DO statements corresponding to all other ON

commands are ignored.

Monitoring of a condition specified by an ON command will be

cancelled should execution shift to a DO statement

corresponding to another ON command. Also, conditions are

not monitored while program execution is halted due to a STOP

command or an error.

When a subprogram is specified with a statement following DO,

two or more processes described in the subprogram can be

executed when the condition is satisfied. When an ON

statement is used in the executing program as a statement

following DO, the monitoring of the condition becomes valid just

after the subprogram is returned.

When the system timer is specified as the monitoring condition,

the condition is checked only when the state of the timer

changes.

When monitoring an external signal, an error condition or a

movement reference command (such as the amount of a motion

remaining to be performed), the controller monitors the state, not

the change, of that signal.

2020-08-06

– 3-169 –

SM-A20050-A

KSL3000 Robot Language Manual

The IGNORE command will cancel the monitoring of conditions

specified by an ON command. Monitoring of conditions will also

stop when a condition is satisfied and a statement following a

DO command is executed.

Note 1: At present, ON and DO command combinations may

only be used in the ways shown below:

• ON TIMER DO <statement>

When the timer becomes 0, execute the statement.

• ON DIN () DO <statement>

When the state of the input signal(s) in the brackets ()

becomes as specified, execute the statement. You cannot

monitor more than four signals at once with one such

statement. When four or more points are specified, the extra

points exceeding four points are ignored.

• ON MOTION > = <expression> DO <statement>

Execute the statement when the amount of a motion which is

to be executed next to this command exceeds the specified

value. The only relational operand you can use with

MOTION is >=.

• ON MOTIONT > = <expression> DO <statement>

Execute the statement when the time required for a motion

which is to be executed next to this command exceeds the

specified time. The only relational operand you can use with

MOTIONT is > =.

• ON REMAIN < = <expression> DO <statement>

Execute the statement when the remaining amount of a

motion which is to be executed next to this command is

smaller than the specified value. The only relational operand

you can use with REMAIN is < =.

2020-08-06

– 3-170 –

SM-A20050-A

KSL3000 Robot Language Manual

• ON REMAINT <= <expression> DO <statement>

Execute the statement when the remaining time required for a

motion which is to be executed next to this command is

smaller than the specified time.

The only relational operand you can use with REMAINT is <

=.

Note 2: The following command relating to the task control

cannot be used in the area following the DO statement.

TASK, KILL, SWITCH

When using these commands after the DO statement,

they are not executed. Note that monitoring of the

conditions specified by the subtask ON command

cannot be executed.

Note 3: If a motion monitored under the condition of ON

MOTION, ON MOTIONT, ON REMAIN or ON

REMAINT has been stopped, or if the slow speed

command has been specified during execution of a

monitored motion, the ON condition is cancelled.

PROGRAM MAIN

ONSAMPLE

MOVE P

END

PROGRAM ONSAMPLE

ON DIN (1) PAUSE DO RETURN

MOVE A1

MOVE A2

MOVE A3

WAIT MOTION > = 100

IGNORE DIN (1)

RETURN

END

Should Signal 1 turn ON while a movement is being executed,

control will be returned to the main program after that movement

has been completed.

Sample
program

2020-08-06

– 3-171 –

SM-A20050-A

KSL3000 Robot Language Manual

Cautions on DO statement:

For ON ~ DO command, the ON conditions to be monitored and

the DO statement which starts when the conditions are satisfied

are registered.

PRGRAM MAIN

SIG = 1

ON DIN (1) DO INPUT SIG

SUB

IGNORE DIN(1)

PRINT SIG

END

PROGRAM SUB

MOVE P

WAIT MOTION >= 100

END

In the above SCOL program, if DIN(1) is set ON during traverse

to P, the DO statement cannot be executed because the variable

SIG is not defined in the program SUB and there is no space for

saving the variable as input by the INPUT command. In this

case, the relevant DO statement can be executed normally by

defining the variable SIG as the global variable.

GLOBAL

SIG = 0

END

PROGRAM MAIN

SIG = 1

ON DIN(1) DO INPUT SIG

SUB

IGNORE DIN(1)

PRINT SIG

END

PROGRAM SUB

MOVE P

WAIT MOTION >= 100

END

2020-08-06

– 3-172 –

SM-A20050-A

KSL3000 Robot Language Manual

In the DO statement, even if the task changeover conditions are

established or the SWITCH command is executed, the task

cannot be changed over. If the TASK command or KILL

command is executed, an error occurs.

2020-08-06

– 3-173 –

SM-A20050-A

KSL3000 Robot Language Manual

ONGAIN

Turns on the gain of each axis (servo control).

ONGAIN (<integer>, <integer>, <integer>, <integer>, <integer>)

ONGAIN (0, 0, 1, 0, 0)

The gain of each axis (servo control) of the robot is turned on.

For details of the gain, see the descriptions of the GAIN

command.

To turn off the gain, use the OFFGAIN command. For each

joint of axes 1 to 5, specify the gains by delimiting the values of

the five axes with a comma. The values are specified with 1 or

0. When 1 is specified, the gain of the axis is turned on.

When 0 is specified, the state of the axis remains unchanged.

The on/off state of the gain is changed after the current motion is

completed.

This command can be executed only when file SCOL.LIB is

present in the RAM drive of the controller.

In this command, the system constants ON and OFF cannot be

used.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-174 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM ONGAINSMPL

MOVE A1

OFFGAIN (1,1,0,1,1)

MOVE A2

ONGAIN (1,1,1,1,1)

MOVE A3

END

After the robot is moved to A1, except for the axis 3, the gains

are turned off. After the robot is moved to A2, the gains of all

the axes are turned on.

Sample
program

2020-08-06

– 3-175 –

SM-A20050-A

KSL3000 Robot Language Manual

OFFGAIN

Turns off the gain of each axis (servo control).

OFFGAIN (<integer>, <integer>, <integer> ,<integer>, <integer>)

OFFGAIN (1, 1, 0, 1, 1)

The gain of each axis (servo control) of the robot is turned off.

For details of the gain, see the descriptions of the GAIN

command.

To turn on the gain, use the ONGAIN command. For each joint

of axes 1 to 5, specify the gains by delimiting the values of the

five axes with a comma. The values are specified with 1 or 0.

When 1 is specified, the gain of the axis is turned off. When 0

is specified, the state of the axis remains unchanged.

The on/off state of the gain is changed after the current motion is

completed.

This command can be executed only when file SCOL.LIB is

present in the RAM drive of the controller.

In this command, the system constants ON and OFF cannot be

used.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-176 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM OFFGAINSMPL

MOVE A1

OFFGAIN (1,1,0,1,1)

MOVE A2

ONGAIN (1,1,1,1,1)

MOVE A3

END

After the robot is moved to A1, except for the axis 3, the gains

are turned off. After the robot is moved to A2, the gains of all

the axes are turned on.

Sample
program

2020-08-06

– 3-177 –

SM-A20050-A

KSL3000 Robot Language Manual

OPEN1, OPEN2, OPENI1, OPENI2

These commands open the robot hand.

OPEN1

OPEN2

OPENI1

OPENI2

OPEN1

OPENI2

These commands are used to open the hand. The numbers 1

and 2 refer to Hand 1 and Hand 2.

These commands open the hand by changing the state of the

output signal which controls the robot hand.

The OPEN command directs the robot to open its hand after it

completes the motion in progress.

The OPENI command directs the robot to open its hand

immediately.

Note that these commands will not work if the file SCOL.LIB is

not in the controller RAM drive.

Also, keep in mind that there is a slight delay from when an

OPEN command is output until the robot actually opens its hand.

Corresponding commands CLOSE1, CLOSE2, CLOSEI1 and

CLOSEI2 are provided in order to close the hand.

These commands execute a program written in the system

library (SCOL. LIB). The data of SCOL. LIB should be

changed according to the robot hand specifications.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-178 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM OPENSAMPLE

CLOSEI1

MOVE A1

OPEN1

DELAY 0.5

MOVE A2

END

This program opens the hand after the robot has finished moving

to point A1. The robot waits 0.5 seconds until the hand is open

completely after the OPEN1 command has been executed.

PROGRAM OPENISMPL

ENABLE NOWAIT

OPENI 1

DELAY 2

MOVE A1

CLOSEI 1

DELAY 2

MOVE A2

END

Here, the robot will open its hand1 while moving to point A1.

Sample
program

2020-08-06

– 3-179 –

SM-A20050-A

KSL3000 Robot Language Manual

OR

OR is used to find the logical sum of two logical expressions.

<logical expression> OR <logical expression>

IF DIN (1) OR K < = 3 THEN J = 0

WAIT DIN (5) OR TIMER==0

The OR statement calculates the logical sum of the expressions

to the right and left. If even one of the two statements is true,

OR will return a TRUE.

The OR statement must be used in an expression.

PROGRAM ORSAMPLE

FOR K=1 TO 50

IF DIN (1) OR K==50 THEN J=1 ELSE J=0

PRINT TP, J, CR

NEXT K

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-180 –

SM-A20050-A

KSL3000 Robot Language Manual

OVERRIDE

Specifies the override of the robot.

OVERRIDE = <Equation>

OVERRIDE=50

This is a system variable for specifying the override for the robot

operation speed.

Specify OVERRIDE using a positive integer value. If a value of

0 or less is specified, it is processed as if a value of 1 was

specified. Also, even if a value of 100 or more is specified, it is

processed as a value of 100%.

If override (OVRD) is set by teach pendant operation, a value

cannot be set that is larger than the teach pendant setting

(otherwise, the command will be ignored).

The <Equation> section can be used for constants, variables, or

calculation expressions. However, it cannot be used for

vector-type data.

The initial value for OVERRIDE is 100%.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-181 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM SAMPLE

SPEED=100

MOVE A1

ON MOTION>=25 DO OVERRIDE=50

MOVE A2

WAIT MOTION>=100

OVERRIDE=100

ON MOTION>=50 DO OVERRIDE=50

MOVE A3

WAIT MOTION>=100

OVERRIDE=100

ON MOTION>=75 DO OVERRIDE=50

MOVE A1

WAIT MOTION>=100

MOVE A2

END

Sample
program

2020-08-06

– 3-182 –

SM-A20050-A

KSL3000 Robot Language Manual

PAI

PAI (normally written "~" or "pi ") is a system constant having a

value of 3.14159

PAI

R = D*PAI/180

D = N*PAI*2

PAI is a system constant having a value beginning with

3.14159.... You can use it to represent "pi" when calculating the

length of an arc, the area of a circle, etc.

You cannot substitute into system constants including PAI.

PROGRAM MAIN

PAISAMPLE (5, D)

PRINT TP, D, CR

END

PROGRAM PAISAMPLE (R, D)

D = R/PAI*180

RETURN

END

This subprogram converts the value of the argument from

radians to degrees, and sends the result back to the main

program as argument D.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-183 –

SM-A20050-A

KSL3000 Robot Language Manual

PASS

PASS is a system switch used to specify short-cut movement.

(For setting short-cut motion parameters, see the next page.)

PASS

DISABLE PASS ENABLE PASS

PASS is a system switch used to invoke short-cut movement.

Short-cut movement is an operating mode in which the robot is

directed to begin its next move before completing the positioning

of its previous move. The timing for switching over from the

present movement to the next movement is specified with the

system variable PASS command. Short-cut movement allows

you to reduce the time it takes the robot to get from one place to

another. For more information, refer to Section 5.

The ENABLE and DISABLE commands are used to turn on and

off the system switches such as PASS. An ENABLE PASS

statement will activate short-cut movement, and DISABLE PASS

will cancel short-cut movement.

The initial setting for the controller is DISABLE PASS.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-184 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PASSSAMPLE

MOVE A1

PASS = 80

ENABLE PASS

MOVE A2

MOVE A3

DISABLE PASS

MOVE A4

MOVE A5

END

This program moves the robot with short-cut movement from A1

to A4, and for the movement from point A4 onwards, cancels the

short-cut movement.

Sample
program

A1 A2 A3 A5 A4

MOVE A1

2020-08-06

– 3-185 –

SM-A20050-A

KSL3000 Robot Language Manual

PASS

PASS is a system variable used to set short-cut movement

parameters. (For setting short-cut motion parameters, see the

previous page.)

PASS = <expression>

PASS = 80

PASS = PASS*0.8

PASS is a system variable used to specify parameters for

short-cut movement.

Short-cut movement is an operating mode in which the robot is

directed to begin its next move before completing the positioning

of its previous move. The timing for switching over from the

present movement to the next movement is specified with the

system variable PASS command. The parameter for short-cut

movement is expressed as a percentage of a motion completed

by a robot relative to the entire motion. When the robot

movement has exceeded that percentage, the motion being

performed at that time and the following motion are

superimposed.

The travel amount refer to a position that the robot is directed, at

which the next movement is started even if the actual robot

cannot move because of interference between the robot and the

controller.

An integer value of 50 to 100 may be specified for PASS.

Numbers less than 50 will be treated as 50%, and numbers

greater than 100 will be treated as 100%.

The <expression> designation may contain a constant, variable,

or calculation. However, you may not use vector-type data.

When referring to the PASS system variable, you can refer to the

parameter of the current short-cut movement.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-186 –

SM-A20050-A

KSL3000 Robot Language Manual

Short-cut movement allows you to reduce the time it takes the

robot to get from one place to another. For more information,

see Section 5.

The ENABLE and DISABLE commands are used to turn on and

off the system switches such as PASS. An ENABLE PASS

statement will activate short-cut movement, and DISABLE PASS

statement will cancel short-cut movement.

The initial setting for the controller is DISABLE PASS.

If the WAIT command and I/O command have been specified

while a movement command is executed before the PASS

movement stats the execution, the PASS movement may not be

executed.

PROGRAM PASSSAMPLE

MOVE A1

PASS = 80

ENABLE PASS

MOVE A2

MOVE A3

DISABLE PASS

MOVE A4

MOVE A5

END

This program moves the robot with short-cut movement from A1

to A4, and for the movement from point A4 onwards, cancels the

short-cut movement.

Sample
program

A1 A2 A3 A5 A4

MOVE A1

2020-08-06

– 3-187 –

SM-A20050-A

KSL3000 Robot Language Manual

PAUSE

PAUSE is used to direct the controller to wait until the robot

finishes a motion.

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

ON DIN (1) PAUSE DO SUB

When the monitoring conditions specified by the ON statement

are established, the PAUSE directs the controller to wait until the

robot finishes the motion in progress before executing the DO

statement. For details, see the "ON" command.

PROGRAM PAUSESMPL

ENABLE NOWAIT

REMARK *** MAIN PROGRAM ***

ON DIN (24) PAUSE DO STOP

MOVE A1

MOVE A2

MOVE A3

WAIT MOTION >= 100

IGNORE DIN (24)

END

Here, if something goes wrong with the system and Input Signal

24 turns ON, the robot will stop moving after completing the

movement in progress at the time.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-188 –

SM-A20050-A

KSL3000 Robot Language Manual

PAYLOAD

PAYLOAD is a system variable used to set data for loads acting

on the end of the robot hand.

PAYLOAD = {<mass>, <center of gravity offset>}

PAYLOAD = {10, 10}

MOVE A1 WITH PAYLOAD = MOTOR

PAYLOAD is a system variable used to set data for loads acting

on the end of the robot hand.

In order that the robot operate effectively under various loads,

the SCOL language makes it possible to set load data which

describes the mass and inertia acting on the end of the robot

hand.

Loads acting on the robot hand are set with the system variable

PAYLOAD. The controller uses these values to calculate

control constants for robot acceleration and deceleration that are

appropriate for the load.

Load data consists of values for the load mass and the load

moment of inertia.

The <mass> specification designates the weight of the load

applied to the tip of the robot hand in the order of kilograms.

The <center of gravity offset> designates the distance between

the center of gravity of the load applied to the tip of the robot

hand and the center of the tool of the hand in the unit of

millimeters.

Constants, variables and calculation expressions may be used

for the <mass> and <center of gravity offset> designations.

Also, load-type data may be used for the {<mass>, <center of

gravity offset>} specification.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-189 –

SM-A20050-A

KSL3000 Robot Language Manual

Load-type data is set as shown below:

Load-type data format:

<variable> = {<mass>, <center of gravity offset>}

Example: MOTOR = {5, 10}

 WORKA = HAND + MOTOR

The FREELOAD command is available to set load data to zero.

PROGRAM PAYLOAD

PAYLOAD = HAND

MOVE A1

CLOSE1

DELAY 0.5

MOVE A2 WITH PAYLOAD = HAND + MOTOR

OPEN1

DELAY 0.5

MOVE A3

FREELOAD

MOVE A2

MOVE A3

END

HAND is assigned as the load data before the robot moves to

point A1. The robot grabs something at point A1, and the sum

of HAND + MOTOR is assigned as the new load data.

Sample
program

2020-08-06

– 3-190 –

SM-A20050-A

KSL3000 Robot Language Manual

Load data is entered in term of:

Mass W [unit: kg]

Center of gravity offset L [unit: mm].

2020-08-06

– 3-191 –

SM-A20050-A

KSL3000 Robot Language Manual

POINT

POINT creates positional type data.

POINT (<expression>, <expression>, <expression>,

<expression>, <expression>, <configuration>)

A = POINT (100, 100, 0, 0, 0, 0)

MOVE POINT (100, 100)

The POINT command creates positional type data.

From left to right, the <expression> designations correspond to

the X, Y, Z, C and T elements. These elements are specified in

units of millimeters or degrees.

The <configuration> element is to contain an integer from 0 to 2

that specifies robot configuration. The robot configuration is

undefined (free) at 0, left handed at 1 and right handed at 2. In

order to specify the system configuration, you may use these

numbers or the system constants FREE, LEFTY and RIGHTY.

As you would expect, the configuration is undefined at CONFIG

= FREE, left handed at CONFIG = LEFTY, and right handed at

CONFIG = RIGHTY. Anything less than 0 which is entered as

the <configuration> will be treated as 0, and anything greater

than 2 will be treated as 2.

Constant, variables or calculation expressions may be used for

the <expression> and <configuration> terms. However, you

may not use vector-type data. Furthermore, any omitted

<expression> or <configuration> terms will be taken as 0.

This command must be used in an expression.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-192 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM POINTSMPL

MOVE POINT (100, 100)

END

This command will move the robot to the position X = 500, Y =

500, Z = 0, A = 0, B = 0, C = 0, and T = 0.

Sample
program

2020-08-06

– 3-193 –

SM-A20050-A

KSL3000 Robot Language Manual

PLCDATAR1~8 (Option of TS3000)

These are the system variables for receiving data from the

simple PLC built in the robot.

PLCDATAR1

A = PLCDATAR1

B = PLCDATAR5

PLCDATAR1 ~ 8 are the read-only system variables. Reading

of values set in the simple PLC is possible. (The simple PLC

function is an option.)

The value these system variables can receive are 0 ~ 65535.

(Neither a negative value nor a decimal point can be used.)

SCOL language name Data register

PLCDATAR1 D400

PLCDATAR2 D401

PLCDATAR3 D402

PLCDATAR4 D403

PLCDATAR5 D404

PLCDATAR6 D405

PLCDATAR7 D406

PLCDATAR8 D407

PROGRAM PLCDIN

 A=PLCDATAR1

 B=PLCDATAR2

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

TCmini register

D400

PLCDATAR1

0x0064
Decimal format

(100)

Robot program

A=PLCDATAR1
Result A=100

Example)
100

(Decimal format)

2020-08-06

– 3-194 –

SM-A20050-A

KSL3000 Robot Language Manual

PLCDATAW1~8 (Option of TS3000)

These are the system variables for writing data to the simple

PLC built in the robot.

PLCDATAW1 = <expression>

PLCDATAW1 = 1

PLCDATAW5 = A+B

PLCDATAW1 ~ 8 are the write-only system variables. Transfer

of values to the simple PLC is possible. (The simple PLC

function is an option.)

The value these system variables can transfer are 0 ~ 65535.

(Neither a negative value nor a decimal point can be used.)

In the TS3000 controller, the value written to PLCDATAW1 is

shown on the 7-segment (USER) display on the controller front

panel.

(The KSL3000 controller does not have a 7-segment display, and

so nothing is shown.)

When the simple PLC function option is selected, values of

PLCDATAR1 ~ 8 can be used in the sequence program at the

user's discretion.

Purpose

Format

Examples

Analysis
and

advice

ON

LINE

USER

ALARM

SELECT

2020-08-06

– 3-195 –

SM-A20050-A

KSL3000 Robot Language Manual

SCOL language name Data register

PLCDATAW1 D600

PLCDATAW2 D601

PLCDATAW3 D602

PLCDATAW4 D603

PLCDATAW5 D604

PLCDATAW6 D605

PLCDATAW7 D606

PLCDATAW8 D607

PROGRAM PLCDIN

 A=10

 PLCDATAW1=1

 PLCDATAW2=A

END

Sample
program

TCmini register

D600

PLCDATAW1

0x0014
Decimal format

(20)

Example)
Robot program

PLCDATAW1=20

2020-08-06

– 3-196 –

SM-A20050-A

KSL3000 Robot Language Manual

PLCSLR01~08 (Option of TS3000)

These are the system variables for writing data to the simple

PLC built in the robot.

PLCSLR01

A=PLCSLR01

B=PLCSLR05

PLCSLR01 ~ 08 are the write-only system variables. Reading

of values set to the simple PLC is possible. (The simple PLC

function is an option.)

The value these system variables can receive are -2147483648

~ 2147483647.

SCOL language name Data register

PLCSLR01
L D410

H D411

PLCSLR02
L D412

H D413

PLCSLR03
L D414

H D415

PLCSLR04
L D416

H D417

PLCSLR05
L D418

H D419

PLCSLR06
L D41A

H D41B

PLCSLR07
L D41C

H D41D

PLCSLR08
L D41E

H D41F

Format

Examples

Analysis
and

advice

Purpose

Example)

-10
(decimal format)

TCmini register

D411 D410

PLCSLR01H PLCSLR01L

0xFFFF 0xFFF6

Decimal format (-10)

Robot program

A=PLCSLR01
Result A=-10

2020-08-06

– 3-197 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PLCSLR

 A=PLCSLR01

 B=PLCSLR02

END

Sample
program

2020-08-06

– 3-198 –

SM-A20050-A

KSL3000 Robot Language Manual

PLCSLW01~08 (Option of TS3000)

These are system variables that write a value to the Simple PLC

built into the robot.

PLCSLW01=<Equation>

PLCSLW01=1

PLCSLW05=A+B

PLCSLW01 to 08 are write-only system variables.

The value can be transferred to the Simple PLC.

(The Simple PLC is an option function.)

The value that is transferred is in the range from –2147483648 to

2147483647.

When the Simple PLC function option is selected, any value for

PLCSLW01 to 08 can be freely handled by the sequence

program.

SCOL language name Data register

PLCSLW01
L D610

H D611

PLCSLW02
L D612

H D613

PLCSLW03
L D614

H D615

PLCSLW04
L D616

H D617

PLCSLW05
L D618

H D619

PLCSLW06
L D61A

H D61B

PLCSLW07
L D61C

H D61D

PLCSLW08
L D61E

H D61F

Format

Examples

Analysis
and

advice

Purpose

Example)

Robot program

PLCSLW01=70000

TCmini register

D611 D610

PLCSLW01H PLCSLW01L

0x0001 0x1170

Decimal format (70000)

2020-08-06

– 3-199 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PLCSLW

 A=10

 PLCSLW01=1

 PLCSLW02=A

END

Sample
program

2020-08-06

– 3-200 –

SM-A20050-A

KSL3000 Robot Language Manual

PLCSSR01~08 (Option of TS3000)

These are system variables that receive data from the simple

PLC built into the robot.

PLCSSR01

A=PLCSSR01

B=PLCSSR05

PLCSSR01 to 08 are read-only system variables.

The value that was set by the simple PLC can be read.

(The simple PLC is an option function.)

The value that is received is in the range from –32768 to 32767.

SCOL language name Data register

PLCSSR01 D408

PLCSSR02 D409

PLCSSR03 D40A

PLCSSR04 D40B

PLCSSR05 D40C

PLCSSR06 D40D

PLCSSR07 D40E

PLCSSR08 D40F

Format

Examples

Analysis
and

advice

Purpose

Example)

100
(decimal format)

TCmini register

D408

PLCSSR01

0x0064

Decimal format (100)

Robot program

A=PLCSSR01
Result A=100

2020-08-06

– 3-201 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PLCSSR

 A=PLCSSR01

 B=PLCSSR02

END

Sample
program

2020-08-06

– 3-202 –

SM-A20050-A

KSL3000 Robot Language Manual

PLCSSW01~08 (Option of TS3000)

These are system variables that write a value to the Simple PLC

built into the robot.

PLCSSW01=<Equation>

PLCSSW01=1

PLCSSW05=A+B

PLCSSW01 to 08 are write-only system variables.

The value can be transferred to the Simple PLC.

(The Simple PLC is an option function.)

The value that is transferred is in the range from –32768 to

32767.

When the Simple PLC function option is selected, any value for

PLCSSW01 to 08 can be freely handled by the sequence

program.

SCOL language name Data register

PLCSSW01 D608

PLCSSW02 D609

PLCSSW03 D60A

PLCSSW04 D60B

PLCSSW05 D60C

PLCSSW06 D60D

PLCSSW07 D60E

PLCSSW08 D60F

Format

Examples

Analysis
and

advice

Purpose

Example)

Robot program

PLCSSW01=-10

TCmini register

D608

PLCSSW01

0xFFF6

Decimal format (-10)

2020-08-06

– 3-203 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PLCSSW

 A=10

 PLCSSW01=1

 PLCSSW02=A

END

Sample
program

2020-08-06

– 3-204 –

SM-A20050-A

KSL3000 Robot Language Manual

PRINT

The PRINT command outputs data to a specified

communications channel.

PRINT [{COM0 | COM1 | TP},] {<character string> |

<expression>}[, {<character string> | <expression>}] ... [, CR]

PRINT "X = ", A1. X

PRINT COM1, K, CR

The PRINT command is used to output data to a communication

channel.

Specify one (1) communication channel from COM0, COM1, and

TP. COM0 and TP are channels used solely for the teach

pendant. COM1 corresponds to controller COM1

communication channel.

If you do not specify a communication channel in your PRINT

statement, data will be output to the teach pendant

communication channel.

When a PRINT command is executed, the data will be output to

the specified communication channel.

Data contained in a <character string> will be output as it is.

Data included in an <expression> will be output in solid blocks

having a fixed length of 12 characters aligned on the right.

Should the expression have a real value, output will consist of a

real number having a maximum of four integer places and a

maximum of three decimal places for a maximum total of eight

spaces (counting the decimal point).

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-205 –

SM-A20050-A

KSL3000 Robot Language Manual

A one character space is provided in front of the number for a

plus or minus sign, although the sign itself is omitted when it is +.

Numbers will be pushed over to the right in the 12 character

space, and any unused spaces will be left blank.

All data is in ASCII code. Should you write CR (Carriage

Return) at the end of the PRINT command, output from a

subsequent PRINT command will be displayed on the next line.

If you output data to the teach pendant, that data will be

displayed on the teach pendant.

For information of data communication, refer to the

Communication Manual.

After the moving arm has stopped, this command cannot be

executed.

PROGRAM PRINTSMPL

PRINT COM0, "*** INPUT N1, N2, N3 ***"

INPUT COM0, N1, N2, N3

PRINT (N1 + N2 + N3)/3, CR

END

This program will read in three values (N1, N2 and N3) from the

teach pendant, find the average, and display the average on the

teach pendant.

Sample
program

2020-08-06

– 3-206 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM

The word PROGRAM is used to mark the beginning of a

program.

PROGRAM <program name> [(<variable name>, ...)]

PROGRAM SAMPLE

PROGRAM MAIN

PROGRAM SUB1 (N1, N2, N3)

PROGRAM is used to mark the beginning of a program.

The name of the program is designated by an identifier in the

<program name> specification.

The program text itself is sandwiched between a PROGRAM

statement and an END statement.

When designating a sub program, it is necessary to specify an

argument in parentheses when required.

For details of sub programs and arguments, see "2.8 Programs."

PROGRAM ENDSAMPLE

MOVE A1

MOVE A2

MOVE A3

END

Everything from the PROGRAM statement to the END statement

will be executed as a single program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-207 –

SM-A20050-A

KSL3000 Robot Language Manual

PSNCMD

Exports the current position in the world coordinate system

based on the position command value.

PSNCMD

A1=PSNCMD

X=PSNCMD.X

This exports the current position in the world coordinate system.

PSNCMD can be used in the same way as regular position-type

data, but it is reference only, and substitution is not possible.

If a PSNCMD command is executed while the robot is operating,

the command position to the robot when the PSNCMD command

was issued is exported as the current position.

Note: The position exported by the PSNCMD command is the command

position to the robot that includes the correction values for the

conveyor synchronization function and other parameters. During

robot operation, be careful because the actual current position of the

robot is delayed from the command position.

The current robot orientation can be obtained using the PSNCMD

command.

 N=PSNCMD.6

or similar statement where the value of the current orientation is

inserted in N.

In the SCARA robot, a PSNCMD.6 value of 0 indicates undefined, 1

indicates left shoulder system, and 2 indicates right shoulder system.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-208 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PSNCMDSAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=PSNCMD

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=",AA.X,AA.Y,AA.Z

END

Input signal 1 is monitored during movement from A1 to A4, and

the current position in the world coordinate system based on the

position command value when the signal was turned on is

displayed on the teach pendant.

Sample
program

2020-08-06

– 3-209 –

SM-A20050-A

KSL3000 Robot Language Manual

PSNCMDJ

Exports the current position of the joint axis based on the

position command value.

PSNCMDJ

A1=PSNCMDJ

X=PSNCMDJ.1

This exports the current position at the joint axis.

PSNCMDJ can be used in the same way as regular position-type

data, but it is reference only, and substitution is not possible.

If a PSNCMDJ command is executed while the robot is

operating, the command position to the robot when the

PSNCMDJ command was issued is exported as the current

position.

Note: The position exported by the PSNCMDJ command is the command

position to the robot that includes the correction values for the

conveyor synchronization function and other parameters. During

robot operation, be careful because the actual current position of the

robot is delayed from the command position.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-210 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PSNCMDJSAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=PSNCMDJ

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=",AA.1,AA.2,AA.3

END

Input signal 1 is monitored during movement from A1 to A4, and

the joint axis current position based on the position command

value when the signal was turned on is displayed on the teach

pendant.

Sample
program

2020-08-06

– 3-211 –

SM-A20050-A

KSL3000 Robot Language Manual

PSNCMDW

Exports the current position in the workpiece coordinate system

based on the position command value.

PSNCMDW

A1=PSNCMDW

X=PSNCMDW.X

This exports the current position in the workpiece coordinate

system.

PSNCMDW can be used in the same way as regular

position-type data, but it is reference only, and substitution is not

possible.

If a PSNCMDW command is executed while the robot is

operating, the command position to the robot when the

PSNCMDW command was issued is exported as the current

position.

Note: The position exported by the PSNCMDW command is the command

position to the robot that includes the correction values for the

conveyor synchronization function and other parameters. During

robot operation, be careful because the actual current position of the

robot is delayed from the command position.

The current robot orientation can be obtained using the PSNCMDW

command.

 N=PSNCMDW.6

or similar statement where the value of the current orientation is

inserted in N.

In the SCARA robot, a PSNCMDW.6 value of 0 indicates undefined, 1

indicates left shoulder system, and 2 indicates right shoulder system.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-212 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PSNCMDWSAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=PSNCMDW

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=",AA.X,AA.Y,AA.Z

END

Input signal 1 is monitored during movement from A1 to A4, and

the current position in the workpiece coordinate system based on

the position command value when the signal was turned on is

displayed on the teach pendant.

Sample
program

2020-08-06

– 3-213 –

SM-A20050-A

KSL3000 Robot Language Manual

PSNFBK

Exports the current position in the world coordinate system

based on the position feedback.

PSNFBK

A1=PSNFBK

X=PSNFBK.X

This exports the current position in the world coordinate system.

PSNFBK can be used in the same way as regular position-type

data, but it is reference only, and substitution is not possible.

If a PSNFBK command is executed while the robot is operating,

the command position to the robot when the PSNFBK command

was issued is exported as the current position.

Note: The position exported by the PSNFBK command is the command

position to the robot. During robot operation, be careful because the

actual current position of the robot is delayed from the command

position.

The current robot orientation can be obtained using the PSNFBK

command.

 N=PSNFBK.6

or similar statement where the value of the current orientation is

inserted in N.

In the SCARA robot, a PSNFBK.6 value of 0 indicates undefined, 1

indicates left shoulder system, and 2 indicates right shoulder system.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-214 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PSNFBKSAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=PSNFBK

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=",AA.X,AA.Y,AA.Z

END

Input signal 1 is monitored during movement from A1 to A4, and

the current position in the world coordinate system based on the

position feedback when the signal was turned on is displayed on

the teach pendant.

Sample
program

2020-08-06

– 3-215 –

SM-A20050-A

KSL3000 Robot Language Manual

PSNFBKJ

Exports the current position of the joint axis based on the

position feedback.

PSNFBKJ

A1=PSNFBKJ

X=PSNFBKJ.1

This exports the current position at the joint axis.

PSNFBKJ can be used in the same way as regular position-type

data, but it is reference only, and substitution is not possible.

If a PSNFBKJ command is executed while the robot is operating,

the command position to the robot when the PSNFBKJ

command was issued is exported as the current position.

Note: The position exported by the PSNFBKJ command is the command

position to the robot. During robot operation, be careful because the

actual current position of the robot is delayed from the command

position.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-216 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PSNFBKJSAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=PSNFBKJ

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=", AA.1,AA.2,AA.3

END

Input signal 1 is monitored during movement from A1 to A4, and

the joint axis current position based on the position feedback

when the signal was turned on is displayed on the teach

pendant.

Sample
program

2020-08-06

– 3-217 –

SM-A20050-A

KSL3000 Robot Language Manual

PSNFBKW

Exports the current position in the workpiece coordinate system

based on the position feedback.

PSNFBKW

A1=PSNFBKW

X=PSNFBKW.X

This exports the current position in the workpiece coordinate

system.

PSNFBKW can be used in the same way as regular

position-type data, but it is reference only, and substitution is not

possible.

If a PSNFBKW command is executed while the robot is

operating, the command position to the robot when the

PSNFBKW command was issued is exported as the current

position.

Note: The position exported by the PSNFBKW command is the command

position to the robot. During robot operation, be careful because the

actual current position of the robot is delayed from the command

position.

The current robot orientation can be obtained using the PSNFBKW

command.

 N=PSNFBKW.6

or similar statement where the value of the current orientation is

inserted in N.

In the SCARA robot, a PSNFBKW.6 value of 0 indicates undefined, 1

indicates left shoulder system, and 2 indicates right shoulder system

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-218 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM PSNFBKWSAMPLE

AA=A

MOVE A

ON DIN(1) DO AA=PSNFBKW

MOVE A1

MOVE A2

MOVE A3

MOVE A4

IGNORE DIN(1)

PRINT "POSITION DATA=",AA.X,AA.Y,AA.Z

END

Input signal 1 is monitored during movement from A1 to A4, and

the workpiece coordinate current position based on the position

feedback when the signal was turned on is displayed on the

teach pendant.

Sample
program

2020-08-06

– 3-219 –

SM-A20050-A

KSL3000 Robot Language Manual

PULOUT

The PULOUT command directs the controller to output an

external signal as a pulse.

PULOUT (<signal name> [, <signal name>)...)

PULOUT (1, 2, –3)

PULOUT (J, J+1, J+2)

The PULOUT command directs an output signal to be sent out

as pulses having a width of 0.2 seconds.

<signal name> is to contain the number of the signal to be

output. If the sign of <signal name> is positive, the signal will

be modulated as OFF ~ ON ~ OFF. If the sign of <signal

name> is negative, the signal will be modulated as ON ~ OFF ~

ON. Should the signal be ON and the sign of the <signal

name> be positive, the signal will not be modulated. Likewise,

should the signal be OFF and sign of the <signal name> be

negative, the signal will not be modulated.

Up to ten <signal name> designations can be made with one

PULOUT command.

You may use constants, variables or calculation expressions for

the <signal name>. However, you may not use vector-type

data.

By using an ENABLE NOWAIT statement, it is possible to output

pulse signals in parallel with (at the same time as) such

operations as robot movement and processing of other,

non-pulse output signals.

Should a DISABLE NOWAIT statement be in effect, processing

of any commands which follow a PULOUT command will not

begin until the pulse signal is completely output.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-220 –

SM-A20050-A

KSL3000 Robot Language Manual

When the same signal is output consecutively after the execution

of the PULOUT command while an ENABLE NOWAIT statement

is in effect, the pulse output is not guaranteed.

PROGRAM PULOUTSMPL

DISABLE NOWAIT

FOR K = 1 TO 16

PULOUT (K)

NEXT K

END

Output Signals 1 to 16 will turn ON one after the other at an

interval of 0.2 seconds.

Sample
program

2020-08-06

– 3-221 –

SM-A20050-A

KSL3000 Robot Language Manual

RCYCLE

RCYCLE is a label used for cycle resetting.

RCYCLE

RCYCLE

The RCYCLE label is used to start the execution of the main

program from the first step only on the first cycle and from the

step with the RCYCLE label on the second cycle and the

subsequent cycles. You can program the command you wish to

execute only once between the first step and the step with the

RCYCLE label, for example, initialization of the counter

increasing per cycle.

By doing this, you can continue to pick up a workpiece from the

pallet (depalletize) even if the robot has stopped during picking

operation.

When using the RCYCLE command, be sure to observe the

following cautions.

You can only use RCYCLE once in the main program.

Be sure to program so that at least one (1) line describing

“RCYCLE :” is executed. This function cannot be used for the

multitask program. An error occurs at cycle reset.

For the ON ~ DO command, this function cannot be used during

execution of the DO statement. An error occurs at cycle reset.

For more information on cycle resetting, refer to the Operator’s

Manual.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-222 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM RCYCLESMPL

COUNT = 0

RCYCLE:

MOVE A1

MOVE A2

COUNT = COUNT + 1

IF COUNT < = 10 THEN GOTO RCYCLE

END

Here, even should execution be interrupted partway through,

operation can be continued where left off since the value of

counter COUNT is preserved.

Sample
program

2020-08-06

– 3-223 –

SM-A20050-A

KSL3000 Robot Language Manual

READY

The READY command returns the robot to its mechanical origin.

READY

READY

The READY command moves each axis of the robot to its

mechanical origin.

Note that this command will not work if you do not have the file

SCOL.LIB in the controller RAM drive.

In the horizontal rotating type robot, the axes are moved in the

order of axis 3, axis 4, axis 2, axis 1, and axis 5. Note that the

machine zero point of axis 3 is near the lower motion limit.

PROGRAM READYSMPL

READY

END

This program will return the robot to its mechanical origin.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-224 –

SM-A20050-A

KSL3000 Robot Language Manual

REAL

The REAL command changes a numerical value into a real

number.

REAL (<expression>)

AK = REAL (–20)

N = REAL (K)

J1 = K – REAL (N – 28)

The REAL command converts the number or calculation result in

the brackets () to a real number.

This command is used when one wants to specify the data type

of a variable as real (as opposed to integer).

You may use constants, variables or calculation expressions for

<expression>. However, you may not use vector-type data.

The REAL command must be used in an expression.

PROGRAM REALSAMPL

K=REAL (0.12345)

PRINT TP, K, CR

END

This program declares the data type of variable K as real.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-225 –

SM-A20050-A

KSL3000 Robot Language Manual

REMAIN

The REMAIN statement is used to refer to the amount of a

motion remaining to be completed.

REMAIN

K = REMAIN

ON REMAIN < = 50 DO DOUT (1)

The REMAIN statement can be used to see what percentage of

a robot motion remains to be completed.

The "amount of motion remaining"

is defined as the percentage

of a motion not yet completed by the robot with respect to the

total distance to be covered by that motion. Calculations for

the amount of motion remaining are carried out for the axis that

has the greatest distance to travel. REMAIN returns a real

number.

By combining the REMAIN statement with an ON command, the

robot can be made to send out signals while a motion is still in

progress.

This statement must be used in an expression.

Note: The amount of motion referenced with the REMAIN command is the

position commanded to the robot. Note that the current position of

the robot has a delay to the commanded position while the robot is

moving.

Be careful because == can't be used for the comparative operator

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-226 –

SM-A20050-A

KSL3000 Robot Language Manual

Because the path orbit formation wait to P2 has occurred from P1, the

following example becomes an infinite loop. By replacing with the WAIT

sentence, it is possible to avoid an infinite loop.

ENABLE PASS

PASS=50

MOVE P1 

LOOP1:

IF REMAIN > 5 THEN GOTO LOOP1

MOVE P2

ENABLE PASS

PASS=50

MOVE P1

WAIT REMAIN < 5

MOVE P2

PROGRAM REMAINSMPL

ENABLE NOWAIT

ON REMAIN < = 50 DO DOUT (1)

MOVE A1

ON REMAIN < = 20 DO DOUT (2)

MOVE A2

END

When the robot hand is 50% of the way to point A1, Signal 1 will

be output. When the robot hand is 80% of the way to point A2

(or, in other words, when 20% of the motion remains to be

completed), Signal 2 will be output.

Sample
program

2020-08-06

– 3-227 –

SM-A20050-A

KSL3000 Robot Language Manual

REMAINT

The REMAINT statement is used to refer to the amount of time

remaining before a motion is to be completed.

REMAINT

K = REMAINT

ON REMAINT < = 1 DO DOUT (1)

The REMAINT statement can be used to see how much time

remains before a certain motion will be completed.

Remaining time is given as a real number in units of seconds.

The remaining time will become 0 when the robot has completed

final positioning for that movement.

By combining the REMAINT statement with an ON command,

the robot can be made to send out signals while a motion is still

in progress. This statement must be used in an expression.

Be careful because == can't be used for the comparative

operator.

Because the path orbit formation wait to P2 has occurred from P1, the

following example becomes an infinite loop. By replacing with the WAIT

sentence, it is possible to avoid an infinite loop.

ENABLE PASS

PASS=50

MOVE P1 

LOOP1:

IF REMAINT > 1 THEN GOTO LOOP1

MOVE P2

ENABLE PASS

PASS=50

MOVE P1

WAIT REMAINT < 1

MOVE P2

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-228 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM REMAINTSMPL

ENABLE NOWAIT

ON REMAINT < = 1 DO DOUT (1)

MOVE A1

MOVE A2

END

Signal 1 will be output one second before the robot reaches point

A1.

Sample
program

2020-08-06

– 3-229 –

SM-A20050-A

KSL3000 Robot Language Manual

REMARK

The REMARK statement is used to mark comments.

REMARK [<comment>]

REMARK *** SCOL SAMPLE ***

Comments are used in the program to make it easier to read and

understand.

REMARK statements themselves are interpreted as comments.

The comments are not executed.

The symbol (') has the same meaning as the REMARK

statement. When writing a comment following other

commands, this symbol (') is used. The characters following the

symbol (') are all interpreted as comments.

PROGRAM REMARKSMPL

REMARK *** SAMPLE PROGRAM ***

MOVE A1 'MOVES TO A1

END

“MOVES TO A1” is programmed as the comment.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-230 –

SM-A20050-A

KSL3000 Robot Language Manual

RESET

The RESET command is used to reset certain controller

conditions such as the state of output signals.

RESET <state> [, <state>]

RESET DOUT

RESET RESUME

The RESET command is used to reset the state of such things

as the controller output signals. Only the following two

statements may be used.

(1) DOUT

DOUT will turn OFF all user output signals.

(2) RESUME

RESUME will reset the robot movement suspended by a

BREAK command in an ON construct. After resetting, the

movement interrupted by the BREAK command cannot be

resumed by the RESUME command.

PROGRAM RESETSMPL

RESET DOUT

END

This program will turn all user output signals OFF.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-231 –

SM-A20050-A

KSL3000 Robot Language Manual

RESTORE

This command updates the initial value of the global variable.

RESTORE (“<variable>”)

RESTORE (“I”)

Change, etc. of the position data which has been taught is

restored to the file. The variable which can be specified is only

the global variable other than the array which does not have an

initial value. If any other variable is to be restored, an error

occurs at selection.

GLOBAL

A = 0

END

PROGRAM STORETEST

A = A + 1

RESTORE (“A”)

PRINT "A=", A, CR

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-232 –

SM-A20050-A

KSL3000 Robot Language Manual

RESUME

The RESUME command restarts robot movement interrupted by

a BREAK command.

RESUME

RESUME

The RESUME command is used to restart robot motion

suspended by a BREAK command in an ON construct.

Movement is restarted (resumed) from the location the robot

movement was suspended. Therefore, should you restart in the

circular interpolation mode, the path the robot takes may vary by

quite a bit depending on the relation between the current

position, the interpolation points and the destination.

When multiple BREAK commands have been executed (and are

still in effect), only the movement interrupted by the last BREAK

command may be resumed.

Should you execute a RESET RESUME statement, the

suspended motion will be reset. The suspended motion will

also be reset should a PAUSE command be executed by the ON

command.

This command is effective only in the DO statement. If

executed in a statement other than the DO statement, this

command is ignored.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-233 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM RESUMESMPL

ENABLE NOWAIT

REMARK *** MAIN PROGRAM ***

ON DIN (24) BREAK DO BREAKSUB

MOVE A1

MOVE A2

MOVE A3

WAIT MOTION > = 100

IGNORE DIN (24)

END

Should something go wrong with the system and Input Signal 24

turn ON, the controller will stop robot movement immediately and

shift program execution to subprogram BREAKSUB (shown

below).

PROGRAM BREAKSUB

REMARK *** SUBROUTINE ***

WAIT DIN (–24)

RESUME

END

The subprogram BREAKSUB will wait until Input Signal 24 turns

OFF. When the error is resolved, the interrupted motion will be

resumed.

Sample
program

2020-08-06

– 3-234 –

SM-A20050-A

KSL3000 Robot Language Manual

RETURN

The RETURN statement directs program execution to return to

the main program from a subprogram.

RETURN

RETURN

The RETURN statement is used to return the program from the

subprogram to the main program.

Even should you forget to include a RETURN statement in your

subprogram, the controller will return the control to the main

program through the execution of the END statement.

You will get an error should you put a RETURN statement in your

main program.

PROGRAM MAIN

RETURNSAMPLE (5, K)

PRINT TP, K, CR

END

PROGRAM RETURNSMPL (N, K)

K = N * N

RETURN

END

This program will take argument N, multiply it by itself, and send

the result back to the main program as argument K.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-235 –

SM-A20050-A

KSL3000 Robot Language Manual

RIGHTY

RIGHTY is a system constant used to change over the

configuration of the robot to a right handed system.

RIGHTY

CONFIG = RIGHTY

MOVE A1 WITH CONFIG = RIGHTY

RIGHTY is used in conjunction with CONFIG in order to set the

robot configuration to a right handed system.

As a system constant, RIGHTY has the value of 2. If you

wanted to, you could use it in your program as a constant having

the value 2. However, this is not a good idea since it makes

your program unnecessarily complicated.

You cannot substitute into system constants including RIGHTY.

For Cartesian coordinate robots, designation of robot

configuration is ignored.

For information on robot configuration, see the CONFIG

command.

PROGRAM RIGHTYSMPL

CONFIG = RIGHTY

MOVE A1

MOVE A2

END

This program will set the robot configuration to a right handed

system before moving the robot on its way.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-236 –

SM-A20050-A

KSL3000 Robot Language Manual

SAVEEND

Specify the global variable preserved in the backup memory
 when the robot stops.

SAVEEND:

SAVEEND:

When the robot stops, the specified variable is saved in
the backup memory.

Please define variables that should be saved between “G
LOBAL” and "SAVEEND:".

The saved data is restored after the controller is turned
on at the next time.

The variables can be saved up 10kByte.

The specified global variable is saved by the following

 stop conditions.

1. Cycle STOP
2. Feed-Hold
3. BREAK
4. Emergency STOP
5. Servo OFF

Moreover, the saved data is cleared according to
the following operation timing.

1. Program Select
2. Program Reset
3. When the main power source is turned off at move

ment(in the “running” status).

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-237 –

SM-A20050-A

KSL3000 Robot Language Manual

< Notice >

• It takes about 100msec/1kbyte to save data.

• Turn off the power supply after a second after the robot stops, if the saved data is

large.

• The system variables are also saved. (However, TIMER variables and TID

variables other than the main program are excluded.)

• About variable type that can be described in a global block, there is a limitation

explained by manual "Chapter of the language" and "2.8.5 global variable

definition". The variable that cannot be described in a global block by this

limitation cannot be saved by this function.

 GLOBAL

 I=0 “I” is saved when “STOP”.

 SAVEEND:

 J=0 “J” is not saved when “”STOP”.

 END

 PROGRAM MAIN

 FOR K=1 TO 10

 I=I+1

 J=J+1

 NEXT

 PRINT “I=",I,“J=",J,CR

 END

Sample
program

2020-08-06

– 3-238 –

SM-A20050-A

KSL3000 Robot Language Manual

1. Start program "MAIN" in the cycle operation mode.

2. "I=10,J=10" is displayed on the teach pendant.

3. Program stops at the “END” command.

 "I=10" is saved into the backup memory.

4. Turn off  on the controller power.

5. Start program "MAIN".

6. "I=20,J=10" is displayed on the teach pendant.

Processing flow of data restoration when power OFF - ON

2020-08-06

– 3-239 –

SM-A20050-A

KSL3000 Robot Language Manual

SAVEF1 to 4

These are real number-type system variables that can be

retained without being cleared when the main power is shut off.

SAVEF1 = <Equation>

SAVEF2 = <Equation>

SAVEF3 = <Equation>

SAVEF4 = <Equation>

SAVEF = 1.0

A = SAVEF1

• The real number-type system variable that is specified when

the main power is shut off is saved to the backup memory.

• The real number-type variable can use the four memory slots

from SAVEF1 to 4.

• When the power is turned on the next time, the value saved to

the backup memory is restored.

• The real number values that can be handled are numbers

whose absolute value is in the range from approximately

5.87×10(-39)(2-127) to 6.80×1038((223-1)×2106).

• The value of the real number-type system variable is cleared

when the following operations are performed.

1. Program select

2. Program reset

PROGRAM SAVEFSAMPLE

FOR A=1 TO 100

PRINT “SAVEF1=”, SAVEF1,CR

DELAY 0.5

SAVEF1= SAVEF1+1.0

NEXT A

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-240 –

SM-A20050-A

KSL3000 Robot Language Manual

SAVEI1 to 4

These are integer-type system variables that can be retained

without being cleared when the main power is shut off.

SAVEI1 = <Equation>

SAVEI2 = <Equation>

SAVEI3 = <Equation>

SAVEI4 = <Equation>

SAVEI = 1.0

A = SAVEI1

• The integer-type system variable that is specified when the

main power is shut off is saved to the backup memory.

• The integer-type variable can use the four memory slots from

SAVEI1 to 4.

• When the power is turned on the next time, the value saved to

the backup memory is restored.

• The integer values that can be handled are numbers in the

range from -2147483648 to +2147483647.

• The value of the integer-type system variable is cleared when

the following operations are performed.

1. Program select

2. Program reset

PROGRAM SAVEISAMPLE

FOR A= SAVEI1 TO 100

PRINT”A=”,A,CR

DELAY 0.5

SAVEI1 = A

NEXT A

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-241 –

SM-A20050-A

KSL3000 Robot Language Manual

SEGMENT

SEGMENT is a system constant which is used to refer to the

system operating mode.

SEGMENT

IF MODE = = SEGMENT THEN RETURN

SEGMENT is used along with the MODE command to refer to

the system operation mode. When MODE = = SEGMENT, the

system is operating in the segment operation mode.

As a system constant, SEGMENT has a value of 2. If you

wanted to, you could use it in your program as a constant having

the value 2. However, don't do it since it will make your

program hard to understand.

You cannot substitute into system constants.

The monitor command MODE MOTION can be used to specify

segment operation.

For information on operating modes, see the MODE command.

PROGRAM MAIN

SEGMENTSAMPLE

END

PROGRAM SEGMENTSPL

IF MODE = = SEGMENT THEN RETURN

MOVE A1

MOVE A2

MOVE A3

END

If the mode is set to segment operation, program execution will

return to the main program without execution.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-242 –

SM-A20050-A

KSL3000 Robot Language Manual

SETGAIN

The SETGAIN command is used to specify whether the gain (for

servo control) is to be ON or OFF for each axis.

SETGAIN (<integer>, <integer>, <integer>, <integer>, <integer>)

SETGAIN (0, 0, 1, 0, 0)

The SETGAIN command is used to specify whether the gain

(servo control) of each axis is to be ON or OFF.

The SETGAIN command will take effect upon the completion of

the robot motion being performed at the time.

For more information on gains, see the "GAIN" command.

The SETGAIN command will not work if you do not have the file

SCOL.LIB in the controller RAM drive. With this command, a

system constant cannot be turned on/off.

Two commands ONGAIN and OFFGAIN are provided in the

library file for turning on and off the gain.

PROGRAM SETGAINSMPL

MOVE A1

SETGAIN (0, 0, 1, 0, 0)

MOVE A2

SETGAIN (1, 1, 1, 1, 1)

MOVE A3

END

This program turns off all gains except that the Axis 3 when the

robot reaches point A1. Program will then turn on all gains

when the reaches point A2.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-243 –

SM-A20050-A

KSL3000 Robot Language Manual

SGN

The SGN function returns the sign of a number value.

SGN (<expression>)

S = SGN (–20.345)

N = ABS (K) * SGN (L)

The SGN function will return the sign of the <expression> in the

brackets.

SGN will return 1 if the <expression> is positive, –1 if negative,

and 0 if 0.

You may use constants, variables or calculation expressions for

the <expression> term. However, you may not use vector-type

data.

The SGN command must be used in an expression.

PROGRAM MAIN

SGNSAMPLE (5, 3, K)

PRINT TP, K, CR

END

PROGRAM SGNSAMPLE (K1, K2, K)

K = SGN (K1 – K2)

RETURN

END

This subprogram will take in two arguments K1 and K2 and, as

argument K, will return a 1 if K1 is bigger than K2, a 0 if the

same, and a –1 if smaller to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-244 –

SM-A20050-A

KSL3000 Robot Language Manual

SIN

This function returns the sine of an entered value.

SIN (<expression>)

K = SIN (60)

J1 = 1 – SIN (180 – D)

This function returns the sine of the value in the brackets ().

Calculations are handled in units of degrees.

You may enter a constant, variable or calculation for the

<expression> term. However, you may not enter vector-type

data.

This command must be used in an expression.

PROGRAM MAIN

SINSAMPLE (2.0, 60.0, Y)

PRINT TP, Y, CR

END

PROGRAM SINSAMPLE (L, R, Y)

LOOP:

IF R > 180 THEN R = R – 360

IF R < –180 THEN R = R + 360

IF R > 180 OR R < –180 THEN GOTO LOOP

Y = L * SIN (R)

RETURN

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-245 –

SM-A20050-A

KSL3000 Robot Language Manual

Given (as arguments) a line segment with a length L and forming

an angle R with the X-axis, this program finds the length of the

Y-component of the line segment L and sends it back to the main

program as argument Y.

Y

X

L

R

L sin R

2020-08-06

– 3-246 –

SM-A20050-A

KSL3000 Robot Language Manual

SLOWDOWN

This function specifies whether the slowdown operation is

performed.

SLOWDOWN

DISABLE SLOWDOWN

ENABLE SLOWDOWN

This function specifies the slowdown operation.

In the slowdown operation, the speed can be changed

(decelerated) during the current moving operation.

The ENABLE and DISABLE commands are used to turn system

switches on and off. The operation commands following

ENABLE SLOWDOWN change the speed during movement

based on the specified parameter.

The slowdown operation is disabled by DISABLE SLOWDOWN.

DISABLE SLOWDOWN is specified by default.

PROGRAM SAMPLE

MOVE A1

SLOWDOWN=25

SLWSPD=50

ENABLE SLOWDOWN

MOVE A2

SLOWDOWN=50

MOVE A3

SLOWDOWN=75

MOVE A1

DISABLE SLOWDOWN

MOVE A2

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-247 –

SM-A20050-A

KSL3000 Robot Language Manual

SLOWDOWN

This function sets the parameters of the slowdown operation.

SLOWDOWN=<Equation>

SLOWDOWN=80

This system constant specifies the slowdown operation

parameter.

In the slowdown operation, the speed can be changed

(decelerated) during the current moving operation. Specify the

slowdown operation parameter in a percentage of the travel

amount of the robot in relation to the operation. If the travel

amount exceeds the percentage specified by the system variable

SLOWDOWN, the robot starts to slow down to the speed

specified by SLWSPD.

PROGRAM SAMPLE

MOVE A1

SLOWDOWN=25

SLWSPD=50

ENABLE SLOWDOWN

MOVE A2

SLOWDOWN=50

MOVE A3

SLOWDOWN=75

MOVE A1

DISABLE SLOWDOWN

MOVE A2

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-248 –

SM-A20050-A

KSL3000 Robot Language Manual

SLWSPD

This function specifies the speed at the low-speed setting of the

slowdown operation.

SLWSPD=<Equation>

SLWSPD=20

This is a system variable for specifying the speed at the

low-speed setting of the slowdown operation in a percentage of

the highest speed.

Specify SLWSPD using a positive real number value. If a value

of 0 or less is specified, this is treated as a value of 1.

The speed cannot be increased in the slowdown operation.

Therefore, if a value higher than the speed that was set in the

SPEED variable is specified, the value is invalid.

Constants, variables, and calculation equations can be used in

<Equation>. However, vector-type data cannot be used.

The initial value of SLWSPD is 100%.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-249 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM SAMPLE

SLWSPD=50

SLOWDOWN=80

SLWSPD=30

MOVE A1

ENABLE PASS

ENABLE SLOWDOWN

MOVE A2

DISABLE PASS

DISABLE SLOWDOWN

MOVE A3

ENABLE SLOWDOWN

MOVE A4

DISABLE SLOWDOWN

END

Sample
program

2020-08-06

– 3-250 –

SM-A20050-A

KSL3000 Robot Language Manual

SMOOTH

This function designates a smooth motion.

(For the parameter setting of smooth motion, see the

descriptions below.)

SMOOTH

DISABLE SMOOTH

ENABLE SMOOTH

The smooth motion can be specified.

The motion command specified as SMOOTH allows the robot to

move to the target position without decelerating. With the

successive motion command, the robot starts moving without

accelerating, irrespective of presence or absence of SMOOTH.

To turn on and off the system switches, use the ENABLE and

DISABLE commands.

 With the ENABLE SMOOTH command, the smooth motion

starts.

 With the DISABLE SMOOTH command, the smooth motion is

cancelled.

The initial setting is DISABLE SMOOTH.

The smooth function is effective only for the interpolation

commands (MOVES, MOVEC).

During the ENABLE SMOOTH mode, COARSE is automatically

selected for the positioning accuracy.

If the speed at smooth connection has not reached the specified

speed for that motion command, the robot accelerates (or

decelerates) to the specified speed at maximum acceleration.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-251 –

SM-A20050-A

KSL3000 Robot Language Manual

If the smooth motion command is specified while the C-axis

travel distance of the smooth motion command is not enough,

compared with the X, Y and Z travel distances, an error occurs.

When the movement command including the travel of the T axis

is specified as SMOOTH, an error occurs.

If the DISABLE SMOOTH motion command does not have a

sufficient travel distance for deceleration and stop, speed control

at deceleration and stop cannot be guaranteed.

The PASS function cannot be used together with the SMOOTH

function. Also, the PASS motion cannot be connected with the

SMOOTH motion. (See the sample programs SMPL04 and

SMPL05.)

PROGRAM SMPL01

MOVE P01

ENABLE SMOOTH

MOVES P02

MOVEC P03 P04

MOVEC P05 P06

MOVES P07

DISABLE SMOOTH

MOVES P08

END

By connecting points P02, P04, P06 and P07 by smooth

motion, the robot decelerates and stops at point P08.

Sample
program

 MOVES MOVEC MOVEC MOVES MOVES
P1 P2 P3 P4 P5 P6 P7 P8

Programmed
speed

2020-08-06

– 3-252 –

SM-A20050-A

KSL3000 Robot Language Manual

(Bad example 1)

PROGRAM SMPL02

PASS=50

ENABLE SMOOTH

MOVES P01

MOVES P02

MOVES P03

ENABLE PASS  An alarm is generated.

2–039 “PASS command prohibit”

MOVES P04

DISABLE SMOOTH

MOVES P05

MOVES P06

MOVES P07

DISABLE PASS

MOVES P08

END

If ENABLE PASS is specified in the ENABLE SMOOTH mode,

an alarm occurs and the robot stops moving.

(Bad example 2)

PROGRAM SMPL03

PASS=50

ENABLE PASS

MOVES P01

MOVES P02

MOVES P03

ENABLE SMOOTH  An alarm is generated.

2–040 “SMOOTH command

prohibit”

MOVES P04

DISABLE PASS

MOVES P05

MOVES P06

MOVES P07

DISABLE SMOOTH

2020-08-06

– 3-253 –

SM-A20050-A

KSL3000 Robot Language Manual

MOVES P08

END

If ENABLE SMOOTH is specified in the ENABLE PASS mode,

an alarm occurs and the robot stops moving.

(Changeover from PASS to SMOOTH)

PROGRAM SMPL04

PASS=50

MOVE P01

ENABLE PASS

MOVES P02

MOVES P03

DISABLE PASS

ENABLE SMOOTH

MOVES P04

MOVES P05

DISABLE SMOOTH

MOVES P06

END

As the robot slows down and stops at the time of DISABLE

PASS, SMOOTH designation for point P04 becomes invalid.

That is, points P02 and P03 are connected by short-cut, point

P04 by deceleration and stop, and point P05 by smooth motion.

At point P06, the robot slows down and stops. When this

happens, alarm 1–018 of "Smooth connect invalid" is generated

at point P04.

P1 P2 P3 P4 P5 P6

Programmed
speed

2020-08-06

– 3-254 –

SM-A20050-A

KSL3000 Robot Language Manual

(Changeover from SMOOTH to PASS)

PROGRAM SMPL05

PASS=50

MOVE P01

ENABLE SMOOTH

MOVES P02

MOVES P03

DISABLE SMOOTH

ENABLE PASS

MOVES P04

MOVES P05

DISABLE PASS

MOVES P06

END

As the robot slows down and stops at the time of DISABLE

SMOOTH, PASS designation for point P04 becomes invalid.

That is, points P02 and P03 are connected by smooth motion,

point P4 by deceleration and stop, and point P05 by short-cut.

At point P06, the robot slows down and stops. When this

happens, alarm 1–017 of "Pass connect invalid" is generated at

point P4.

Caution: The machine service life may be affected by some

operating condition of this function. Before the use,

consult with us beforehand.

P1 P2 P3 P4 P5 P6

Programmed
speed

2020-08-06

– 3-255 –

SM-A20050-A

KSL3000 Robot Language Manual

SPEED

SPEED is a system variable used to specify the movement

speed of the robot.

SPEED = <expression>

SPEED = 50

MOVE A1 WITH SPEED = SPEED * 0.8

SPEED is a system variable which is used to specify the

movement speed of the robot. It is expressed in terms of

percent of the maximum speed (allowed by the controller).

SPEED is specified with a positive integer number. When a

numeric value of 0 or less is specified, the specification is treated

as 1. When a value of 100 or more is specified, the movement

speed is suppressed to the maximum speed designated in the

system.

You may use constants, variables or calculation expressions for

the <expression> term. However, you may not use vector-type

data.

By referring to this system variable, you can find the speed

setting in effect at the time.

The initial setting for SPEED is 100%.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-256 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM SPEEDSMPL

SPEED = 50

MOVE A1

MOVE A2

MOVE A3 WITH SPEED = 100

MOVE A4

END

Here, the robot will move to all points at 50% of full speed with

the exception of point A3, to which the robot will move at full

speed.

Sample
program

2020-08-06

– 3-257 –

SM-A20050-A

KSL3000 Robot Language Manual

SQRT

The SQRT function will return the square root of a given number.

SQRT (<expression>)

J1 = SQRT (L1 ^ 2 + L2 ^ 2)

K = SQRT (60)

J1 = 1 – SIN (180 – D)

The SQRT function will return the square root of the value in the

() brackets.

You may use constants, variables or calculation expressions for

the <expression> term. However, you may not use vector-type

data.

When the value of <expression> is negative, an error occurs and

take care.

This function must be used in an expression.

PROGRAM MAIN

SQRTSAMPLE (3, 5, L)

PRINT TP, L, CR

END

PROGRAM SQRTSAMPLE (X, Y, L)

L = SQRT (X ^ 2 + Y ^ 2)

RETURN

END

This subprogram takes in arguments X and Y (the lengths of the

two perpendicular sides of a right triangle), finds the length of the

hypotenuse of that triangle, and returns that length as argument

L to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-258 –

SM-A20050-A

KSL3000 Robot Language Manual

STEP

STEP is used in combination with a FOR command to specify

how a loop is to repeat itself.

FOR <variable> = <expression 1> TO <expression 2> [STEP

<expression 3>]

FOR K = 1 TO 4 STEP 2

FOR N = K1 TO K1 + K2 STEP K3

The STEP statement is used in FOR ~ TO constructs to direct a

part of the program to repeat itself a specified number of times.

The part of the program to be repeated is contained in the block

starting with the FOR command and ending with the NEXT

command. The block will keep on repeating itself until the

condition specified by the FOR statement is satisfied.

When a FOR statement is executed, the value of <expression 1>

is substituted into the <variable>. When the NEXT statement is

executed, the value of <expression 3> specified by the STEP

statement is added on to the <variable>. Should the value of

the <variable> become greater than the value of <expression 2>

at this time, the execution of the program will shift to the

statement following the NEXT command. If <variable> is not

greater than <expression 2>, the program execution will branch

(go back) to the statement following the FOR statement.

The value of <expression 3> at the first loop is kept effective until

the last loop. Therefore, even should this value be changed

while executing the loop, the number of times the loop is

repeated will not change.

If the value of <expression 3> is 1, you may omit the STEP

statement (and everything after it) from the ON – DO construct.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-259 –

SM-A20050-A

KSL3000 Robot Language Manual

A constant, variable or calculation may be used for <expression

3>. However, you may not use vector- type data.

For more information on program "looping," see the FOR

command.

PROGRAM STEPSAMPLE

FOR K = 1 TO 100 STEP 2

MOVE A1 WITH SPEED K

MOVE A2

NEXT K

END

This program will move the robot fifty times back and forth

between points A1 and A2. On each trip, the robot will speed

up by 2%.

Sample
program

2020-08-06

– 3-260 –

SM-A20050-A

KSL3000 Robot Language Manual

STOP

The STOP command is used to stop execution of the program.

STOP

STOP

The program will stop executing when a STOP command is

encountered no matter what the system operating mode is at the

time.

There is no way to restart a program thus stopped. Instead,

you have to restart the program all over again.

When the program is restarted, the robot movement is restored

from the subsequent step.

PROGRAM STOPSAMPLE

ENABLE NOWAIT

ON DIN (10) DO STOP

MOVE A1

MOVE A2

MOVE A3

END

This program will stop executing itself should Input signal 10 turn

ON while the robot is moving.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-261 –

SM-A20050-A

KSL3000 Robot Language Manual

SWITCH

This command compulsively changes over to other task in the

multitask operation.

SWITCH

SWITCH

If the single task is effective or the system variable “SWITCH” is

set to “DISABLE” and STEP command is effective, this

command is invalid.

GLOBAL

MAXTASK=2

END

PROGRAM MAIN

ID = 0

ID = TASK("SUB1")

LOOP:

IF DIN(1) THEN SWITCH

PRINT " TASK1 ",CR

GOTO LOOP

END

PROGRAM SUB1

ENABLE NOWAIT

LOOP1:

IF DIN(1) THEN SWITCH

PRINT " TASK2",CR

GOTO LOOP1

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

As the two (2) tasks use the
same I/O, if DIN(1) is OFF,
either task will occupy the I/O.
When DIN(1) is set ON, the
task is changed over
compulsively to prevent
one-sided occupation of I/O.

2020-08-06

– 3-262 –

SM-A20050-A

KSL3000 Robot Language Manual

SWITCH

This command prohibits or allows the task change-over.

SWITCH

ENABLE SWITCH

DISABLE SWITCH

While this system variable is changed to DISABLE, even if the

SWITCH command is executed or the task change-over

conditions predetermined in the system are satisfied, the task is

not changed over. The initial value of this system variable is

ENABLE.

GLOBAL

MAXTASK=2

END

PROGRAM MAIN

ID = 0

ID = TASK("SUB1")

LOOP:

IF DIN(1) THEN DISABLE SWITCH

ELSE ENABLE SWITCH

MOVEA 1,90

MOVEA 1,–90

GOTO LOOP

END

PROGRAM SUB1

ENABLE NOWAIT

DOUT (–1,–2)

TIMER=1

WAIT TIMER==0

Purpose

Format

Examples

Analysis
and

advice

Sample
program

At the start of the main
task loop, task
changeover ENABLE
or DISABLE is
selected by the input
of DIN (1).
If the task changeover
is disabled, the
subtask will not run
and DOUT remains
unchanged.

2020-08-06

– 3-263 –

SM-A20050-A

KSL3000 Robot Language Manual

DOUT (1)

TIMER=1

WAIT TIMER==0

DOUT (2)

TIMER=1

WAIT TIMER==0

END

2020-08-06

– 3-264 –

SM-A20050-A

KSL3000 Robot Language Manual

TAN

This function returns the tangent of the number entered.

TAN (<expression>)

K = TAN (60)

J1 = 1 – TAN (180 – D)

This function returns the tangent of the value in the brackets

().

Calculations are handled in units of degrees.

You may enter a constant, variable or calculation for the

<expression> term. However, you may not enter vector-type

data.

This function must be used in an expression.

PROGRAM MAIN

TANSAMPLE (2, 60, Y)

PRINT TP, Y, CR

END

PROGRAM TANSAMPLE (X, R, Y)

LOOP:

IF R > 180 THEN R = R – 360

IF R < – 180 THEN R = R + 360

IF R > 180 OR R < – 180 THEN GOTO LOOP

Y = X * TAN (R)

RETURN

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-265 –

SM-A20050-A

KSL3000 Robot Language Manual

This program takes in the length of the X-component of the

segment and the angle R forms with the X-axis (as argument R).

The program then finds the length of the Y-component of the

segment, and returns the result as the argument Y to the main

program.

Y

X
R

X

X tan R

2020-08-06

– 3-266 –

SM-A20050-A

KSL3000 Robot Language Manual

TASK

This command executes the multitask.

TASK (“<program name>”)

ID = TASK (“SUB”)

A program parenthesized starts as the task.

The return value is the number characteristic of the started

subtask (task ID). The task ID is used as an argument at the

stop of task.

When using the I/O command in the subtask, declare ENABLE

NOWAIT in the subtask.

GLOBAL

ID=0

MAXTASK=2

END

PROGRAM MAIN

IF ID ==0 THEN ID= TASK (“SUB”)

LOOP:

MOVEA 1,90

MOVEA 1,–90

END

PROGRAM SUB

ENABLE NOWAIT

WAIT DIN (1)

DOUT (1)

WAIT DIN (–1)

DOUT (–1)

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-267 –

SM-A20050-A

KSL3000 Robot Language Manual

The subprogram starts as the task.

Asynchronous with the motion in the main task, the signal is

output in reply to the signal input.

2020-08-06

– 3-268 –

SM-A20050-A

KSL3000 Robot Language Manual

THEN

The THEN statement is used in conjunction with an IF statement

for judging conditions.

IF <logical expression> THEN <statement> [ELSE <statement>]

IF DIN (1) THEN K = K + 1 ELSE K = 0

If the conditions of the <logical expression> following IF are

satisfied, the <statement> following THEN will be executed. If

the conditions are not satisfied, the statement following ELSE will

be executed.

An ELSE statement is not mandatory in an IF ~ THEN

construction. If the IF condition is not satisfied and there is no

ELSE statement, the command following the IF statement is

executed.

The <statement> following the THEN or ELSE statement may

not contain PROGRAM, END, IF, FOR, NEXT or WAIT.

For more information on condition judgments, see the IF

command.

PROGRAM THENSAMPLE

IF DIN (1) THEN K = 1 ELSE K = 0

MOVE A1

MOVE A2

MOVE A3

PRINT "K=", K, CR

END

Should Input Signal 1 be ON, K will equal 1.

Should Input Signal 1 be OFF, K will equal 0.

Purpose

Format

Analysis
and

advice

Examples

Sample
program

2020-08-06

– 3-269 –

SM-A20050-A

KSL3000 Robot Language Manual

TID

This command refers to the task ID (number) of own task.

TID

MAINID = TID

This system variable is characteristic of each task started by the

TASK command.

Writing of this variable is not possible.

GLOBAL

MAXTASK=2

END

PROGRAM MAIN

TASK(“SUB”)

LOOP:

SWITCH

PRINT “MAINID=”,TID,CR

GOTO LOOP

END

PROGRAM SUB

ENABLE NOWAIT

SWITCH

PRINT “SUBID=”,TID,CR

END

TID is expressed in the main task and subtask. Both values

differ.

Purpose

Format

Analysis
and

advice

Examples

Sample
program

2020-08-06

– 3-270 –

SM-A20050-A

KSL3000 Robot Language Manual

TIMER

The TIMER system variable is a timer that can be changed by

the system.

TIMER

TIMER = 20

WAIT TIMER = = 0

TIMER is a timer that can be used inside of SCOL programs.

The TIMER system variable can be set in units of seconds.

When a value of 0 or less is specified, the timer will not operate

correctly.

The value of the TIMER system variable counts down at the

same time as it has been set. When it reaches 0, counting

down cannot be executed any longer.

By referring to TIMER in your program, you can see how much

time is remaining at that time in your program.

PROGRAM TIMERSMPL

TIMER = 5

WAIT TIMER = = 0

PRINT TIMER, CR

END

The program waits until the set value becomes 0 after it has

been set to 5 seconds.

PROGRAM TIMERSMPL2

FOR J = 1 TO 1000

PRINT "*", CR

TIMER = 1

WAIT TIMER = = 0

NEXT J

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-271 –

SM-A20050-A

KSL3000 Robot Language Manual

This program will display one * on the teach pendant every

second for 1000 seconds.

2020-08-06

– 3-272 –

SM-A20050-A

KSL3000 Robot Language Manual

TO

TO is used in combination with a FOR command to specify that a

portion of the program is to repeat itself a certain number of

times.

FOR <variable> = <expression 1> TO <expression 2>

[STEP<expression 3>]

FOR K = 1 TO 4

FOR N = K1 TO K1 + K2 STEP K3

The TO statement is used in FOR TO constructs to direct a part

of the program to repeat itself a specified number of times.

The part of the program to be repeated is contained in the block

starting with the FOR command and ending with the NEXT

command. The block will keep on repeating itself until the

condition specified by the FOR statement is satisfied.

When a FOR statement is executed, the value of <expression 1>

is substituted into the <variable>. When the NEXT statement is

executed, the value of <expression 3> specified by the STEP

statement is added on to the <variable>. Should the value of

the <variable> become greater than the value of <expression 2>

at this time, the execution of the program will shift to the

statement following the NEXT command. If <variable> is not

greater than <expression 2>, the program execution will branch

to the statement following the FOR statement.

The values of <expression 1>, <expression 2> and <expression

3> used in the FOR construct are those in effect when the FOR

statement was first executed. Therefore, even should these

values be changed while executing the loop, the number of times

the loop is repeated will not change.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-273 –

SM-A20050-A

KSL3000 Robot Language Manual

Constants, variables and calculation expressions may be used

for <expression 1> and <expression 2>. However, you may not

use vector-type data.

For more information on program "looping," refer to the FOR

command.

PROGRAM TOSAMPLE

FOR K = 1 TO 100

MOVE A1

MOVE A2

NEXT K

END

This program will move the robot 100 times back and forth

between points A1 and A2.

Sample
program

2020-08-06

– 3-274 –

SM-A20050-A

KSL3000 Robot Language Manual

TOOL

TOOL is a system variable used to specify the tool coordinate

system.

TOOL

TOOL = TRANS (0, 0, 0, 0)

TOOL1 = TOOL

MOVE A1 WITH TOOL = TOOL + TRANS (,, 100)

TOOL is a system variable used to specify the tool coordinate

system.

The system variable TOOL can be handled as normal

coordinate-type data.

By referring to TOOL, you can find the values (location) of the

current tool coordinate system.

You can directly designate values for tool offset with one of the

following two methods:

TOOL = TRANS (X, Y, Z, C)

TOOL = {X, Y, Z, C}

(In order to make it clear just what kind of data type you are

using, always try to use the TRANS command.)

X, Y, Z, C: X, Y, Z and C are coordinate values in real number

(unit: mm or deg).

The TOOL coordinate system is created by "sliding" a distance of

X, Y and Z along the respective axes of the mechanical interface

coordinate system and then twisting the new Z axis by an

amount C.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-275 –

SM-A20050-A

KSL3000 Robot Language Manual

TOOL must be used in an expression.

Be aware that if you change tool offset within a program, there

may be some misalignment between the positions as taught and

the robot movement.

PROGRAM TOOLSAMPLE

MOVE A1

MOVE A2

TOOL = TOOL + TRANS (,, 500)

MOVE A1

MOVE A2

TOOL = TRANS ()

END

This program moves 500 mm along the Z axis of the tool

coordinate system, and after that the robot moves to a point

above 500 mm from the taught position.

Sample
program

2020-08-06

– 3-276 –

SM-A20050-A

KSL3000 Robot Language Manual

TORQUE

The TORQUE command is used to specify the limit value of

torque for each axis.

TORQUE = {<expression>, <expression>, <expression>,

<expression>, <expression>}

TORQUE = {300, 300, 100, 300, 300}

MOVE A1 WITH TORQUE = {T, T, T, T, T}

The TORQUE command is used to specify the limit value of

torque for each axis.

TORQUE is a system variable having five data elements

corresponding to the five axes. The TORQUE command

specifies the limit values of torque for five axes in the { } bracket

following the TORQUE statement. Such data specifications are

divided by commas with the first specification corresponding to

Axis 1, the second to Axis 2, and so on.

The torque control value is expressed as a percentage of the

torque rating of the corresponding motor. When there are no

restrictions on torque, a motor may output up to 100% of its

torque rating. Should torque control values be abbreviated, the

controller will assume all non-specified torques to be 0.

When a value less than 100 is specified, a detection level of

step-out and motor lock error will be decreased.

You may use constants, variables or calculation expressions for

the <expression> terms. However, you may not use vector-type

data.

When the limit value of torque not more than 0 is specified the

value is taken as 0.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-277 –

SM-A20050-A

KSL3000 Robot Language Manual

Note that if the torque setting is too low, the robot will not be able

to move properly and you will get an error.

PROGRAM TORQUESMPL

MOVE A1

TORQUE = {100, 100, 100, 100, 100}

MOVE A2

OPEN

DELAY 0.5

MOVE A1

TORQUE = {200, 200, 200, 200, 200}

READY

END

This program limits the torque of the Z axis (Axis 3) to 100% of

the motor torque rating as the robot approaches point A2.

Sample
program

2020-08-06

– 3-278 –

SM-A20050-A

KSL3000 Robot Language Manual

TP

The TP command is used with the PRINT and INPUT commands

to specify the teach pendant as the communications channel.

PRINT [{COM0 | COM1 | TP},]

{<character string> | <expression>} [,{<character string> |

<expression>}] ... [,CR]

INPUT [{COM0 | COM1 | TP},]

<variable> [, <variable>] …..

PRINT TP, "*** INPUT N ***", CR

PRINT TP, N, N*10, CR

INPUT TP, K

The TP command is used with PRINT and INPUT commands to

specify the teach pendant as the communications channel.

When TP is used to specify a communications channel, the

controller will input and output data with the teach pendant on

the communications channel (COM0) allocated to the teach

pendant.

If you do not specify a communication channel for a PRINT or

INPUT command, the controller will output (or input) your data to

(or from) the teach pendant.

See the PRINT and INPUT commands for more information on

communication processing.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-279 –

SM-A20050-A

KSL3000 Robot Language Manual

PROGRAM COMSAMPLE

PRINT TP, "*** INPUT N ***", CR

INPUT TP, N

PRINT TP, N, CR

END

This program will input a number from the teach pendant and

output it right back to the teach pendant.

Sample
program

2020-08-06

– 3-280 –

SM-A20050-A

KSL3000 Robot Language Manual

TRANS

The TRANS command is used to create coordinate-type data.

TRANS (<expression>, <expression>, <expression>,

<expression>)

A = TRANS (100, 100, 0, 0)

WORK = WORK + TRANS (100, 100)

The TRANS command is used to create coordinate-type

variables.

The <expression) elements contain, from left to right, coordinate

data values for X, Y, Z and C. Elements X, Y and Z are in units

of millimeters and element C is in units of degrees.

You may use constants, variables or calculation expressions for

the <expression> terms. However, you may not use vector-type

data. Any omitted <expression> terms will be taken as 0.

This command must be used in an expression.

PROGRAM TRANSSMPL

MOVE A1

MOVE A2

WORK=TRANS (,, 300)

MOVE A1 WITH WORK=WORK1

MOVE A2 WITH WORK=WORK1

END

This sets the values of the work coordinate system to Z=300,

X=0, Y=0,A=0, B=0, C=0.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

2020-08-06

– 3-281 –

SM-A20050-A

KSL3000 Robot Language Manual

WAIT

This function waits until the condition is established.

WAIT <logical expression>

WAIT DIN (1)

WAIT TIMER == 0

WAIT MOTION >= 100

This function delays program execution until the condition of

<logical expression> is established.

The condition is monitored, irrespective of the ongoing robot

motion.

PROGRAM WAITSAMPLE

WAIT DIN (1)

MOVE A1

MOVE A2

MOVE A3

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program Waits until input signal 1 is ON.

2020-08-06

– 3-282 –

SM-A20050-A

KSL3000 Robot Language Manual

WITH

The WITH statement is used to add a conditional statement to a

movement command.

WITH <statement> [, <statement>]...

MOVE A1 WITH SPEED = 50

MOVE A1 WITH TOOL = TOOL1, PASS = 80

The WITH statement is used to specify movement conditions

corresponding to individual movement commands.

The movement conditions, such as speed, acceleration, and

deceleration, are determined according to the set values of the

system variables required for robot movement. In order to

change movement conditions for a single motion, the

corresponding movement condition is specified using the WITH

clause. The movement condition specified by the WITH clause

becomes valid only in the movement command where the WITH

clause has been specified. The values of the system variables

remain unchanged after and before the execution of the

movement command.

The following movement conditions may be specified in the

<statement> term. Should you wish to specify more than one

such condition, be sure to keep the terms separate with

commas.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-283 –

SM-A20050-A

KSL3000 Robot Language Manual

Movement condition System variable
name

Robot configuration CONFIG

Positioning accuracy ACCUR

Acceleration (during
acceleration)

ACCEL

Deceleration (during
deceleration)

DECEL

Speed SPEED

Short-cut movement parameter PASS

Max. torque for each axis TORQUE

Servo gain for each axis GAIN

Tool coordinate system TOOL

Base coordinate system BASE

Work coordinate system WORK

Robot load PAYLOAD

PROGRAM WITHSAMPLE

SPEED = 50

MOVE A1

MOVE A2 WITH SPEED = 100

MOVE A3

MOVE A4

END

This program will move to all points at half (50%) speed with the

exception of point A2, to which the robot will move at full (100%)

speed.

Sample
program

2020-08-06

– 3-284 –

SM-A20050-A

KSL3000 Robot Language Manual

WORK

WORK is a system variable used to specify the work coordinate

system.

WORK

MOVE A1 WITH WORK = WORK +

TRANS(, , 100)

WORK WK1

WORK is a system variable used to specify the work coordinate

system.

The WORK coordinate system is created by "sliding" a distance

of X, Y and Z along the respective axes of the WORLD

coordinate system and then twisting the new Z axis by an

amount C.

WORK must be used in an expression.

When positional data is entered with the teach pendant, the work

coordinate system in effect at that time is also entered.

Afterwards, when a movement command is executed using that

positional data, the work coordinate system will automatically

switch over to that in effect when the positional data was

recorded. When you wish to move the robot in terms of two (or

more) work coordinate systems (e.g., the work coordinate

system in effect during teaching and a different coordinate

system), you may either:

(1) Use the WITH statement to specify the work coordinate

system in effect for that movement;

or

(2) Change the work coordinate data itself.

Purpose

Format

Examples

Analysis
and

advice

2020-08-06

– 3-285 –

SM-A20050-A

KSL3000 Robot Language Manual

Be aware that if you change work coordinate systems within a

program, there may be some misalignment between the

positions as taught and the robot movement.

PROGRAM WORKSAMPLE

MOVE A1

WK1=WORK+TRANS(, , 300)

MOVE A1 WITH WORK=WK1

END

PROGRAM WORKSAMPLE2

MOVE A2

WK1=WORK+TRANS(, , 300)

MOVE A2

END

DATA

TRANS WK1=0, 0, 0, 0

WORK WK1

POINT A2=500, 0, 100, 0, 0/FREE

END

The WORK command moves 300 mm along the Z axis of the

work coordinate system, and after that the robot moves to a point

above 300 mm from the taught position.

Sample
program

2020-08-06

– 4-1 –

SM-A20050-A

KSL3000 Language Manual

Section 4

Program Examples

In this section, we explain various programming examples using the SCOL language.

When applying these programs to an actual robot, be sure to modify the programs

accordingly to match individual robot operating conditions such as the work environment

and range of movement.

(1) Program to move robot back to its mechanical origins

This program moves the robot back to its mechanical origins (zero-points for each

axis). Using absolute single shaft movement, the robot will zero itself starting with

the Z-axis (Axis 3) and then working in from the tip to the base.

PROGRAM ORIGIN

MOVEA 3, 0

MOVEA 5, 0

MOVEA 4, 0

MOVEA 2, 0

MOVEA 1, 0

END

(2) Warm-up program

This program is used to warm up the robot before beginning work. The robot will

start out slowly and gradually speed up.

PROGRAM WARMINGUP

FOR K = 1 TO 100

SPEED = K

MOVEA 3, 100

MOVEA 3, 0

MOVEA 5, 50

MOVEA 5, 0

MOVEA 4, 50

MOVEA 4, 0

MOVEA 2, 50

MOVEA 2, 0

2020-08-06

– 4-2 –

SM-A20050-A

KSL3000 Language Manual

MOVEA 1, 50

MOVEA 1, 0

NEXT K

END

(3) Robot motion

A program for causing the robot to be moved from position A1 to position A2. The

robot movement speed is set to 20 % of the maximum speed.

(a) When the PTP motion (MOVE command) is used:

PROGRAM MOVEA1A2

SPEED=20

MOVE A1

MOVE A2

END

(b) When the linear interpolated motion (MOVES command) is used:

PROGRAM MOVESA1A2

SPEED=20

MOVES A1

MOVES A2

END

(4) I/O signals

A program where turning on input signals 1 to 4 causes output signals 1 to 4 to be

turned on, while turning off input signals 1 to 4 causes output signals 1 to 4 to be

turned off.

PROGRAM SAMPLE

IF DIN(1) THEN DOUT(1) ELSE DOUT(–1)

IF DIN(2) THEN DOUT(2) ELSE DOUT(–2)

IF DIN(3) THEN DOUT(3) ELSE DOUT(–3)

IF DIN(4) THEN DOUT(4) ELSE DOUT(–4)

END

2020-08-06

– 4-3 –

SM-A20050-A

KSL3000 Language Manual

(5) Interlock

A program for stopping the motion of the robot while input signal 1 is turned off in

positions A1 to A4. The movement speed of the robot is set to 20% of the

maximum speed.

(a) When WAIT command is used:

PROGRAM SAMPLE

SPEED=20

WAIT DIN(1)

MOVE A1

WAIT DIN(1)

MOVE A2

WAIT DIN(1)

MOVE A3

WAIT DIN(1)

MOVE A4

END

(b) When the robot motion is stopped with the ON command and waits until input
signal 1 is turned on:

PROGRAM SAMPLE

SPEED=20

ENABLE NOWAIT

ON DIN(–1) BREAK DO SUB

WAIT DIN(1)

MOVE A1

MOVE A2

MOVE A3

MOVE A4

END

PROGRAM SUB

WAIT DIN(1)

RESUME

ON DIN(–1) BREAK DO SUB

END

2020-08-06

– 4-4 –

SM-A20050-A

KSL3000 Language Manual

(6) Pick and place

A program for picking up a workpiece at position A1 and placing it at position A2.

The hand is opened/closed with output signal 201. The movement speed of the

robot is set to 20 % of the maximum speed.

 (a) When positions just above positions A1 and A2 are taught as A3 and A4,

respectively:

PROGRAM SAMPLE

SPEED=20

DOUT(–201)

MOVE A3

MOVE A1

DOUT(201)

DELAY 0.5

MOVE A3

MOVE A4

MOVE A2

DOUT(–201)

DELAY 0.5

MOVE A4

END

 (b) When the robot is moved to a position over the taught position in the format of

"MOVE A1+POINT(0,0,20)".

PROGRAM SAMPLE

SPEED=20

DOUT(–201)

MOVE A1+POINT(0,0,20)

MOVE A1

DOUT(201)

DELAY 0.5

MOVE A1+POINT(0,0,20)

MOVE A2+POINT(0,0,20)

MOVE A2

DOUT(–201)

DELAY 0.5

2020-08-06

– 4-5 –

SM-A20050-A

KSL3000 Language Manual

MOVE A2+POINT(0,0,20)

END

 (c) When a short-cut motion is executed:

PROGRAM SAMPLE

SPEED=20

DOUT(–201)

ENABLE PASS

PASS=80

MOVE A1+POINT(0,0,50)

DISABLE PASS

MOVE A1

DOUT(201)

DELAY 0.5

ENABLE PASS

MOVE A1+POINT(0,0,50)

MOVE A2+POINT(0,0,50)

DISABLE PASS

MOVE A2

DOUT(–201)

DELAY 0.5

ENABLE PASS

MOVE A2+POINT(0,0,50)

END

2020-08-06

– 4-6 –

SM-A20050-A

KSL3000 Language Manual

(7) Palletize

Consider a program for placing parts on a pallet as shown in the right hand figure.

Pallet size:

M rows x N columns

Teaching positions:

P11: Position of column 1 and row 1 of pallet

P1N: Position of row 1 and column N of pallet

PMN: Position of row M and column N of pallet

PP: Part unloading position

PO: Standby position

Designation of I/O signals:

DI1: Pallet standby (This signal is turned on when the pallet is in the

operating position)

DI2: Part standby (This signal is turned on when a part can be picked up.)

DO1: Hand close (This signal is turned on when the hand is closed.)

DO2: One pallet operation completion (This signal is turned on when all parts

are placed on the pallet. When the pallet is removed and then the

pallet standby signal is turned off.)

P11 P1N

M row

P MN

N column

2020-08-06

– 4-7 –

SM-A20050-A

KSL3000 Language Manual

PROGRAM PALLET

MOVE P0

RESET DOUT

M=10 Specifies the number of lines and rows.

N=15

RX=(P1N.X–P11.X) /(N–1) Computes the shift amount per element.

RY=(P1N.Y–P11.Y)/(N–1)

LX=(PMN.X–P1N.X)/(M–1)

LY=(PMN.Y–P1N.Y)/(M–1)

PASS=80

ENABLE PASS

ENABLE NOWAIT

L=0

LOOPL: Repeats the operation for each line.

R=0

LOOPR: Repeats the operation for each row.

MOVE PP+POINT(0,0,50)

WAIT DIN(2)

MOVE PP

WAIT MOTION>=l00

DOUT(1) Unloads the part.

DELAY 0.5

MOVE PP+POINT(0,0,50)

MOVE P11+POINT(R*RX+L*LX,R*RY+L*LY, 100)

WAIT DIN(1)

MOVE P11+POINT(R*RX+L*LX,R*RY+L*LY)

WAIT MOTION>=100

DOUT(–1) Places the part.

DELAY 0.5

MOVE P11+POINT(R*RX+L*LX,R*RY+L*LY, 100)

R = R + 1

IF R<=N–1 THEN GOTO LOOPR

L = L + 1

IF L<=M–1 THEN GOTO LOOPL

WAIT MOTION>=l00

DOUT(2)

2020-08-06

– 4-8 –

SM-A20050-A

KSL3000 Language Manual

WAIT DIN(–2)

MOVE P0

END

(8) Creating a program for monitoring an insertion error

A program for detecting a part insertion error and for an error handling is as

follows.

A1: Position to insert the part

 ACCUR=COARSE Sets the positioning accuracy to coarse. [1]

 MOVE A1+POINT(0, 0, 50) Moves the hand to a position 50 mm just over

the part insertion point.

 SETGAIN(0, 0, 1, 0, 0) Turns off the servo controls except for axis Z.

[2]

 TORQUE={300, 300, 50, 300, 300} Limits the torque of axis Z to 50%. [3]

 MOVE A1 Inserts all the parts.

 WAIT MOTION100

 SETGAIN (0, 0, 0, 0, 0) Turns off the servo control for all the axes.

[4]

 SETGAIN (0, 0, 1, 0, 0) Turns on the servo control for axis Z. [5]

 MOVE HERE

 HS=HERE.Z–A1.Z When the difference of the height between

 IF HS<5 THEN GOTO OK the current position and the inserted position

is less than 5 mm, it is determined that the

inserted position is normal. [6]

 SETGAIN(1, 1, 1, 1, 1) Turns on the servo controls for all the axes,

 DELAY 0.1 returns the torque to 300% and moves the

 TORQUE={300, 300, 300, 300, 300} hand to a position 50 mm just over the

 DELAY 0.1 part insertion point.

 MOVE A1+POINT(0, 0, 50)

2020-08-06

– 4-9 –

SM-A20050-A

KSL3000 Language Manual

Process in the case that the parts have been abnormally inserted.

OK:

SETGAIN(1, 1, 1, 1, 1)

DELAY 0.1

TORQUE={300, 300, 300, 300, 300}

DELAY 0.1

MOVE A1+POINT(0, 0, 50)

Process in the case that the parts have been normally inserted.

Comments for program description:

 [1] Unless the positioning accuracy is set to COARSE, the robot system may detect

an error and thereby cause the automatic operation to be stopped.

 [2] By turning off the servo controls except for axis Z, the robot can be freely moved

on the X–Y plane. Thus, when workpiece or part has been chamfered, it can

be inserted along the chamfered surface.

 [3] With the TORQUE command, the torque which occurs in the motor is limited.

When an insertion error occurs, the force applied to the work and hand is

suppressed. (Normally, the torque is set to 300 % of the rating value.)

By suppressing the torque to less than 100 %, the error detection level of the

controller will be decreased. Thus, when monitoring the insertion error, it is

necessary to set the torque to less than 100%. When the torque setting value

is excessively decreased, since the torque necessary for moving the robot

cannot be obtained, an error takes place.

 [4] The position being read with the HERE command is the position commanded to

the robot. To read the present position of the robot with the HERE command, it

is necessary to turn off the servo control and then turn it on again. Thus, with

the GAIN command, the servo controls for all the axes are turned off.

[5] The servo control which was turned off in is turned on.

[6] The difference of height between the current position and the insertion position

should be specified to a proper value.

Turns on the servo controls for all

the axes, returns the torque to 300%

and moves the hand to a position 50

mm just over the part insertion point.

2020-08-06

– 4-10 –

SM-A20050-A

KSL3000 Language Manual

(9) Program example of short-cut (PASS) movement

The following programming example uses short-cut movement to carry out "pick

and place" operation.

The robot will take a part from the part pick-up location (A), move through points B

and C, and try to insert the part at the part insertion location (D). If the part is

defective (i.e., cannot be inserted), the robot will move through points C and E, and

place the part at the dump location for defective parts (F).

Short-cut movement is used throughout the program.

The following signals are used in this program:

Input signals:

DI1: Completion of pick-up preparation

Turns ON when preparation of the part to be picked up is completed.

DI2: Completion of insertion preparation

Turns ON when preparation of the part insert position is completed.

DI3: Defective part

Turns ON when the grasped part is determined to be defective.

DI4: Completion of defective part dumping preparation

Turns ON when preparation of the part dump position is completed.

Output signals:

DO1: Completion of part pick-up

Turns ON when part pick-up is completed and preparation of the next part

may be begun.

B C E R: Wait station

A: Part pick-up location D: Part insertion
location

F: Dump location for
defective parts

2020-08-06

– 4-11 –

SM-A20050-A

KSL3000 Language Manual

DO2: Completion of part insertion

Turns ON when part insertion is completed and preparation for the insertion

of the next part may be begun.

DO3: Completion of defective part dumping

Turns ON when dumping of a defective part is completed and preparation for

dumping the next defective part may be begun.

The example program is presented below:

PROGRAM PICKPLACE

* PICK AND PLACE SAMPLE PROGRAM *

INPUT: Initial settings

OPEN1

DOUT (1, 2, 3) Part pick-up, part insertion

ENABLE NOWAIT Completion of disposal for defective part

SPEED = 80

PASS = 80

ENABLE PASS

MOVE B Move to position above part pick-up location

PICKUP: Section for picking up part

DOUT (–1) Begin picking up part

WAIT DIN (1) Wait until pick-up preparations are completed

MOVE A Lower down to A

WAIT MOTION > = 100

CLOSE1 Close hand

DELAY 0. 3

MOVE B Move up to B

PLACE: Section for placing part

MOVE C Move to position above part insertion location

DOUT (1, –2) Part pick-up complete – begin part insertion

WAIT DIN (2) Wait until insertion preparations are completed

MOVE D Lower down to D

WAIT MOTION > = 100

IF DIN (3) THEN GOTO ERR Judgment of part as defective

OPEN1 Open hand

DELAY 0. 3

2020-08-06

– 4-12 –

SM-A20050-A

KSL3000 Language Manual

MOVE C Move up to C

MOVE B Move up to position above part pick-up location

DOUT (2) Completion of part insertion

IF MODE = = CYCLE THEN GOTO CYCLEEND

Mode check

GOTO PICKUP

ERR:

MOVE C Section for handling defective part

 Move to position above part insertion location

MOVE E Move to position above defective part dump

location

DOUT (–3) Begin dumping of defective part

WAIT DIN (4) Wait until dumping preparations are completed

MOVE F Lower down to F

WAIT MOTION > = 100

OPEN1 Open hand

DELAY 0. 3

MOVE E Move up to E

MOVE B Move to position above part pick-up location

DOUT (3) Completion of dumping of defective part

IF MODE = = CYCLE THEN GOTO CYCLEEND

 Mode check

GOTO PICKUP

CYCLEEND: Processing for end of cycle

MOVE R Move to wait station

END

2020-08-06

– 5-1 –

SM-A20050-A

KSL3000 Language Manual

Section 5

Programming Hints and Warnings

This section explains timing considerations, things not to do, and things to watch out for

when writing up a program.

5.1 Program Execution Timing

Robot programs are executed one line at a time starting from the top. Normally,

when a robot carries out a movement command, the next command is not executed

until final positioning for that movement is completed. However, when handling I/O

signals and other operations not directly related to robot movement, this causes

time to be wasted (waiting for the movement to be completed).

In order to efficiently utilize time and speed up the robot as much as possible, the

SCOL language allows you to input/output signals and to process communications

while the robot is moving.

5.1.1 Arm Movement and Signal I/O Timing

When inputting or outputting a signal, the robot program instructions written in the

robot language specify whether or not to wait for the arm to complete the motion.

The system switch NOWAIT is used to tell the controller whether to wait for the robot

to stop moving (finish positioning itself) before inputting or outputting signals.

ENABLE NOWAIT This tells the controller not to wait for the arm to finish

positioning itself before inputting or outputting signals.

DISABLE NOWAIT This tells the controller to wait for the arm to finish

positioning itself before inputting or outputting signals.

The initial (default) setting is DISABLE NOWAIT.

An example program is shown below. Using this program, we will describe I/O

signal timing relative to command processing and arm movement.

2020-08-06

– 5-2 –

SM-A20050-A

KSL3000 Language Manual

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE

MOVE P1

DOUT (1)

MOVE P2

DOUT (2)

MOVE P3

DOUT (3)

MOVE P4

DOUT (4)

MOVE P5

DOUT (5)

END

 (1) Timing when DISABLE NOWAIT is in effect

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

M
O

V
E

P

1

W
a
it
 f

o
r

fi
n

is
h
 o

f

m
o

ti
o

n

D
O

U
T

(1
)

M
O

V
E

P

2

W
a
it
 f

o
r

fi
n

is
h
 o

f
m

o
ti
o

n

D
O

U
T

(2
)

M
O

V
E

P

3

W
a
it
 f

o
r

fi
n

is
h
 o

f

m
o

ti
o

n

D
O

U
T

(3
)

M
O

V
E

P

4

W
a
it
 f

o
r

fi
n

is
h
 o

f

m
o

ti
o

n

D
O

U
T

(4
)

M
O

V
E

P

5

W
a
it
 f

o
r

fi
n

is
h
 o

f
m

o
ti
o

n

A
rm

m

o
ti
o

n

Move to P1

Move to P2

Move to P3

Move to P4

Move to P5

As shown above, signals are output after the arm has stopped moving.

Note: When ACCURE=COARSE is specified, since the subsequent command

is executed before the positioning operation is completed, a signal may

be output before the robot motion is completely stopped.

2020-08-06

– 5-3 –

SM-A20050-A

KSL3000 Language Manual

 (2) Timing when ENABLE NOWAIT is in effect

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

M
O

V
E

 P
1

D
O

U
T

(1
)

M
O

V
E

 P
2

D
O

U
T

(2
)

M
O

V
E

 P
3

D
O

U
T

(3
)

M
O

V
E

 P
4

D
O

U
T

(4
)

W
a
it
 f

o
r

fi
n

is
h
 o

f
m

o
ti
o

n

M
O

V
E

 P
5

D
O

U
T

(5
)

A
rm

 m
o

ti
o

n

Move to P1

Move to P2

Move to P3

Move to P4

Move to P5

The arm motion by the previous command completes, and the arm motion by

the next command starts. Even if the arm is moving, however, processing of

signal output described next to that motion command is executed, which is

called "pre-reading of motion command." This robot controller pre-reads up

to four (4) motion commands. (While the arm is moving to point P1, the

controller pre-reads motion commands up to point P4 and waits for

completion of the motion just before the arm executes the motion command to

point P5.)

5.1.2 Synchronization of Arm Movement and Program Execution

In the preceding paragraph, we explain that the ongoing arm motion is executed in

parallel with signal input/output. To explain it in more detail, the arm motion and

SCOL commands other than the arm motion command can be executed at the

same time.

In the normal SCOL program, therefore, processing of the program is executed

apparently prior to the arm motion, because a special procedure (i.e., "WAIT

MOTION >= 100" command) is required to synchronize the arm motion with

program execution. This command will not complete until the arm has been

located. Describe "WAIT MOTION >= 100" before the command to be executed in

synchronization.

An example program is shown below. Using this program, we will describe I/O

signal timing relative to command processing and arm movement.

2020-08-06

– 5-4 –

SM-A20050-A

KSL3000 Language Manual

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE

MOVE P1

K = 1

DOUT (1)

K = K + 1

WAIT MOTION >= 100

K = K – 1

DOUT (2)

END

 (1) Timing when DISABLE NOWAIT is in effect

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

M
O

V
E

 P
1

K
=

1

W
a
it
 f

o
r

fi
n

is
h
 o

f

m
o

ti
o

n

D
O

U
T

(1
)

K
=

K
+

1

W
A

IT

M
O

T
IO

N
>

=
1
0
0

K
=

K
–
1

D
O

U
T

(2
)

A
rm

 m
o

ti
o

n

Move to P1

The DOUT command waits until the arm movement finishes.

 (2) Timing when ENABLE NOWAIT is in effect

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

M
O

V
E

 P
1

K
=

1

D
O

U
T

(1
)

K
=

K
+

1

W
A

IT

M
O

T
IO

N
>

=
1
0
0

K
=

K
–
1

D
O

U
T

(2
)

A
rm

 m
o

ti
o

n

Move to P1

The command of “WAIT MOTION >=100” waits until the arm movement

finishes.

2020-08-06

– 5-5 –

SM-A20050-A

KSL3000 Language Manual

Note: In addition to signal input and output, processing of commands other

than those given below goes on, irrespective of the robot movement.

DIN BCDIN INPUT PLCINPUT

DOUT BCDOUT PULOUT PRINT PLCPRINT

5.1.3 DELAY Command and WAIT Command

To stop the arm motion for the specified time during program execution, there are

two ways. One method utilizes the DELAY command and the other method utilizes

the WAIT command in conjunction with the TIMER command. When writing a

program, you should keep in mind that there is a difference in execution timing

between the two.

 (1) DELAY command

The DELAY command is a kind of motion control commands and stops the

arm motion for the predetermined time. However, as the SCOL language

program is processed in synchronization with ongoing arm motion, the

program is executed even during execution of the DELAY command.

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE

ENABLE NOWAIT

DELAY 2.0

K = 10

DOUT (1)

K = K – 1

MOVE P1

DOUT (–1)

END

2020-08-06

– 5-6 –

SM-A20050-A

KSL3000 Language Manual

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

E
N

A
B

L
E

N
O

W
A

IT

D
E

L
A

Y
 2

.0

K
=

1
0

D
O

U
T

(1
)

K
=

K
–
1

M
O

V
E

 P
1

D
O

U
T

(–
1
)

A
rm

 m
o

ti
o

n

Arm stops for 2.0 seconds

Move to P1

Since the program continues to be executed even after the DELAY command

causes the robot arm to pause, Signal 1 will be output while the arm is

stopped.

Should you wish to delay program execution as well, you should insert a

“WAIT MOTION >= 100” command between the DELAY command and DOUT

command.

 (2) WAIT command

The WAIT command can be used with the TIMER command to delay program

execution for a specified period of time. However, as with the DELAY

command described above, the program is processed in parallel with the

robot movement and one must be careful of the execution timing.

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE

ENABLE NOWAIT

MOVE P1

TIMER = 2

WAIT TIMER = = 0

DOUT (1)

MOVE P2

END

2020-08-06

– 5-7 –

SM-A20050-A

KSL3000 Language Manual

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

E
N

A
B

L
E

N
O

W
A

IT

M
O

V
E

 P
1

T
I<

E
R

=
2

W
A

IT
 T

IM
E

R
=

=
0

D
O

U
T

(1
)

M
O

V
E

 P
2

Stop preloading
for 2.0 seconds

A

rm
 m

o
ti
o

n

Move to P1

Move to P2

The delay in program execution specified by the WAIT command comes to an

end while the robot is still moving. When it is necessary for the robot to wait

also, insert a WAIT MOTION statement as shown below:

MOVE P1

WAIT MOTION >= 100

TIMER = 2

WAIT TIMER = = 0

C
o
m

m
a
n
d

p
ro

c
e
s
s
in

g

E
N

A
B

L
E

N

O
W

A
IT

M
O

V
E

 P
1

W
A

IT

M
O

T
IO

N
>

=
1
0
0

T
I<

E
R

=
2

W
A

IT
 T

IM
E

R
=

=
0

D
O

U
T

(1
)

M
O

V
E

 P
2

Stop for preloading
for 2.0 seconds

A
rm

 m
o

ti
o

n

Move to P1

Move to P2

2020-08-06

– 5-8 –

SM-A20050-A

KSL3000 Language Manual

5.2 Things Not to Do When Programming

This paragraph presents restrictions and prohibitions in effect when writing

programs. Refer to the command descriptions in Section 3 for information on

individual commands.

5.2.1 Variables

 (1) Referring to undefined variables

The data type of a variable is first defined when something is substituted into

it. Therefore, do not refer to variables which appear for the first time in your

program. If you do refer to a variable which has not been used (substituted

into) previously, the variable data type and values become undefined. You

will be very sorry when you try to debug your program.

Example:

PROGRAM SAMPLE

IF K < > 0 THEN GOTO RESTART

K = 1

A1 = A

RESTART:

FOR N = 1 TO 3

MOVE A1

A1 = A1 + POINT (100, 100)

NEXT N

END

Here, when the program is first executed, variable K is referenced in the IF

statement. However, variable K has never been used (substituted into)

before, so it becomes undefined. After that, 1 is substituted in K, and so the

variable K takes the value 1.

2020-08-06

– 5-9 –

SM-A20050-A

KSL3000 Language Manual

5.3 Things to Watch Out for When Writing a Program

This paragraph describes things to watch out for and presents an outline of some

SCOL commands which may come in useful when writing a program.

5.3.1 Types of Commands

A functional classification of the SCOL language was presented in Section 1. Here,

we describe the SCOL language in terms of internal processing.

SCOL commands can be broken down into basic commands, functions and system

variables. Basic commands make up the core of the SCOL language and are

executed in conjunction with parameters following the commands. Functions are

provided as a convenience to make SCOL easier to use. System variables are

used to directly refer to (and change) such items as speed, coordinate systems, etc.

They can be handled like any other variable.

These three types of commands are described in more detail below.

 (1) Basic commands

Basic commands provided by the SCOL language are shown below. Unlike

the functions listed below in Para. (2), you may not use any of these inside of

a (mathematical) expression.

 MOVE MOVES MOVEC MOVEA

 MOVEI MOVEJ DELAY BREAK

 PAUSE RESUME ON ~ DO IGNORE

 GOTO RETURN WAIT STOP

 IF ~ THEN ~ ELSE FOR ~ NEXT

 PRINT INPUT ENABLE DISABLE

 PROGRAM END RESET REMARK

 DIM ~ AS TASK KILL SWITCH

 GLOBAL MAXTASK

 RESTORE MOVESYNC SAVEEND RCYCLE

2020-08-06

– 5-10 –

SM-A20050-A

KSL3000 Language Manual

 (2) Functions

As opposed to basic commands, functions have the feature that they can

pass arguments back and forth just like subroutine programs (subprograms).

Up to ten arguments can be specified.

Functions can be broken down into built-in functions and system library

functions (which are so called because they are kept in a file in the system

library). In the SCOL language, the system library is called SCOL.LIB, and

unless SCOL.LIB is in the system RAM drive, you will not be able to use any

of the system library functions.

The following built-in functions are provided by SCOL.

 MOTION MOTIONT REMAIN REMAINT

 HERE DEST POINT TRANS

 DIN DOUT PULOUT BCDIN

 BCDOUT SIN COS TAN

 ASIN ACOS ATAN ATAN2

 SQRT ABS SGN INT

 REAL LN LOG10 EXP

 MODE

Built-in functions may be used in (mathematical) expressions with the

exception of the following signal I/O commands: DOUT, PULOUT and

BCDOUT.

The following system library functions are provided by SCOL (and are

contained in the system library).

 OPEN1 CLOSE1 OPENI1 CLOSEI1

 OPEN2 CLOSE2 OPENI2 CLOSEI2

 READY ONGAIN OFFGAIN FREELOAD

 SETGAIN

If you make a subprogram and give it the same name as a function contained

in the system library, this new subprogram should be executed as a priority.

2020-08-06

– 5-11 –

SM-A20050-A

KSL3000 Language Manual

 (3) System variables

System variables are used to change system conditions and can be handled

just like any other variable.

The following system variables are provided by SCOL.

 CONFIG ACCUR ACCEL DECEL

 SPEED PASS TORQUE GAIN

 TOOL BASE WORK TIMER

 ERROR PAYLOAD TID

5.3.2 Robot Coordinate Systems

This paragraph describes robot coordinate systems handled by the SCOL language.

 (1) Robot coordinate systems

The robot has five types of coordinate systems, i.e. the world coordinate

system, the base coordinate system, the work coordinate system, the

mechanical interface coordinate system and the tool coordinate system. A

brief description of these systems is presented below:

 (a) World coordinate system (absolute coordinate system)

The world coordinate system is a single system used to describe the

orientation of the work site surrounding the robot. If this coordinate system

can be defined independently of the robot.

If this coordinate system is set at the home position of the robot, the world

coordinate system and the base coordinate system are the same.

 (b) Base coordinate system (mechanical coordinate system)

The base coordinate system is the system used by the robot itself. The

location of the base coordinate determine is determined by the robot design,

with the origin of the system always being the mechanical origins of the robot.

 (c) Work coordinate system

The work coordinate system is defined in terms of the workpiece to be

handled by the robot.

2020-08-06

– 5-12 –

SM-A20050-A

KSL3000 Language Manual

 (d) Mechanical interface coordinate system

The mechanical interface coordinate system is defined in terms of an end

effector attached to the robot. This coordinate system will shift in

accordance with robot movement.

 (e) Tool coordinate system

The tool coordinate system is defined in terms of the end of a tool attached to

the robot. This coordinate system will shift in accordance with robot motion.

These coordinate systems play a role when guiding the robot, when teaching

it positions, and when operating it. The world, work, and tool coordinate

systems can be specified when guiding the robot. The robot moves along

the specified coordinate system. However, there is no particular need to

worry about which coordinate system to select when teaching or operating the

robot. Under normal usage, the robot will move to the points you taught it to

move to.

 Caution: Coordinate system and additional axes

Axis 5 (T-axis) of the SCARA robot, and axis 4 (C-axis) and axis 5 (T-axis)

of the Cartesian coordinate robot are the additional axes which will not be

affected by the coordinate system. Values are the same in any

coordinate system selected.

 Fig. 5.1 shows the robot coordinate system.

2020-08-06

– 5-13 –

SM-A20050-A

KSL3000 Language Manual

Fig. 5.1 Robot coordinate system

 (2) Coordinate systems and system variables

The base, work and tool coordinate systems may each contain multiple

coordinate systems, each of which can be selected according to robot tasks.

Each coordinate system can be also specified in the SCOL language

program. These coordinate systems may also be specified (defined) inside

of a program by using the system variables BASE, WORK and TOOL.

These system variables may be used just like any other coordinate-type

system variables.

The meaning of each of these system variables is described below. For

more information on teaching coordinate systems to the robot or selecting

such a coordinate system, refer to the Operator’s Manual.

Base coordinate system

System variable
BASE

System variable
TOOL

Tool coordinate system

Robot position
Configuration

data

Work coordinate
system

World coordinate system

System variable
WORK

Mechanical interface
coordinate system

2020-08-06

– 5-14 –

SM-A20050-A

KSL3000 Language Manual

 (a) System variable BASE

The system variable BASE defines the origin of the base coordinate system in

terms of the world coordinate system. It is used when it is necessary to base

robot movement on the coordinate system of the work-site (world coordinate

system) or when it is necessary to guide the robot in terms of world

coordinates (as opposed to base coordinates).

With such a system, the robot can be reinstalled in a separate location and

put back into action after simply redefining the location of the base coordinate

system.

Should the value of the BASE system variable be set to all 0, the world

coordinate system and the base coordinate system will become the same.

(Note that the BASE system variable is of a coordinate data-type and contains

four elements, all of which must be set to 0 in order to set the BASE system

variable itself to 0.) You should set BASE to 0 if there is no particular need to

specify a world coordinate system. Also, be careful not to accidentally

change the base coordinate system after it has been set.

 (b) System variable WORK

The system variable WORK defines the origin of the work coordinate system

in terms of the world coordinate system. Should WORK have a value of 0,

the world and work coordinate systems will be the same. (Note that the

WORK system variable is of a coordinate data-type and contains four

elements.)

When handling multiple workpieces, multiple work coordinate systems may be

specified to help keep track of where each workpiece is.

Also, the WORK system variable is useful when it is necessary to guide the

robot in relation to the workpiece (rather than, for example, the robot base).

When there is no particular need to specify a work coordinate system, set the

WORK system variable to all 0.

 (c) System variable TOOL

The system variable TOOL defines the origin of the tool coordinate system in

terms of the mechanical interface coordinate system. Should TOOL have a

value of 0, the tool coordinate system and the mechanical interface

coordinate system will be the same. (Note that the TOOL system variable is

of a coordinate data-type and contains four elements.)

2020-08-06

– 5-15 –

SM-A20050-A

KSL3000 Language Manual

When handling multiple tools, multiple tool coordinate systems may be

specified to help keep track of where each tool is. Also, the WORK system

variable is useful when it is necessary to guide the robot in relation to the tool

(rather than, for example, the robot base).

You should be careful when changing any of these system variables in your

program since the coordinate system in which the robot moves will also

change.

 (3) Teaching data and coordinate systems

When you teach a position to the robot, the robot will also record the position

of the tool tip relative to a work coordinate system. In addition, the robot will

also remember the work coordinate system in effect at the time.

When a program using this data is executed, the robot will move to the

position defined by the positional data for that point. However, if the work

coordinate system itself was changed (and is therefore not the same as the

work coordinate system in effect when taught), the same positional data will

define a different point (since the frame of reference is different). Therefore,

the robot will not move to the point as taught, but to another point.

 (4) Changing coordinate system data in the program

A simple explanation of how to change coordinate system data with the

program is presented below. You should not change such data unless you

have a good reason for doing so.

 (a) Changing the base coordinate system

There is no need to change the base coordinate system from the program.

 (b) Changing the work coordinate system

When you teach the robot a position, the robot will also remember the work

coordinate system in effect at the time. When a movement command tells

the robot to move to that point, the current work coordinate system (in effect

at the time the command was encountered in the program) will automatically

change over to the previous work coordinate system (in effect when the point

was taught to the robot).

2020-08-06

– 5-16 –

SM-A20050-A

KSL3000 Language Manual

Example:

You have three different work coordinate systems, i.e. WORK1, WORK2 and

WORK3. In each coordinate system, you taught the robot one point, i.e. you

have point A1 defined in terms of work coordinate system WORK1, point A2

defined in terms of work coordinate system WORK2, and point A3 defined in

terms of work coordinate system WORK3. When you execute the following

program, the work coordinate system will change as follows.

PROGRAM SAMPLE

MOVE A1: The work system in effect during this command will be WORK1.

MOVE A2: The work system in effect during this command will be WORK2.

MOVE A3: The work system in effect during this command will be WORK3.

END

When handling multiple workpieces, you can carry out the same operation

over and over on different workpieces by changing the work coordinate

system. There are three ways to do this.

 1) Changing the work coordinate system itself

The same operation can be carried out on multiple workpieces by changing

the values of the work coordinate system itself from the program.

Example:

You have three points (A1, A2 and A3) defined in terms of work coordinate

system WORK1. You wish to repeat the operation, but this time in terms of

work coordinate system WORK2.

PROGRAM SAMPLE

DUMMYWORK = WORK1

WORK1 = WORK2

MOVE A1

MOVE A2

MOVE A3

WORK1 = DUMMYWORK

END

Here, the movements to points A1, A2 and A3 were performed in terms of

WORK1 just as before. The only difference is that the value of WORK1 itself

was changed beforehand to that of WORK2. Therefore, in effect, the robot

moved in the frame of reference of WORK2.

2020-08-06

– 5-17 –

SM-A20050-A

KSL3000 Language Manual

The variable DUMMYWORK is used to hold the value of the original WORK1.

Otherwise, the value of the original WORK1 would be lost forever when you

put the value of WORK2 into WORK1. When the robot is finished moving,

the original value of WORK1 will be restored.

 2) Changing the work coordinate system with a WITH statement

You can change between different work coordinate systems by using WITH

statements.

Example:

You have three points (A1, A2 and A3) defined in terms of work coordinate

system WORK1. You wish to repeat the operation, but this time in terms of

work coordinate system WORK2.

PROGRAM SAMPLE

MOVE A2

WORK2=WORK+TRANS(, , 20)

MOVE A1 WITH WORK = WORK2

MOVE A2 WITH WORK = WORK2

MOVE A3 WITH WORK = WORK2

END

Using WITH statements in this way, it is possible to specify work coordinate

systems different from that used during teaching.

 3) General method

As a general method, we recommend using a combination of the above two

methods. Specifically, your program should use temporary variables to

define the work coordinate system. Every time the workpiece is changed, a

corresponding temporary variable should be use to change over the work

coordinate system.

Example:

You have three points (A1, A2 and A3) defined in terms of work coordinate

system WORK1. You wish to repeat the operation, but this time in terms of

work coordinate system WORK2.

2020-08-06

– 5-18 –

SM-A20050-A

KSL3000 Language Manual

PROGRAM SAMPLE

WORK2=WORK+TRANS(, , 20)

DUMMYWORK = WORK2

MOVE A1 WITH WORK = DUMMYWORK

MOVE A2 WITH WORK = DUMMYWORK

MOVE A3 WITH WORK = DUMMYWORK

END

 (c) Changing the Tool Coordinate System

By changing the tool coordinate system, you can handle operations in which

tools are changed several times as work progresses.

The robot always uses the current tool coordinate system in order to move the

tip of the tool to the position defined by the work coordinate system.

Therefore, if you are not careful when specifying the tool coordinate system,

the robot may move somewhere unexpected.

Example:

You are using two tools with the tool offsets being TOOL1 and TOOL2.

PROGRAM SAMPLE

TOOL1=TRANS(, , 10)

TOOL2=TRANS(, , 30)

TOOL = TOOL1

MOVE A1

TOOL = TOOL2

MOVE A1

END

This program takes two different tools, and positions the tips of these tools at

the same position (point A1). (Note that the program above does not have a

tool change routine as would be required for actual operation.)

2020-08-06

– 5-19 –

SM-A20050-A

KSL3000 Language Manual

5.3.3 Short-Cut Movement

The SCOL language considers one movement to start when the robot begins

moving and to stop when the robot finishes positioning itself. Normally, one

movement command corresponds to one movement.

However, one may also direct the robot to move continuously under multiple

movement commands without stopping to position itself before heading for the next

destination or passing the nearest point toward the next destination. This is called

short-cut movement.

Short-cut movement reduces operating time since the robot can both cut corners

and not have to spend time positioning itself.

The short-cut movement cannot be executed between MOVES or MOVEC

command and other movement commands. (However, the short-cut movement is

available between the MOVES command and the MOVEC command.)

 (1) Specifying Short-Cut Movement

Short-cut movement is invoked or discontinued with the system switch PASS.

ENABLE PASS – Invokes short-cut motion.

DISABLE PASS – Discontinues short-cut motion.

With short-cut motion, the robot continuously changes the speeds of the axes

while being careful not to exceed any maximum speeds. When the amount

of the movement per one movement command has exceeded the specified

percentage, the robot will begin to execute the next movement command.

This percentage is specified with the system variable PASS (which is not the

same thing as the system switch PASS). This percentage which is formally

called the short-cut movement parameter may be specified as an integer

value between 0 and 100. Note that anything smaller than 50 will be treated

as 50%.

Example:

PROGRAM SAMPLE

MOVE A1 Move to point A1.

PASS = 80 Set the short-cut movement parameter to 80%.

ENABLE PASS Invoke short-cut movement.

MOVE A2 When 80% of the movement to point A2 is

completed, begin moving to point A3.

2020-08-06

– 5-20 –

SM-A20050-A

KSL3000 Language Manual

MOVE A3 When 80% of the movement to point A3 is

completed, begin moving to point A4.

DISABLE PASS Discontinue short-cut movement.

MOVE A4 Move to point A4.

END

The short-cut movement parameter may be changed while short-cut motion is

in effect.

Example:

PROGRAM SAMPLE

MOVE A1 Move to point A1.

PASS = 80 Set the short-cut movement parameter to 80%.

ENABLE PASS Invoke short-cut movement.

MOVE A2 When 80% of the movement to point A2 is

completed, begin moving to point A3.

MOVE A3 WITH PASS = 60

When 60% of the movement to point A3 is

completed, begin moving to point A4.

MOVE A4 When 80% of the movement to point A4 is completer,

begin moving to point A5.

PASS = 90 Set the short-cut movement parameter to 90%.

MOVE A5 When 90% of the movement to point A5 is

completed, begin moving to point A6.

DISABLE PASS Discontinue short-cut movement.

MOVE A6 Move to point A6.

END

 (2) Commands which interrupt short-cut movement

The following commands will interrupt short-cut motion should short-cut

motion be in effect at the time.

WAIT command

INPUT command

PRINT command

STOP command

BREAK command

PAUSE command

2020-08-06

– 5-21 –

SM-A20050-A

KSL3000 Language Manual

Furthermore, should DISABLE NOWAIT be in effect, the following commands

will interrupt short-cut motion.

DOUT command

RESET DOUT command

PULOUT command

DIN command

BCDIN command

BCDOUT command

Moreover, when there are many commands between movement commands

or when the amount of motion of an individual motion is small, the short-cut

motion may be stopped. When the short-cut movement is specified between

the MOVES or MOVEC command and another movement command, the

short-cut movement will be stopped.

 (3) Output signal timing under short-cut movement

Signal output timing under short-cut movement relative to robot arm motion is

described below with the following example.

PROGRAM SAMPLE

MOVE A1

PASS = 80

ENABLE PASS

MOVE A2

DOUT (1)

DISABLE PASS

MOVE A3

END

 (a) Timing under DISABLE NOWAIT

 Command

processing

Signal output

Arm movement

MOVE

A1

PASS

=80

ENABLE

PASS

MOVE

A2

MOVE

A3

DISABLE

PASS

DOUT

(1)

Move to A1
Move to

A2

Output signal 1

Move to

A3

2020-08-06

– 5-22 –

SM-A20050-A

KSL3000 Language Manual

Here, short-cut movement will be interrupted so that the output signal may be

processed.

 (b) Timing under ENABLE NOWAIT

 Command

processing

Signal output

Arm movement

Output signal 1

Move to A1 Move to A2 Move to A3

MOVE

 A1

PASS

= 80

ENABLE

PASS

MOVE

 A2

MOVE

 A3

DISABLE

PASS

DOUT

 (1)

Here, the output signal is processed while the arm is in motion.

 (4) Referring to the robot operating condition under short-cut movement

When you refer to the amount of robot movement with the MOTION,

MOTIONT, REMAIN or REMAINT command while under short-cut movement,

a value for one movement command will be returned as the result.

Example:

PROGRAM SAMPLE

MOVE A0

PASS = 80

ENABLE PASS

ON MOTION > = 75 DO DOUT (1)

MOVE A1

MOVE A2

DISABLE PASS

END

Here, Signal 1 will be output when the robot has moved 75% of the specified

value from A0 to A1.

2020-08-06

– 5-23 –

SM-A20050-A

KSL3000 Language Manual

 (5) Control parameters for short-cut movement

The short-cut movement parameter has the following meaning.

In the above diagram, the robot begins at point A, goes through the vicinity of

point B, and moves to point C. In short-cut movement, the robot will move

from point A towards point B until it reaches point P. When the robot reaches

point P, the robot will start moving towards point C. The position of point P is

defined as a percentage of the total length between points A and B. In other

words, the value of P is the short-cut movement parameter. Sometimes this

parameter is also referred to as the pass rate.

In the above example, the short-cut movement parameter (pass rate) is given

as follows:

Pass rate = ((Distance from A to P) / (Distance from A to B)) * 100 (%)

Command
processing

Signal
output

Arm
movement

Move to A0 Move to A1 Move to A2

80%

75%

Output 1

MOVE
A0

PASS
=80

ENABLE
PASS

ON~ MOVE
A1

MOVE
A2

DISABLE
PASS

100%

A P B

C

Short-cut movement parameter

Short-cut movement

2020-08-06

– 5-24 –

SM-A20050-A

KSL3000 Language Manual

The short-cut movement parameter must be in the range of 50 to 100%.

Anything less than 50% will be taken as 50%.

At times, short-cut movement may not work exactly as specified for the

reasons below.

 (a) Restrictions on maximum acceleration

According to the structure of the robot and parts in use, a maximum speed is

determined. Furthermore, robot acceleration and deceleration varies

depending on the reduction of the movement speed of the robot and the use

of the ACCEL and DECEL command written in the robot language. During

short-cut movement, the speed of each axis is calculated so that these

accelerations are not exceeded.

 (b) Restrictions from the following movement

The short-cut movement superimposes the current movement onto the

subsequent movement in such a way that the current movement finishes until

the robot moves 50% of the subsequent movement.

For the reasons described above, the timing with which short-cut movement

begins cannot be speeded up by more than a certain amount. This is true

even should the short-cut movement parameter (pass rate) be made smaller.

 (6) The notice in the case where the direction of the shortcut becomes the

direction of the identical vector

When the fellow of the operation to cut short becomes the one-way, it

sometimes becomes faster than the speed that the falling of the speed

ingredient increased and that the speed specified.

2020-08-06

– 5-25 –

SM-A20050-A

KSL3000 Language Manual

5.3.4 Robot Configuration

With SCRA robots, viewed from the rotation center of the robot to the configuration

of which the arm extends straight, when the second arm bends to the left (i.e. the

elbow sticks out to the right), it is called the right-handed system, and when the

second arm bends to the right (i.e. the elbow sticks out to the left), it is called the

left-handed system. Therefore the robot can take two postures: right-handed

system configuration and left-handed system configuration to one position (X, Y)

specified in the work coordinate system.

 (1) Configuration during teaching and configuration during operation

When you teach a position to the robot, the robot will also remember (as

positional data) its configuration at the time. With normal operation, the

robot will move with the configuration it had when taught.

 (a) Specifying the configuration for movement

The configuration the robot is to take while moving is specified by the

CONFIG command. The CONFIG command may either be used

independently or with a WITH statement.

When the CONFIG command is used with a WITH statement, the CONFIG

command only has effect for one single movement command.

When a CONFIG command is used by itself, all subsequent movement

commands are executed with that configuration.

When you want the robot to move with the same configuration with which it

was taught, you must set the robot configuration to undefined, CONFIG=0 or

CONFIG=FREE. The initial setting of the robot is FREE.

CONFIG = 1 or CONFIG = LEFTY will set the robot configuration to left, and

CONFIG = 2 or CONFIG = RIGHTY will set the robot configuration to right.

When you set a robot configuration, the robot moves with the specified

configuration during the execution of the subsequent movement command.

Should you operate the robot with a configuration different from that with

which is was taught, there may be a discrepancy between where the robot

was taught to move and where it does move. Therefore, always try to

operate the robot with the configuration the robot was taught.

2020-08-06

– 5-26 –

SM-A20050-A

KSL3000 Language Manual

 (b) Commands for which the configuration cannot be changed

Any configuration specifications become invalid when any of the following

movement commands are executed.

 1) Interpolated movement commands

With command for the linear interpolation and arc interpolation, since the

configuration of the robot cannot be changed, an error will occur. There are

two interpolated movement commands, i.e. MOVES and MOVEC.

 2) Single axis control commands

With commands which direct one single axis of the robot to move, the robot

configuration may not be specified. There are two single axis control

commands, i.e., MOVEA and MOVEI.

 (2) Moving to positions created in the program

When you directly specify coordinate values to which the robot is to move (for

example, MOVE POINT (100, 100)), the robot will move with the configuration

in effect at the time. This is true even should the configuration be undefined.

Should you create positional data in your program, the configuration of the

robot will be the configuration of the positional data in that variable before you

substituted in your new values. Should that positional data variable have no

specified configuration (i.e., should that variable be substituted into for the first

time), the robot configuration will be undefined (free).

2020-08-06

– 5-27 –

SM-A20050-A

KSL3000 Language Manual

5.3.5 Data Blocks

This paragraph describes how positional data is kept in the controller files. Note

that there is no particular need for the programmer to worry about this if he or she is

programming with the teach pendant. Rather, this paragraph is for use when

creating a SCOL language program or positional data with any computer other than

the robot controller.

All positional data files are in ASCII code.

 (1) Data blocks

Robot positional data is stored in the controller in units called data blocks.

The file in the controller contains a plurality of programs and one data block.

One file always has one data block. The programs in the same file share

positional data in the data block. You cannot refer to the data block in

different file. The data block stores coordinate data and load data in addition

to positional data.

A data block is declared in a file in the following manner:

DATA

(data declarations)

. . .

END

A data block is declared from DATA to END. Individual datum is declared

from DATA to END one after the other. The data block is declared at the end

of the file. The data block cannot be declared in a program.

 (2) Data declarations

Positional data, coordinate data and load data are normally taught to the robot

with the controller data editor. In such a case, the data is automatically

entered into the data block of the appropriate file.

Data defined (created) in the program (and not by the data editor) is not

entered into the data block. Rather, this data is temporarily stored in the

controller (and not in the file) while the program is running.

Data in a data block is declared with the following format.

<data type> <identifier> = [<element>,]...

2020-08-06

– 5-28 –

SM-A20050-A

KSL3000 Language Manual

The <data type> designation indicates the type of data you are declaring.

Here, you should write POINT for positional-type data, TRANS for

coordinate-type data, or PAYLOAD for load-type data.

The <identifier> designation indicates the name of the data. The <element>

designation indicates the numerical value of each element in real numbers.

Any omitted <element> designations will be taken as 0.

 (a) Declaring positional data

Positional data is declared with the following format.

POINT <identifier> = X, Y, Z, C, T/<configuration>

X, Y, Z, C and T are coordinate values expressed in real numbers. Uni

ts are in millimeters or degrees.

<configuration> is an integer from 0 to 2 which designates the robot con

figuration.

NONE: Undefined (free)

LEFTY: Left handed

RIGHTY: Right handed

The system constants FREE (undefined), LEFTY (left handed) and RIGHTY

(right handed) may also be used to designate the robot configuration.

Examples:

POINT A = 100, 200, 30, 45, 0

POINT A1 = 444.44, 333.33, , ,/RIGHTY

POINT ZERO =

 (b) Declaring coordinate data

Coordinate data is declared with the following format.

TRANS <identifier> = X, Y, Z, C

X, Y, Z and C are coordinate values expressed in real numbers. Units
are in millimeters or degrees.

Examples:

TRANS WORK1 = 10, 20, 30, 45

TRANS TOOL2 = , , –20,

TRANS ZEROW =

2020-08-06

– 5-29 –

SM-A20050-A

KSL3000 Language Manual

 (c) Declaring load data

Load data is declared with the following format.

PAYLOAD <identifier> = <mass>, <center of gravity offset>

<mass> is the mass acting on the tip of the robot hand expressed as a real

number. Units are in kilograms.

<center of gravity offset> is the offset for center of gravity acting on the tip of

the robot hand expressed as a real number. Units are in millimeters.

Examples:

PAYLOAD HAND1 = 4.8, 0.48

PAYLOAD HAND2 = 2, 0.004

PAYLOAD HAND0 =

 (3) Specifying work coordinate systems

Positional data is specified in the SCOL language as the position of the tool

tip defined in terms of the work coordinate system. Therefore, positional

data also contains information as to which work system was used to define

that data. To explicitly specify a work coordinate system, use a WORK

statement to give the work coordinate system a name. You may then use

the work coordinate system in your program. The work coordinates declared

in this manner remain in effect until superceded by another WORK statement.

Example:

DATA

POINT A00 = 650, 0, 0, 0, 0

POINT A01 = 400, 400, 0, 0 / RIGHTY

TRANS WORK1 = 100, – 100, 0, 0

WORK WORK1

POINT A10 = 0, 0, 0, 0, 0, 0

POINT A11 = 200, 0, 0, 0, 0, 0

TRANS WORK2 = –100, –100, 0, 0, 0

WORK WORK2

POINT A20 = 246.8, 69.1, 23.5, 18.3, / RIGHTY

POINT A21 = 0, 0, –30, 0, 0 / LEFTY

END

2020-08-06

– 5-30 –

SM-A20050-A

KSL3000 Language Manual

In the above example, positional data A10 and All are defined in terms of

WORK1, and positional data A20 and A21 are defined in terms of WORK2.

Also, since no particular work coordinate system was in effect when positional

data A00 and A01 were specified; the work coordinate system for these points

is taken as {0, 0, 0, 0}.

2020-08-06

– 5-31 –

SM-A20050-A

KSL3000 Language Manual

5.3.6 Global Data Block

The variable defined by the SCOL language contains the global data and temporary

data.

The global data which can be referred to from all parts of the program is described

in this paragraph.

The variable defined in the data block is dealt with as the global data. The data

which can be defined in the data block is limited to the position type, coordinate type

and load type.

Data of global integer type, real number type and array type can be used by the

declaration of global data.

 (1) Global data block

The global data is declared in the global data block and is dealt with as a part

of the program in the different manner as the data block. The global data

block is edited by the program editor. The file of the controller contains a

plural number of programs and one global data block. One file has one

global data block.

The global data can be shared in the programs of the same file. The global

data of different file cannot be referred to. The integer data, real number

data and array data can be stored in the global data block.

The global data block is declared in the file, using the following format.

GLOBAL

(Declaration of data)

. . .

END

The global data block is declared in the GLOBAL ~ END statements.

Respective data are declared in the GLOBAL ~ END statements one by one.

The global data block is declared at the head of file.

The global data block cannot be declared in the program.

 (2) Declaration of data

The global data block cannot be edited by the data editor.

It is edited by the program editor in the same manner as the program.

Data in the global data block are declared in the format of substitution

statement for the variable in the same manner as the program.

2020-08-06

– 5-32 –

SM-A20050-A

KSL3000 Language Manual

 (a) Declaration of integer data

The integer data is declared as shown below.

<Identifier> = <integer constant>

Example: N1 = 1

Note: If the real number is substituted for the integer type global variable in

the program, the decimal places are omitted. Care should be taken.

 (b) Declaration of real number

The real number is declared as shown below.

<Identifier> = <real number constant>

Example: R1 = 1.0

 (c) Declaration of array data

The array data is declared as shown below.

DIM <identifier> (I, j . . .) AS <variable type>

Example: Integer type three dimensional array which has 2  3  4

elements

 DIM IDAT (2, 3, 4) AS INT

 Real number type two dimensional array which has 4  3

elements

 DIM RDAT (10, 50) AS REAL

 Position type one dimensional array which has five elements

 DIM PDAT (5) AS POINT

 Note: For the DIM command, only the type and number of elements of array type

global data are specified and the initial value is unsettled. Like normal

global data, initial values of integer type and real number type data should

be specified in global data blocks, and those of position type, coordinate

type and load type data in data blocks.

2020-08-06

– 5-33 –

SM-A20050-A

KSL3000 Language Manual

5.3.7 Robot Movement Speed

 (1) Speed in each mode

The range of robot speed utilized in each mode is shown below.

Mode Speed range

Automatic operation

mode

PTP 0 ~ 100 %

Linear and circular interpolation 0 ~ 100 %

Test operation

mode

PTP 0 ~ 25%

Linear and circular interpolation 0 ~ 25 %

Note: The maximum speed listed in the specifications is taken as 100%.

With linear and circular interpolation, 1 m/s is taken as 100%.

 (2) Speed for automatic operation

Speeds for automatic and test operation have the following format.

Speed = {Speed setting in program (1 to 100%)  Override speed (1 to

100%); Limit speed}

Here,

Speed setting in program: Setting specified by the SPEED command in the

robot program.

Override speed: Changes all speeds by the same fraction.

Limit speed: Reduces any speeds over the limit down to the

limit value.

Program setting  Override 50%  Limit 25%

2020-08-06

– 5-34 –

SM-A20050-A

KSL3000 Language Manual

Speed for each operation
can be set.

Speed for all movements is
50% of the specified speed
value.

Since the movement
speed from Point 1 to
Point 3 exceeds 25%, it is
reduced to 25%.

5.3.8 Robot Acceleration

Robot acceleration (and deceleration) will vary depending on the following factors.

[1] Operating mode: Linear interpolation (MOVES), point-to-point

(MOVE)

[2] Speed: SPEED command, override

[3] Acceleration commands: ACCEL, DECEL

 (1) The maximum acceleration in each operating mode is calculated from the

robot strength and motor torque and set. Also, the motors will speed up and

slow down in such a way that the robot moves smoothly.

Change in speed according to override

As shown in the figure above, the acceleration time is inversely proportional to

the speed override setting. The distance of travel during acceleration (areas

of triangle A and B in the figure) is constant independent of the speed override

setting. Therefore, the path of the robot will stay very nearly the same no

matter what the override setting.

Point 2 Point 3

Point 1 Point 4

100%

70%

40%

35% 25%

20% 25% 20% 50%

2020-08-06

– 5-35 –

SM-A20050-A

KSL3000 Language Manual

 (2) Acceleration and deceleration are specified separately in the SCOL language.

This comes in useful when handling delicate parts in that, for example, you

can slow the robot down gradually before stopping in order to keep the hand

and workpiece from vibrating.

 Speed

Acceleration

= 100%
Deceleration

= 50%

 Time

T  2T 

2020-08-06

– 6-1 –

SM-A20050-A

KSL3000 Language Manual

Appendix A List of Commands

Movement control commands

MOVE<position>[WITH clause] Simultaneous movement

MOVES<position>[WITH clause] Linear interpolated
movement

MOVEC<position> <position>[WITH clause] Circular interpolated
movement

MOVEA<axis>,<absolute position>[WITH clause] Absolute single axis
movement

MOVEI<axis>,<relative position>[WITH clause] Relative single axis
movement

MOVEJ<position> <arch definition> Relative single axis
movement

READY Moves to machine
coordinate origin

DELAY<time> Pauses for specified time

OPEN1,OPEN2 Opens hand immediately

OPENI1,OPENI2 Opens hand

CLOSE1,CLOSE2 Closes hand immediately

CLOSEI1,CLOSEI2 Closes hand

RESUME Resumes interrupted
movement

Program control commands

PROGRAM <program name> Marks beginning of program

ON<monitoring condition> [{BREAK | PAUSE}] Monitors conditions

DO<statement>

IF<logical statement> THEN<statement>
[ELSE<statement>]

Judges conditions

WAIT<logical statement> Waits for an operation

IGNORE<monitoring condition> Cancels monitoring

GOTO<label> Branches unconditionally

GOTO (<expression>) <label> [, <label>]... Branches in accordance with
the value of an expression

RCYCLE Label for cycle setting

RETURN Returns to main program

2020-08-06

– 6-2 –

SM-A20050-A

KSL3000 Language Manual

FOR<variable> = <expression> TO <expression>
[STEP <expression>]

Repeats an operation

NEXT[<variable>]

STOP Stops the program

REMARK[<comment>] Remarks and comments

END Marks end of program

TASK (“program name”) Starts task program

KILL (<expression>) Ends task program

SWITCH Changes over task program

LOADLIB<file name> Dynamic link library build-in

I/O control commands

DIN(<signal name>[,<signal name>]...) Reads in an input signal

DOUT(<signal name>[,<signal name>]...) Outputs a signal

PULOUT(<signal name>[,<signal name>]...) Outputs a pulse signal

RESET<condition>[,<condition>] Resets the controller

BCDIN(<signal name>,<signal length>) Inputs a BCD signal

BCDOUT(<signal name>,<signal
length>,<expression>)

Outputs a BCD signal

HEXIN(<signal name>,<signal length>) Inputs signals in
hexadecimal notation.

HEXOUT(<signal name>,<signal
length>,<expression>)

Outputs signals in
hexadecimal notation.

PRINT[{COM0 | COM1 | TP},]

{<character string> <expression>}

[,{<character string><expression>}]...[, CR] Outputs communication data

INPUT[{COM0 | COM1 | TP},]

<variable>,[<variable>]... Inputs communication data

Movement condition commands

CONFIG=<expression> Specifies configuration

ACCUR=<expression> Specifies positioning
accuracy

2020-08-06

– 6-3 –

SM-A20050-A

KSL3000 Language Manual

ACCEL=<expression> Specifies acceleration
(during acceleration)

DECEL=<expression> Specifies deceleration
(during deceleration)

SPEED=<expression> Specifies speed

PASS=<expression> Short-cut movement
parameter

TORQUE={<expression>, <expression>,
<expression>, <expression>, <expression>}

Torque on each shaft

GAIN={<expression>, <expression>, <expression>,
<expression>, <expression>}

Gain on each shaft

SETGAIN=(<integer>, <integer>, <integer>,
<integer>, <integer>)

Gain on each axis in
synchronous motion

ENABLE<switch>[,<switch>]... System switch on

DISABLE<switch>[,<switch>]... System switch off

PAYLOAD={<mass>,<center of gravity offset>} Sets load data

FREELOAD Cancels load data

Palletize command

INITPLT (<pallet number>,<i>,<j>,<k>) Initializes a pallet

MOVEPLT (<pallet number>, <element number>,
<X>, <Y>,<Z>,<C>)

Moves pallet to specified
position

Calculator commands

SIN(<expression>) Sine

COS(<expression>) Cosine

TAN(<expression>) Tangent

ASIN(<expression>) Arcsine

ACOS(<expression>) Arccosine

ATAN(<expression>) Arctangent

ATAN2(<expression>,<expression>) Arctangent

SQRT(<expression>) Square root

ABS(<expression>) Absolute value

2020-08-06

– 6-4 –

SM-A20050-A

KSL3000 Language Manual

SGN(<expression>) Extracts sign

INT(<expression>) Changes number to an
integer

REAL(<expression>) Changes number to a real
number

LN(<expression>) Natural logarithm

<expression> MOD <expression> Remainder

LOG10 (<expression>) Common logarithm

EXP (<expression>) Exponent to power e

<logical expression> AND <logical expression> Logical product

<logical expression> OR <logical expression> Logical sum

NOT <logical expression> Negation

HERE Present position

DEST Destination position

POINT (<expression>, <expression>, <expression>,
<expression>, <expression>, <configuration>)

Creates positional type data

TRANS (<expression>, <expression>, <expression>,
<expression>)

Creates coordinate type data

Movement condition commands

MOTION Amount of movement which
has been executed

MOTIONT Time expended for a motion

REMAIN Amount of movement
remaining to be executed

REMAINT Time remaining for a motion

TIMER Timer

MODE System operating mode

TOOL Tool coordinate system

BASE Base coordinate system

WORK Work coordinate system

2020-08-06

– 6-5 –

SM-A20050-A

KSL3000 Language Manual

Appendix B List of Reserved Words

ABS ACCEL ACCUR ACOS

ACTUAL AND AS ASIN

ATAN ATAN2 BASE BCDIN

BCDOUT BREAK CLOSE1 CLOSE2

CLOSEI1 CLOSEI2 CNVCOUNT1 CNVCOUNT2

CNVSTAT CNVTRIP1 CNVTRIP2 CNVVELOC1

CNVVELOC2 COARSE COM0 COM1

CONFIG CONT CONV COS

CR CYCLE DATA DECEL

DELAY DEST DIM DIN

DISABLE DO DOUT ELSE

ENABLE END EXP ERROR

FINE FOR FREE FREELOAD

GAIN GLOBAL GOTO GOTO()

HERE HEXIN HEXOUT HOST

IF IGNORE INITPLT INPSTSTP

INPSTSIP1 INPSTSIP2 INPSTSCM1 INPSTSCM2

INPTMOTP INPTMOIP1 INPTMOIP2 INPTMOCM1

INPTMOCM2 INPUT INT IP1

IP2 IPCLOSE IPOPEN IP0STATUS

IP1STATUS IP2STATUS IP3STATUS KILL

LATCH LATCHPSN1~8 LATCHSIG1~8 LATCHTRG1~8

LEFTY LN LOADLIB LOG10

MAXTASK MOD MODE MONEND

MONSTART MONTRIP1 MONTRIP2 MOTION

MOTIONT MOVE MOVEA MOVEC

MOVEI MOVEJ MOVEPLT MOVES

MOVESI MOVESYNC MSPEED NAME

NEXT NOT NOWAIT OFF

OFFGAIN ON ONGAIN OPEN1

OPEN2 OPENI1 OPENI2 OR

OVERRIDE PAI PASS PAUSE

PAYLOAD PLCDATAR1~8 PLCDATAW1~8 PLCINPUT

PLCPRINT POINT PRINT PROGRAM

PRT PSNCMD PSNCMDJ PSNCMDW

PSNFBK PSNFBKJ PSNFBKW PULOUT

QUANTUM RCYCLE READY REAL

REMAIN REMAINT REMAKE REMARK

RESET RESTORE RESUME RETURN

2020-08-06

– 6-6 –

SM-A20050-A

KSL3000 Language Manual

RIGHTY SAVEEND SAVEF1~4 SAVEI1~4

SEGMENT SETGAIN SGN SIN

SLOWDOWN SLWSPD SMOOTH SPEED

SQRT STEP STOP SWITCH

SYNC TAN TASK THEN

TID TIMER TO TOOL

TORQUE TP TRANS UNSYNC

VCFUNC VCMARK VCNEXT VCPOS

VCPSWLD1~4 VCSEEK VCSEL1~3 VCVTYPE1~4

VCWSTAT1~3 WAIT WITH WORK

XIN

2020-08-06

– 6-7 –

SM-A20050-A

KSL3000 Language Manual

Appendix C Contents of Library File (SCOL.LIB)

The contents of the library file included as standard on the system are shown below.

Details may vary slightly by the customer.

After the library file has been changed, be sure to execute the SELECT command again.

Otherwise, the change thus made will not be reflected on the currently selected

program.

‘(C) COPYRIGHT 2020 by SHIBAURA MACHINE CO.,LTD.

‘ALL RIGHTS RESERVED.

‘TS3000 SCOL SUBPROGRAM LIBRARY

PROGRAM READY

MOVEA 3, 0

MOVEA 4, 0

MOVEA 2, 0

MOVEA 1, 0

MOVEA 5, 0

END

PROGRAM OPEN1 ’ OPEN HAND-1

WAIT MOTION > = 100

DOUT (203, –204)

END

PROGRAM CLOSE1 ’ CLOSE HAND-1

WAIT MOTION > = 100

DOUT (–203, 204)

END

PROGRAM OPENI1 ’ OPEN HAND-1 IMMEDIATE

DOUT (203, –204)

END

PROGRAM CLOSEI1 ’ CLOSE HAND-1 IMMEDIATE

DOUT (–203, 204)

END

2020-08-06

– 6-8 –

SM-A20050-A

KSL3000 Language Manual

PROGRAM OPEN2 ’ OPEN HAND-2

WAIT MOTION > = 100

DOUT (201, –202)

END

PROGRAM CLOSE2 ’ CLOSE HAND-2

WAIT MOTION > = 100

DOUT (–201, 202)

END

PROGRAM OPENI2 ’ OPEN HAND-2 IMMEDIATE

DOUT (201, –202)

END

PROGRAM CLOSEI2 ’ CLOSE HAND-2 IMMEDIATE

DOUT (–201, 202)

END

PROGRAM FREELOAD ’ FREE PAYLOAD

PAYLOAD = (0, 0)

END

PROGRAM SETGAIN (J_0, J_1, J_2, J_3, J_4) ’ SET GAIN VARIABLE

WAIT MOTION>=100

GAIN = (J_0, J_1, J_2, J_3, J_4)

MOVE HERE WITH PASS=100

MOVE HERE

END

PROGRAM ONGAIN (J_1, J_2, J_3, J_4, J_5)

J_6 = 0

J_7 = 0

J_8 = 0

J_9 = 0

J_0 = 0

IF J_1 == 0 THEN J_6 = GAIN.1 ELSE J_6 = 1

2020-08-06

– 6-9 –

SM-A20050-A

KSL3000 Language Manual

IF J_2 == 0 THEN J_7 = GAIN.2 ELSE J_7 = 1

IF J_3 == 0 THEN J_8 = GAIN.3 ELSE J_8 = 1

IF J_4 == 0 THEN J_9 = GAIN.4 ELSE J_9 = 1

IF J_5 == 0 THEN J_0 = GAIN.5 ELSE J_0 = 1

WAIT MOTION >= 100

GAIN = (J_6, J_7, J_8, J_9, J_0)

MOVE HERE WITH PASS = 100

MOVE HERE

RETURN

END

PROGRAM OFFGAIN (J_1,J_2,J_3,J_4,J_5)

J_6 = 0

J_7 = 0

J_8 = 0

J_9 = 0

J_0 = 0

IF J_1 == 0 THEN J_6 = GAIN.1 ELSE J_6 = 0

IF J_2 == 0 THEN J_7 = GAIN.2 ELSE J_7 = 0

IF J_3 == 0 THEN J_8 = GAIN.3 ELSE J_8 = 0

IF J_4 == 0 THEN J_9 = GAIN.4 ELSE J_9 = 0

IF J_5 == 0 THEN J_0 = GAIN.5 ELSE J_0 = 0

WAIT MOTION > = 100

GAIN = {J_6, J_7, J_8, J_9, J_0}

MOVE HERE WITH PASS = 100

MOVE HERE

RETURN

END



2020-08-06

– 6-10 –

SM-A20050-A

KSL3000 Language Manual

Appendix D Domains and Ranges of Calculator Functions

Function Domain of arguments X, Y Range of result Z

SIN (X) (*) –1  Z  1

COS (X) (*) –1  Z  1

TAN (X) (*) (*)

ASIN (X) –1  X  1 –90°  Z  90°

ACOS (X) –1  X  1 0  Z  180°

ATAN (X) (*) –90° < Z < 90°

ATAN2 (X, Y) Y  0 –180° < Z < 180°

SQRT (X) X  0 Z  0

ABS (X) (*) Z  0

SGN (X) (*) Z = –1, 0, 1

INT (X) (*) (*)

REAL (X) (*) (*)

LN (X) X > 0 (*)

X MOD Y Y  0 (*)

LOG10 (X) X > 0 (*)

EXP (X) (*) Z > 0

Comments
(*) refers to any number within the range that can be

handled by the controller.

2020-08-06

– 6-11 –

SM-A20050-A

KSL3000 Language Manual

Appendix E How to Read Symbols

The meanings of keys and symbols used in the robot are as follows (alphanumeric

characters are omitted).

[F1] ~ [F5] : Function keys F1 to F5

[Esc] : Escape key

[INS] : Insert key

[DEL] : Delete key

[BS] : Backspace key

[{] : Left middle size brace

[}] : Right middle size brace

[[] : Left large size brace

[]] : Right large size brace

[Error] : Error indication key

[Utility] : Utility key

[!] : Exclamation mark

[;] : Semicolon

[:] : Colon

[’] : Apostrophe

[%] : Percent

[^] : Accent circumflex

[&] : Ampersand

[”] : Quotation marks (double quotation marks)

[(] : Left parentheses

[)] : Right parentheses

[Alt] : Alt key (alternative key)

[+] : Plus

[–] : Minus

[/] : Slash

[*] : Asterisk

[] : Space

[<] : Less than

[>] : Greater than

2020-08-06

– 6-12 –

SM-A20050-A

KSL3000 Language Manual

[,] : Comma

[.] : Period

[?] : Question mark

[=] : Equal

[EXE] : Execution key

[] : (Up) cursor key

[] : (Down) cursor key

[] : (Left) cursor key

[] : (Right) cursor key

2020-08-06

– 6-13 –

SM-A20050-A

KSL3000 Language Manual

Appendix F List of Compile Errors

 Compile error messages displayed on the teach pendant are tabled below.

Error No. Descriptions

200 The system is not ready for execution.

201 The working memory cannot be maintained.

202 The command is illegal.

205 Constant of the numerical value is illegal.

206 Constant of the character string is illegal.

207 A character that cannot be used has been found.

208 An error has been found in the expression of substitution.

209 An error has been found in the expression of program format.

210 An error has been found in the program format.

211 The GLOBAL variable is used for the GOTO label.

212 A vector variable cannot be initialized in the GLOBAL area.

213 The PROGRAM statement is not at the head of the line.

214 The position of the RETURN command is illegal.

215 The PROGRAM statement disagrees with the END statement.

216 The PROGRAM command has been declared in the DATA area.

217 The PROGRAM command has been declared in the GLOBAL area.

218 The GLOBAL statement is not at the head of the line.

219 The GLOBAL statement disagrees with the END statement.

220 The GLOBAL command has been declared in the PROGRAM area.

221 The GLOBAL command has been declared in the DATA area.

222 The number of condition monitor (ON~DO~) areas exceeds 50.

223 The [GOTO] label is defined repeatedly.

224 The DATA command has been declared in the PROGRAM area.

225 The DATA command has been declared in the GLOBAL area.

226 This command cannot be declared in other than the GLOBAL area.

227 The number of dimensions of array is illegal.

228 The IF statement, THEN statement and ELSE statement disagree with
each other.

229 The FOR statement disagrees with the NEXT statement.

230 The number of nesting of FOR~NEXT statements exceeds 127.

231 Multi-definition of the reserved word has been commanded.

2020-08-06

– 6-14 –

SM-A20050-A

KSL3000 Language Manual

Error No. Descriptions

232 The monitoring condition is illegal.

233 The expression is illegal.

234 The operator is illegal.

235 The RCYCLE label can be used only in the MAIN function.

236 No vector variable can be used.

237 This command cannot be used for the vector variable.

238 Too many elements have been specified.

239 I/O instruction cannot be used for argument of function.

240 The parentheses have not been specified legally.

242 The RCYCLE label cannot be used only for the MAIN function.

243 No command of jump to the FOR loop area is allowed.

244 The label is not at the head of the line.

245 The specified label is absent.

246 No PROGRAM data is available.

247 No inequality can be used for the THEN statement or ELSE statement.

248 An error has been found in the reserved word.

249 The real argument and temporary argument of the function are not
identical.

250 More than ten arguments of function cannot be specified.

252 The GLOBAL variable cannot be used as the function name.

253 The reserved word cannot be used as the function name.

254 The functional declaration is illegal.

255 The name of function is already declared.

256 The specified function is absent.

257 The name of GLOBAL variable is not defined yet.

258 The GOTO label is used as the variable name.

259 This command has not been declared in the PROGRAM area.

260 The specified reserved word cannot be used for the GLOBAL or DATA
area.

261 Neither GLOBAL nor DATA variable can be substituted or redeclared.

262 The specified variable or constant cannot be used.

263 Neither logical operator nor inequality can be used.

2020-08-06

– 6-15 –

SM-A20050-A

KSL3000 Language Manual

Error No. Descriptions

264 The type variable used is not common.

265 Under declaration. No END statement is present.

266 This command cannot be used in other than the head of the GLOBAL
block.

267 The number of backup variables is too many.

268 The total number of array variables that can be declared is 11,000 max.

269 The number of POINT teach points that can be specified is 1,500 max.

270 The number of teach points other than POINT, that can be specified is
500 max.

271 The number of signals is too many.

272 Double definition of PASS and SMOOTH is not allowed.

 * For details of Error No. 201. see the descriptions on the subsequent pages.

2020-08-06

– 6-16 –

SM-A20050-A

KSL3000 Language Manual

 Detailed information on Compile Error No. 201 is given below.

No. Error contents Max. value Detailed descriptions

1 Token code conversion buffer 75500

2 GLOBAL variable 500 The maximum number of
GLOBAL variables defined is
500.

3 AUTO variable 600 The maximum number of AUTO
variables defined is 600.

4 Function 128 The maximum number of
functions is 128.

5 GOTO label 1000 The maximum number of GOTO
labels is 1,000.

6 Teaching of WORK coordinates 50 The maximum number of
WORK coordinates is 50.

7 Variable name saving buffer 10000

8 No. of program lines 6000 The total number of GLOBAL,
PROGRAM and DATA blocks is
6,000 max. (including blank
lines).

9 Undefined variable information
table

100 Unused.

10 Array variable 100 The maximum number of array
variables defined is 100.

11 Declaring integer type GLOBAL
variable

100 The maximum number of
integer type GLOBAL variables
defined is 100.

12 Declaring real number type
GLOBAL variable

100 The maximum number of real
number type GLOBAL variables
defined is 100.

13 Declaring load type GLOBAL
variable

100 The maximum number of load
type GLOBAL variables defined
is 100.

14 Declaring coordinate type
GLOBAL variable

100 The maximum number of
coordinate type GLOBAL
variables defined is 100.

15 Declaring position type
GLOBAL variable

1500 The maximum number of
position type GLOBAL variables
defined is 1,500.

2020-08-06

– 6-17 –

SM-A20050-A

KSL3000 Language Manual

No. Error contents Max. value Detailed descriptions

16 Declaring integer type AUTO
variable

500 The maximum number of
integer type AUTO variables
defined is 500.

17 Declaring real number type
AUTO variable

500 The maximum number of real
number type AUTO variables
defined is 500.

18 Declaring load type AUTO
variable

100 The maximum number of load
type AUTO variables defined is
100.

19 Declaring coordinate type AUTO
variable

100 The maximum number of
coordinate type AUTO variables
defined is 100.

20 Declaring position type AUTO
variable

1000 The maximum number of
position type AUTO variables
defined is 1,000.

21 Declaring undefined AUTO
variable

100

22 Information on destination to
which function is sent

300 The maximum number of
function calls is 300. (One (1)
function is called six (6) times
on the average.)

23 Information on source from
which function is called.

500 To be limited by No.22 above.

24 Information on argument of
function

100 The maximum number of
function arguments is 100.
(One (1) function can have two
(2) arguments on the average.)

25 Information on source from
which GOTO command is called

1000 The maximum number of GOTO
commands is 1,000.

26 Integer type AUTO constant 2000 The maximum number of
integer type constants used in
the PROGRAM block is 2,000.

27 Real number type AUTO
constant

2000 The maximum number of real
number type constants used in
the PROGRAM block is 2,000.

28 Load type AUTO constant 200 The maximum number of load
type constants used in the
PROGRAM block is 100 (= 200

 2).

2020-08-06

– 6-18 –

SM-A20050-A

KSL3000 Language Manual

No. Error contents Max. value Detailed descriptions

29 Coordinate type AUTO constant 100 The maximum number of
coordinate type constants used
in the PROGRAM block is 25

(= 100  4).

30 Position type AUTO constant 2000 The maximum number of
position type constants used in
the PROGRAM block is 333

(= 2000  6).

31 Information on AUTO character
string

1000 The maximum number of string
information pieces used in the
PROGRAM is 1000.

32 Integer type GLOBAL constant 100 The maximum number of
integer type constants used in
the GLOBAL and DATA blocks
is 100.

33 Real number type GLOBAL
constant

100 The maximum number of real
number type constants used in
the GLOBAL and DATA blocks
is 100.

34 Load type GLOBAL constant 100 The maximum number of load
type constants used in the
GLOBAL and DATA blocks is 50

(= 100  2).

35 Coordinate type GLOBAL
constant

100 The maximum number of
coordinate type constants used
in the GLOBAL and DATA

blocks is 25 (= 100  4).

36 Position type GLOBAL constant 10000 The maximum number of
position type constants used in
the GLOBAL and DATA blocks

is 1666 (= 10000  6).

37 No. of integer type GLOBAL
variables used

1000 The total number of integer type
GLOBAL variables used is
1,000 max.

38 No. of real number type
GLOBAL variables used

200 The total number of real number
type GLOBAL variables used is
200 max.

39 No. of load type GLOBAL
variables used

100 The total number of load type
GLOBAL variables used is 100
max.

2020-08-06

– 6-19 –

SM-A20050-A

KSL3000 Language Manual

No. Error contents Max. value Detailed descriptions

40 No. of coordinate type GLOBAL
variables used

100 The total number of coordinate
type GLOBAL variables used is
100 max.

41 No. of position type GLOBAL
variables used

3000 The total number of position
type GLOBAL variables used is
3,000 max.

42 No. of integer type AUTO
variables used

3001 The total number of integer type
AUTO variables used is 3,001
max.

43 No. of real number type AUTO
variables used

2001 The total number of real number
type AUTO variables used is
2,001 max.

44 No. of load type AUTO variables
used

100 The total number of load type
AUTO variables used is 100
max.

45 No. of coordinate type AUTO
variables used

100 The total number of coordinate
type AUTO variables used is
100 max.

46 No. of position type AUTO
variables used

2000 The total number of position
type AUTO variables used is
2,000 max.

47 No. of AUTO undefined
variables used

100 Unused.

48 No. of GOTO source indexes 2000 To be limited by No.25.

49 No. of function source indexes 1000 To be limited by No.22.

50 No. of function argument
indexes

200 To be limited by No.24.

51 No. of array variables used 200 The maximum number of array
variables defined is 200.

52 No. of RESTORE commands 100 The maximum number of
RESTORE commands used is
100.

53 No. of array variable numerals
saved

17000 The total number of elements of
initialized array variables is
17,000 max. (In the position

type array of 2  3 dimensions,

it is 36 (= 2  3  6).

2020-08-06

– 6-20 –

SM-A20050-A

KSL3000 Language Manual

No. Error contents Max. value Detailed descriptions

100 No. of indexes 5000 The total number of variable,
constant, function, label, etc.
used is 5,000.

101 No. of numerical data 25000 The total number of variable,
constant, function, label, etc.
defined is 25,000.

102 No. of codes created 399800

200 Interpreter execution
information area

 * If the library file (SOCL.LIB) exists, the number of data used there is also added.

 For the restrictions, see the restrictions on SCOL program as stated below.

2020-08-06

– 6-21 –

SM-A20050-A

KSL3000 Language Manual

 The restrictions imposed on the SCOL program are tabled below.

Item Max. No.
per file

Remarks

No. of program lines 5,500

Function 49

Argument of function 10

No. of GOTO labels 999 However, the number of declared
labels and GOTO labels that can
be specified in one (1) function is
599 max.
(The same GOTO label is counted
as one (1) even if a plural number
of identical GOTO labels exist.)

Integer type GLOBAL variable 99

Real number type GLOBAL
variable

 99

Load type GLOBAL variable 48

Coordinate type GLOBAL
variable

 23

Position type GLOBAL variable 499

Integer type AUTO variable 499

Real number type AUTO variable 499

Load type AUTO variable 99

Coordinate type AUTO variable 99 However, up to 24 constants can
be set in the same file (i.e.,
program).

Position type AUTO variable 999 However, the number of variables
that can be set in one (1) function
is 599 max.
Up to 333 constants can be set in
the same file (i.e., program).

Information on AUTO variable
and label

 599

(per function)

This is the total number of AUTO
variables and GOTO labels
included in one (1) function, and is
not the limit value specified in one
(1) file.

Array variable 99

Total number of array variable
elements

 11,000

2020-08-06

– 6-22 –

SM-A20050-A

KSL3000 Language Manual

Item Max. No.
per file

Remarks

No. of teach points of array
variable position type data
(POINT)

 1,200

No. of teach points of data other
than array variable position type
data (POINT)

 500

No. of nesting of FOR~NEXT 127

No. of condition monitors
(ON~DO~) specified
simultaneously

 10

No. of condition monitors
(ON~DO~) declared

 50

 * The SCOL.LIB file is also counted as one (1) file.

2020-08-06

– 6-23 –

SM-A20050-A

KSL3000 Language Manual

Appendix G Dynamic Link Library

Appendix G–1 Palletizing Library

Library

Name

PALLET. LIB

Purpose Library of palletizing commands.

Up to three (3)-dimensional palletizing of (i  j  k) is possible by

teaching pallet home point, point i, point j, and point k.

Command

INITPLT (<Pallet number>, <i>, <j>, <k>)

The pallet specified by the pallet number is initialized as the three

(3)-dimensional pallet of "i  j  k".

 i : Number of elements between pallet home point and

point I

 j : Number of elements between pallet home point and

point J

 k : Number of elements between pallet home point and

point K

MOVEPLT (<Pallet number>, <Element number>, X, Y, Z, C)

The robot moves to the position which is specified by the pallet

number and element number and includes X, Y, Z and C offsets.

The X, Y, Z and C offset values cannot be omitted. (Unless offset

is effected, specify zero (0).)

2020-08-06

– 6-24 –

SM-A20050-A

KSL3000 Language Manual

 [Descriptions of terms]

Ex. Pallet No. 1, 3-dimensional pallet of "5  4  2":

 Pallet number : The pallet number is assigned in turn,

starting with number "1" for pallets used in

appropriate program.

Teach point : The four (4) points above (i.e., home point,

point I, point J and point K) are the teach

points of this pallet.

The teach point name is predetermined as

"PLTP (<Pallet number>, 1 ~ 4)."

Element number : This number is automatically assigned for

pallet elements. For the pallet of "5  4 

2" as exemplified above, numbers 1 ~ 40

are assigned for respective elements.

The palletizing command allows the robot to

move a desired position by designating the

pallet number and element number.

 16

 11

 6 7 8 9 10

 1 2 3 4

 1 5

 36 37 38 39 40

 31 32 33 34 35

 26 27 28 29 30

 22 23 24 25

 21

Point K PLTP (1, 4)

Point J PLTP (1, 3)

Pallet home point
PLTP (1, 1)

2020-08-06

– 6-25 –

SM-A20050-A

KSL3000 Language Manual

Library

Build-in

To use the "PALLET LIB", the following commands [1] and [2] are

required.

[1] In the GLOBAL area of the user program, library build-in

should be declared.

 LOADLIB PALLET.LIB

 

 Library build-in declaration

[2] In the GLOBAL area of the user program, global variable

used in the library should be declared. The variable name

is predetermined as "PLTP".

 DIM PLTP (<Pallet number>, 7) AS POINT

 The pallet number should be any value larger than "1" and its

maximum value changes with the number of teach points

and number of arrays specified in the program.

Number "7" is a constant and is used to keep the variable

area used in the library.

This global variable is used to transfer the number of teach

points and calculated values to and from the PALLET LIB.

 GLOBAL

 LOADLIB PALLET.LIB [1] Library build-in declaration.

 DIM PLTP (2,7) AS POINT [2] Global variable declaration.

END

PROGRAM MAIN

 :

 (Omitted)

 :

END

2020-08-06

– 6-26 –

SM-A20050-A

KSL3000 Language Manual

Analysis

and

advice

[1] Pallet

The pallet should be set horizontally in the X–Y plane.

(It should not be tilted.)

[2] Teaching and effective data

Teaching of four (4) points PLTP (n, 1) ~ PLTP (n, 4) is

performed. (n: Pallet number 1 ~ n)

 Pallet home point:

All coordinates of X, Y, Z, C and T can be used as the teach

data. The move position is calculated by adding a shift

value to this PLTP (n, 1) data.

 Point I PLTP (n, 2), point J PLTP (n, 3):

Only X and Y coordinates can be specified as the teach data.

They are used to figure out a shift value in the X and Y

directions.

 Point K PLTP (n, 4):

Only Z coordinate can be specified as the teach data. It is

used to figure out a shift value in the Z direction.

 For the one (1)-dimensional pallet, teaching of point J PLTP

(n, 3) and point K PLTP (n, 4) can be omitted.

For the two (2)-dimensional pallet, teaching of point K PLTP

(n, 4) can be omitted.

The teach point name cannot be changed.

 [3] When "PALLET.LIB" is read by the LOADLIB command,

variable names used in "PALLET.LIB" (INITPLT****,

MOVEPLT**** ; * any number) cannot be used in the user’s

program as the variable names or teach point names.

2020-08-06

– 6-27 –

SM-A20050-A

KSL3000 Language Manual

 [4] Teaching method and element number of pallet

The element number is automatically assigned by the

INITPLT command. Even if the pallet is the same, the

element number differs with the teaching sequence.

 • One (1)-dimensional pallet

 • Two (2)-dimensional pallet

Pallet home point PLTP (n, 1) Point I PLTP (n, 2)

n: Any pallet number INITPLT (n, 5, 1, 1)

Point I PLTP (n, 2) Pallet home point PLTP (n, 1)

n: Any pallet number INITPLT (n, 5, 1, 1)

 1 2 3 4 5

 5 4 3 2 1

Pallet home point PLTP (n, 1)

Point J PLTP (n, 3) Point I PLTP (n, 2)

n: Any pallet number

INITPLT (n, 4, 3, 1)

 1 2 3 4

 5 6 7 8

 9 10 11 12

Point J PLTP (n, 3)

Pallet home point PLTP (n, 1)

Point I PLTP (n, 2)

n: Any pallet number INITPLT (n, 3, 4, 1)

10 7 4 1

11 8 5 2

 12 9 6 3

2020-08-06

– 6-28 –

SM-A20050-A

KSL3000 Language Manual

 • Three (3)-dimensional pallet

Sample

program

[1] When parts are supplied from the pallet to point A1:

Point I PLTP (n, 2)

Pallet home point PLTP (n, 1)

Point J PLTP (n, 3)

n: Any pallet number INITPLT (n, 4, 3, 2)

Point K PLTP (n, 4)

 4 3 2 1

 5 6 7 5

 9 10 11 9
 16 15 14 13

 20 19 18 17

 24 23 22 21

Teach point PLTP (1, 1)

Teach point A1

Teach point PLTP (1, 2)

Teach point PLTP (1, 3)

2020-08-06

– 6-29 –

SM-A20050-A

KSL3000 Language Manual

 GROBAL

 LOADLIB PALET.LIB

 DIM PLTP(1,7) AS POINT

END

PROGRAM PALLET

 INITPLT(1,5,4,1)

 OPEN1

 FOR I=1 TO 20 STEP 1

 MOVEPLT(1,I,0,0,50,0)

 MOVEPLT(1,I,0,0,0,0)

 CLOSE1

 MOVEPLT(1,I,0,0,50,0)

 MOVE A1+POINT(0,0,50)

 MOVE A1

 OPEN1

 MOVE A1+POINT(0,0,50)

 NEXT I

END

DATA

 POINT A1 = 650.000, –0.010, 187.140, 2.457,

0.000 / LEFTY

 POINT PLTP(1,1) = 203.346, 390.635, 94.252, 30.261,

0.000 / LEFTY

 POINT PLTP(1,2) = 357.548, 503.825, 94.252, 30.261,

0.000 / LEFTY

 POINT PLTP(1,3) = 337.299, 207.424, 94.252, 30.261,

0.000 / LEFTY

 POINT PLTP(1,4) = 337.299, 207.424, 94.252, 30.261,

0.000 / LEFTY

END

2020-08-06

– 6-30 –

SM-A20050-A

KSL3000 Language Manual

The contents of PALLET.LIB standardly attached to the

system are shown below.

'***

'* TS3000 Dynamic Link Library *

'* *

'* file name : PALET.LIB *

'* function : PALLETIZE *

'* command : INITPLT(PALLET_NO,I,J,K) *

'* : MOVEOLT(PALLET_NO,POZITION_NO,X,Y,Z,C) *

'* *

'* Copyright(C) 2020 by SHIBAURA MACHINE CO.,LTD. *

'*--*

'* 08/08/28New *

'* *

'**

PROGRAM INITPLT (INITPLTNO,INITPLTI,INITPLTJ,INITPLTK)

'

 INITPLT1P = PLTP(INITPLTNO,1)

 INITPLT2P = PLTP(INITPLTNO,2)

 INITPLT3P = PLTP(INITPLTNO,3)

 INITPLT4P = PLTP(INITPLTNO,4)

 PLTP(INITPLTNO,5) = POINT(INITPLTI,INITPLTJ,INITPLTK)

INITPLT010:

 IF INITPLTI < 1 THEN GOTO INITPLTERR

 IF INITPLTI < 2 THEN GOTO INITPLT015

 INITPLT5I = INITPLTI – 1

 INITPLTXX = (INITPLT2P.X – INITPLT1P.X) / INITPLT5I

 INITPLTXY = (INITPLT2P.Y – INITPLT1P.Y) / INITPLT5I

 GOTO INITPLT020

Contents of
PALLET.LIB

2020-08-06

– 6-31 –

SM-A20050-A

KSL3000 Language Manual

INITPLT015:

 INITPLTXX = 0

 INITPLTXY = 0

INITPLT020:

 IF INITPLTJ < 1 THEN GOTO INITPLTERR

 IF INITPLTJ < 2 THEN GOTO INITPLT025

 INITPLT5J = INITPLTJ – 1

 INITPLTYX = (INITPLT3P.X – INITPLT1P.X) / INITPLT5J

 INITPLTYY = (INITPLT3P.Y – INITPLT1P.Y) / INITPLT5J

 GOTO INITPLT030

INITPLT025:

 INITPLTYX = 0

 INITPLTYY = 0

INITPLT030:

 IF INITPLTK < 1 THEN GOTO INITPLTERR

 IF INITPLTK < 2 THEN GOTO INITPLT035

 INITPLT5K = INITPLTK – 1

 INITPLTZZ = (INITPLT4P.Z – INITPLT1P.Z) / INITPLT5K

 GOTO INITPLT040

INITPLT035:

 INITPLTZZ = 0

INITPLT040:

 PLTP(INITPLTNO,6) =

POINT(INITPLTXX,INITPLTXY,INITPLTZZ)

 PLTP(INITPLTNO,7) =

POINT(INITPLTYX,INITPLTYY,INITPLTZZ)

 GOTO INITPLTEND

INITPLTERR:

 PRINT "ERR !! ELEMENT IS TOO SMALL."

 STOP

INITPLTEND:

END

PROGRAM MOVEPLT

(MOVEPLTNO,MOVEPLTPSN,MOVEPLTX,MOVEPLTY,MOVEPLTZ,MO

VEPLTC)

2020-08-06

– 6-32 –

SM-A20050-A

KSL3000 Language Manual

 MOVEPLTI = 0

 MOVEPLTJ = 0

 MOVEPLTK = 0

 MOVEPLTPS1 = MOVEPLTPSN –1

 MOVEPLT1P = PLTP(MOVEPLTNO,1)

 MOVEPLT5P = PLTP(MOVEPLTNO,5)

 MOVEPLT6P = PLTP(MOVEPLTNO,6)

 MOVEPLT7P = PLTP(MOVEPLTNO,7)

 MOVEPLTA = MOVEPLT5P.X * MOVEPLT5P.Y

 MOVEPLTB = MOVEPLTPS1 MOD MOVEPLTA

 MOVEPLTMAX = MOVEPLTA * MOVEPLT5P.Z

 IF 1 > MOVEPLTPSN THEN GOTO MOVEPLTER2

 IF MOVEPLTMAX < MOVEPLTPSN THEN GOTO MOVEPLTER3

 MOVEPLTI = MOVEPLTB MOD MOVEPLT5P.X

 MOVEPLTJ = INT(MOVEPLTB / MOVEPLT5P.X)

 MOVEPLTK = INT(MOVEPLTPS1 / MOVEPLTA)

 MOVEPLTXXX = MOVEPLTI * MOVEPLT6P.X + MOVEPLTJ *

MOVEPLT7P.X + MOVEPLTX

 MOVEPLTYYY = MOVEPLTI * MOVEPLT6P.Y + MOVEPLTJ *

MOVEPLT7P.Y + MOVEPLTY

 MOVEPLTZZZ = MOVEPLTK * MOVEPLT6P.Z + MOVEPLTZ

 MOVE MOVEPLT1P+

POINT(MOVEPLTXXX,MOVEPLTYYY,MOVEPLTZZZ,MOVEPLTC,0)

 GOTO MOVEPLTEND

MOVEPLTER2:

 PRINT "ERR !! ELEMENT NO. IS TOO SMALL."

 STOP

MOVEPLTER3:

 PRINT "ERR !! ELEMENT NO. IS TOO LARGE."

 STOP

MOVEPLTEND:

END

2020-08-06

– 6-33 –

SM-A20050-A

KSL3000 Language Manual

Appendix H SCOL Program Language Executing Stop of Pre-Reading

The commands executing stop of pre-reading are listed below.

• PRINT

• WAIT

• ON to DO

• IGNORE

• DOUT

• DIN

• XIN (Option of conveyor)

• BCDIN

• BCDOUT

• PULOUT

• MOVE

• MOVEA

• MOVEI

• MOVES

• MOVEC

• MOVEJ

• DELAY

• LATCH

• SYNC (Option of conveyor)

• UNSYNC (Option of conveyor)

• STOP

• RETURN

• END

	SCARA Robot
	Table of Contents
	Section 1
	An Outline of Robot Language
	1.1 Robot Movement
	1.2 Robot Language
	1.3 Types of Commands

	Section 2
	Writing Programs in Robot Language
	2.1 Program Configuration
	2.1.1 Files
	2.1.2 Program
	2.1.3 Positional Data

	2.2 Character Set
	2.3 Identifiers
	2.4 Variables and Constants
	2.4.1 Scalar Data
	2.4.2 Vector Data
	2.4.3 System Variables
	2.4.4 System Constants

	2.5 Expressions
	2.5.1 Computational Expressions
	2.5.2 Logical Expressions

	2.6 Labels
	2.7 Remarks and Comments
	2.8 Programs
	2.8.1 Program Declaration
	2.8.2 Subprograms
	2.8.3 Library
	2.8.4 Multitask Processing
	2.8.5 Global Variable Definition
	2.8.6 Array Type Variable

	Join

	Section 3
	Explanation of Robot Commands
	3.1 Command Explanations
	3.2 Explanation of Commands

	Section 4
	Program Examples

	Section 5
	Programming Hints and Warnings
	5.1 Program Execution Timing
	5.1.1 Arm Movement and Signal I/O Timing
	5.1.2 Synchronization of Arm Movement and Program Execution
	5.1.3 DELAY Command and WAIT Command

	5.2 Things Not to Do When Programming
	5.2.1 Variables
	5.3 Things to Watch Out for When Writing a Program
	5.3.1 Types of Commands
	5.3.2 Robot Coordinate Systems
	5.3.3 Short-Cut Movement
	5.3.4 Robot Configuration
	5.3.5 Data Blocks
	5.3.6 Global Data Block
	5.3.7 Robot Movement Speed

	Appendix
	Appendix A List of Commands
	Appendix B List of Reserved Words
	Appendix C Contents of Library File (SCOL.LIB)
	Appendix D Domains and Ranges of Calculator Functions
	Appendix E How to Read Symbols
	Appendix F List of Compile Errors
	Appendix G Dynamic Link Library
	Appendix H SCOL Program Language Executing Stop of Pre-Reading

