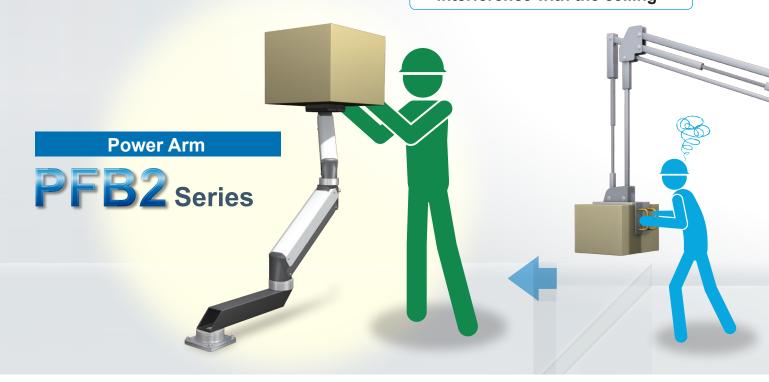


Power Arm PFB2 Series

HumanAssist Smooth & Strong Support



CKD Corporation CC-1262A 4

Solving the problems of human assist devices.

For arm-type human assist devices

- Compact storage is difficult, requiring a large area.
- Use of the arm is hampered by interference with the ceiling.

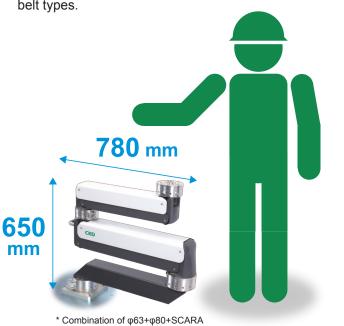
Human Assist Device

Compact

Compact

Multi-axis specification, foldable for storage, makes it more compact and easier to store than arm or belt types.

Variation

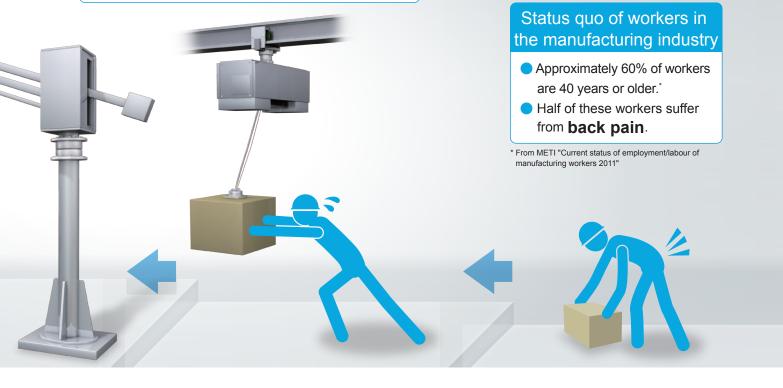

Arm variations tailored to the specific workpiece

50 ko

100

The arm can be selected from 4 types according to the workpiece.

φ80



* When air is supplied at 0.5 MPa. * Attachment weight is not included.

75kg

For belt-type human assist devices

 The center of gravity is far from the area of operation (conveyed object), making operation difficult. (Starts and stops are a strain)

Evolved in Solidarity with Workers

Light & Strong

Lightweight yet highly rigid

Uses a pneumatic cylinder in part of the body. Achieves a compact and lightweight form with improved bending and twisting rigidity.

Easy

Easy to operate Light operating force

The center of gravity is close to the operator, making operation easy. Lightweight and with low inertia, the moving parts are highly operable.

Operating handle

An operating handle is equipped at the joint. As well as increasing ease of arm operation, this allows simple and safe arm operation without contact with moving parts.

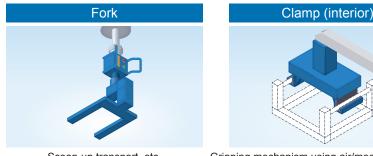
Wide

Wide range of motion to suit the application

Freely combine single-axis and multi-axis specifications to suit your applications and worksites.

Achieving a wider range of movement

SCARA axes can be used for multi-axis specification types to enable an even wider range of motion.


Attachments

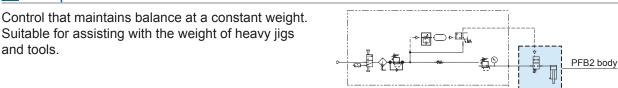
In addition to the assist devices as single units, we address requests including the jigs and control box that constitute the system. Contact CKD for details.

Attachment design and production * * As this is a custom order product, contact CKD for details.

Contact CKD regarding attachments for safe and reliable retention of various transported objects as well.

Scoop-up transport, etc.

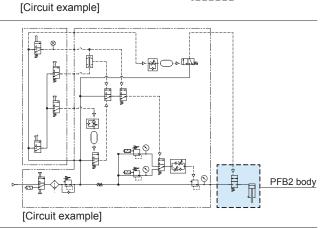
Gripping mechanism using air/mechanical system


Air controlled box design and production

We propose the optimal air circuits for various assistance mechanisms. Easy transport is possible with the optimal control method for your transported objects. We also offer air circuits within the control box.

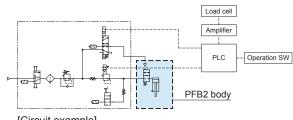
An example of the control box interior. Let us go over your needs with you.

Air 2 pressure control


Air 1 pressure control

and tools.

Given balance preset with and without transported objects, the control can be changed between them using switch operation.


Suitable for assisting with the weight of heavy jigs

This is well suited to batch production, such as continuous transport of identical products.

Automatic air pressure adjustment control

This control supports random weights by detecting the weight of transported objects at the tip. It is suitable for handling multi-model transported objects.

[Circuit example]

Demonstration

We perform demonstrations allowing you to experience the Power Arm using actual devices. We also offer demonstrations onsite. Don't hesitate to contact CKD for details.

Headquarters Showroom (Komaki Plant in Japan)

*Japan only

Onsite demonstrations

Compatible with FP Series for secure food manufacturing processes

Can be used safely in food manufacturing processes.

* Contact CKD for details.

This logo represents CKD's stance to provide you with safe components for supporting your food manufacturing processes.

Specifications

Descriptions			PF	B2	
Bore size	mm	φ63	φ80	φ100	φ125
Working fluid			Compre	essed air	
Max. working pressure	MPa		0	.7	
Min. working pressure	MPa		0.	25	
Proof pressure	MPa		1.	05	
Ambient temperature	°C		5 to	o 60	
Cushion			Rubber	cushion	
Lubrication			Not av	vailable	
Load capacity (0.5 MPa pressu	urized) kg	17	30	50	75

Movable range

• With single-axis

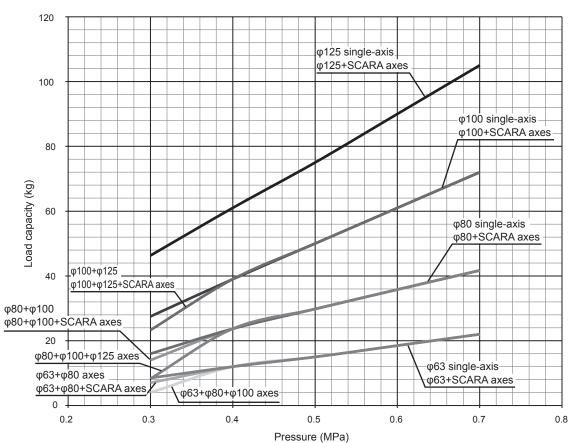
Bore size (mm)	Movable range (mm) Vertical (mm)
φ63	435
φ80	520
φ100	580
φ125	647

• With multi-axes

Arm	Movable r	ange (mm)
Afili	Vertical (mm)	Horizontal (mm)
Combination of ϕ 63+SCARA axes	435	1000
Combination of φ 80+SCARA axes	520	1200
Combination of φ 100+SCARA axes	580	1400
Combination of φ 125+SCARA axes	647	1600
Combination of ϕ 63+ ϕ 80 axes	955	1100
Combination of φ 80+ φ 100 axes	1100	1300
Combination of ϕ 100+ ϕ 125 axes	1227	1500
Combination of φ63+φ80+SCARA axes	955	1700
Combination of φ80+φ100+SCARA axes	1100	2000
Combination of ϕ 100+ ϕ 125+SCARA axes	1227	2300
Combination of φ63+φ80+φ100 axes	1535	1800
Combination of φ80+φ100+φ125 axes	1747	2100

Note: Horizontal movable range is the maximum value at the descending edge of the vertical movable range.

See the external dimensions for more information on the movable range.

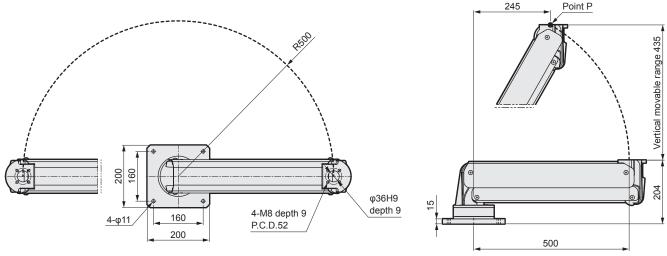

Weight

Weight (kg)
12
17
28
60
22
35
65
130
27
43
83
45
80
153
53
98

			PFB	2 Series
			Hov	w to order
How to order			A Number	of sections
PFB2 - M - 68X - R			Single-axis S	Multi-axis M
A Number of	Code	Content	o س	2
sections B Combination co	B Con	nbination contents		
	6	φ63 single-axis		
	8	φ80 single-axis		
	x	φ100 single-axis		
	Z	φ125 single-axis		
	65	φ63+SCARA axes		
	85	φ80+SCARA axes		
	XS	φ100+SCARA axes		
	ZS	φ125+SCARA axes		
	68	φ63+φ80 axes		
	8X	φ80+φ100 axes		
	XZ	φ100+φ125 axes		
	68S	φ63+φ80+SCARA axes		
	8XS	φ80+φ100+SCARA axes		
	XZS	φ100+φ125+SCARA axes		
	68X	φ63+φ80+φ100 axes		
	8XZ	φ80+φ100+φ125 axes		
	© Opt	ion	·	
C Option	n R	Tip rotation mechanism		

Load capacity under pressure

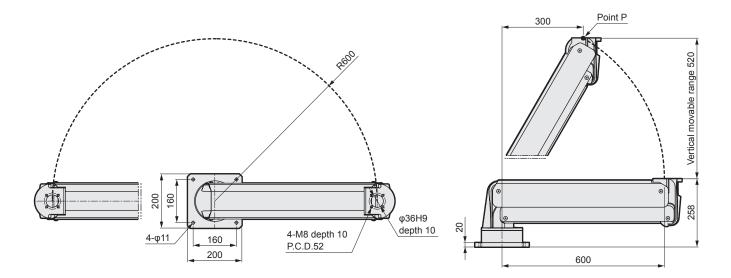
*1: Indicates the load capacity with the optional tip rotation mechanism mounted.


*2: Attachment weight is not included.

*3: While the load capacity properties are such that it alters slightly according to the arm rise angle, this graph shows the lower limit values.

Dimensions (single-axis)

PFB2-S-6 (φ63 single-axis)



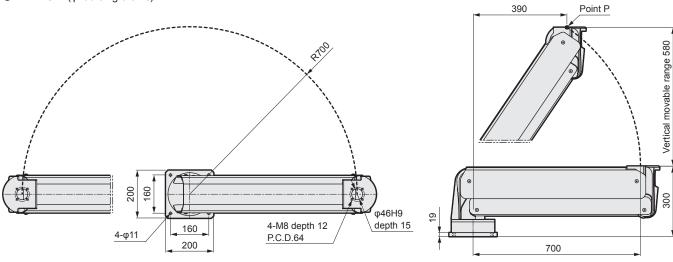
Plane view

View of motion at the descending edge is shown.

Structurally, the movable radius changes according to the rising height.

PFB2-S-8 (φ80 single-axis)

Plane view

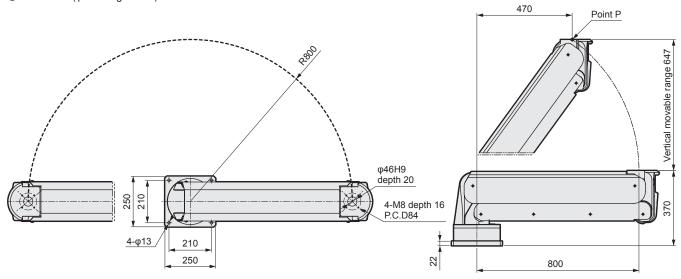

View of motion at the descending edge is shown. Structurally, the movable radius changes according to the rising height.

* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

PFB2 Series Dimensions (single-axis)

Dimensions (single-axis)

PFB2-S-X (φ100 single-axis)

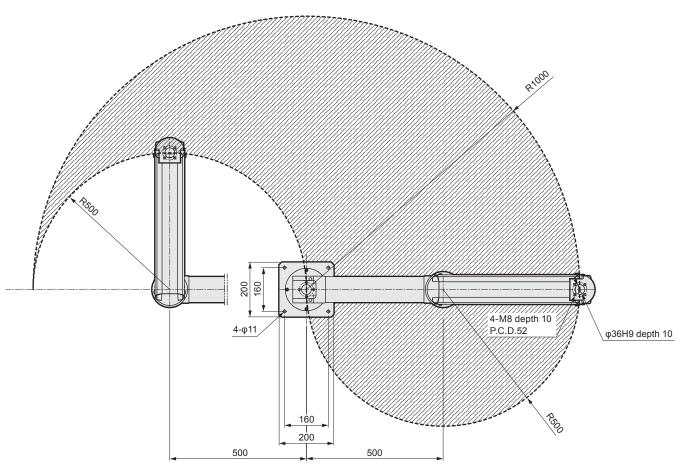


Plane view

View of motion at the descending edge is shown.

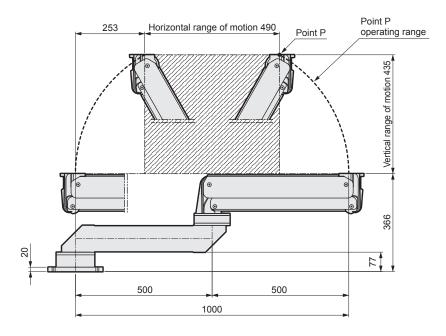
Structurally, the movable radius changes according to the rising height.

PFB2-S-Z (φ125 single-axis)



* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

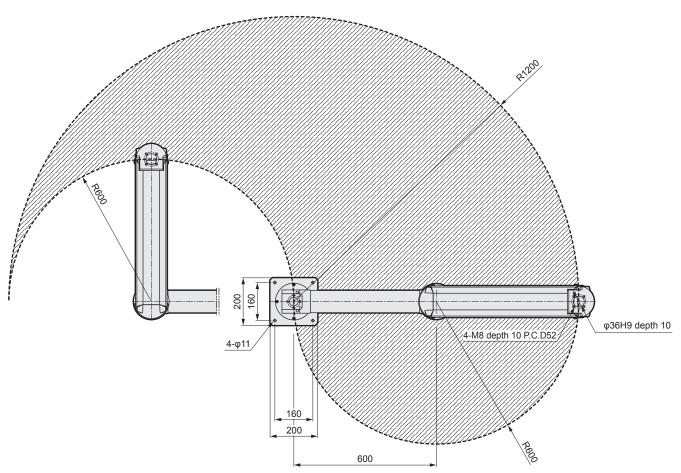
Dimensions (multi-axis)


PFB2-M-6S (φ63+SCARA axes)

Point P movable range (plane view)

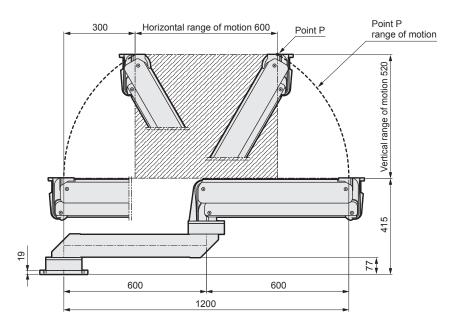
Note: Range of motion at the descending edge of point P is shown.

Structurally, the range of motion changes according to the rising height of point P.



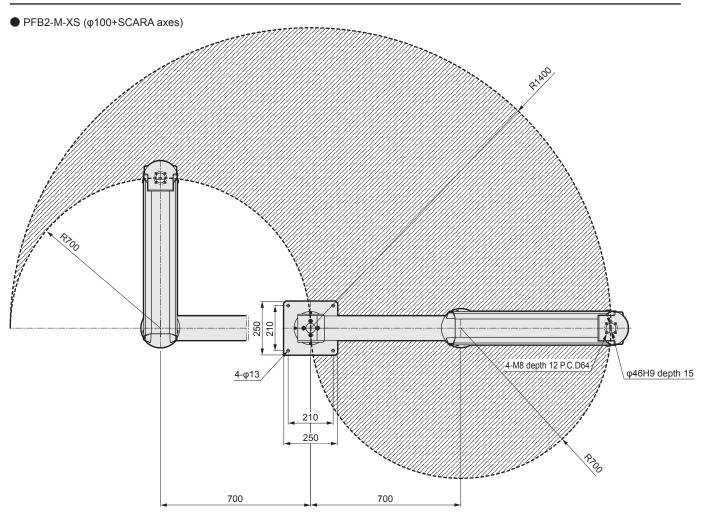
* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

Dimensions (multi-axis)

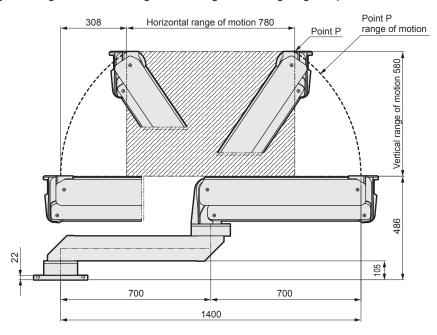

PFB2-M-8S (φ80+SCARA axes)

Point P range of motion (plane view)

Note: Range of motion at the descending edge of point P is shown.


Structurally, the range of motion changes according to the rising height of point P.

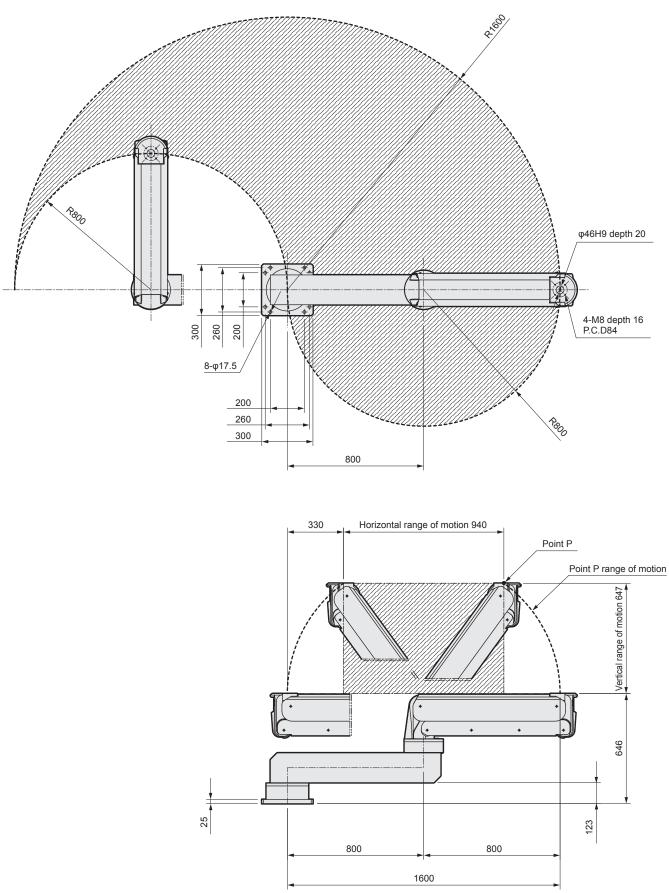
* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.



Dimensions (multi-axis)

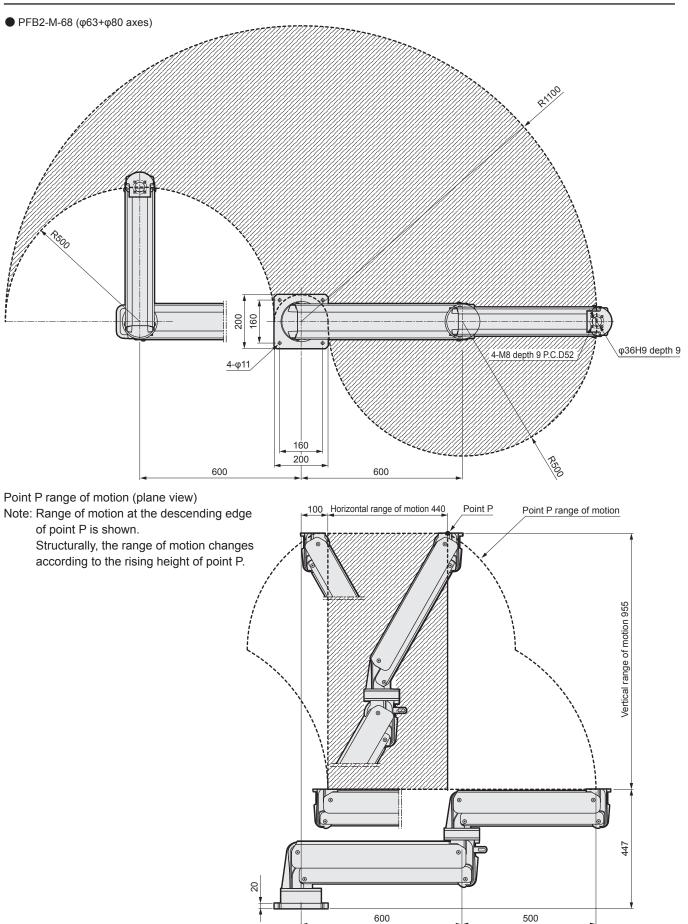
Point P range of motion (plane view)

Note: Range of motion at the descending edge of point P is shown. Structurally, the range of motion changes according to the rising height of point P.


* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

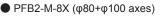
CKD

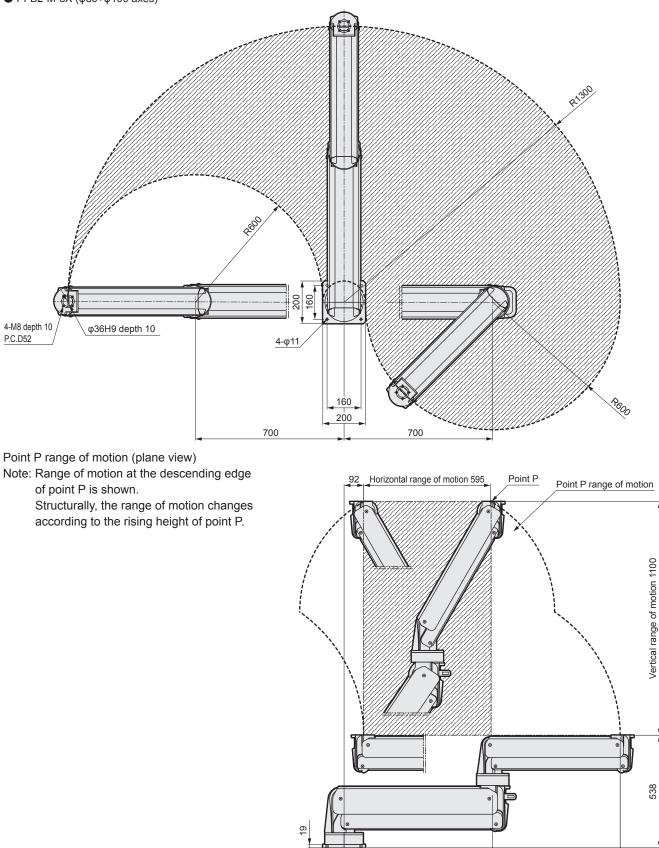
Dimensions (multi-axis)


PFB2-M-ZS (φ125+SCARA axes)

* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

Dimensions (multi-axis)


* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

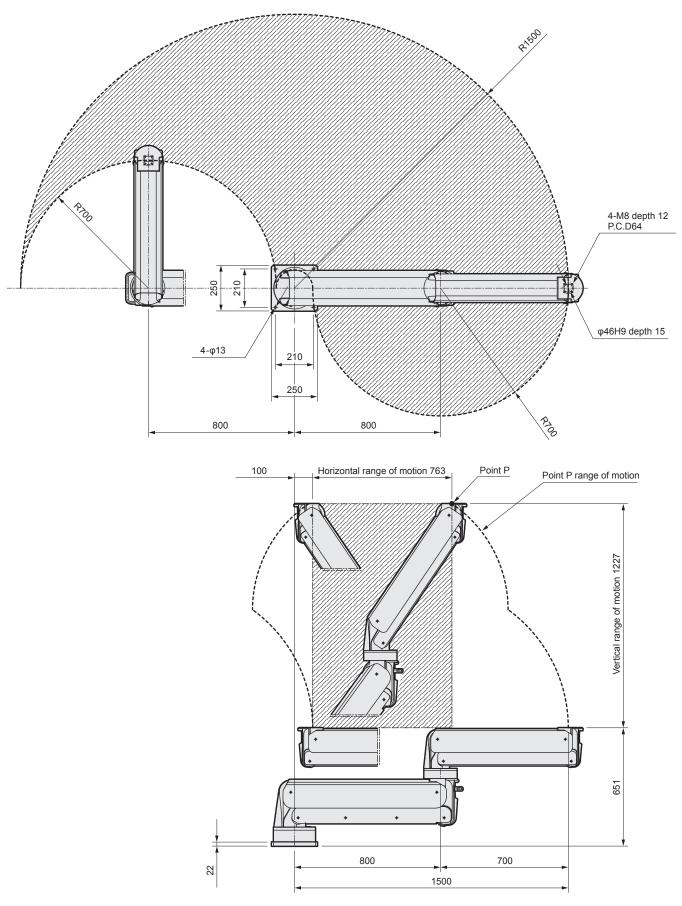

1100

CKD

Dimensions (multi-axis)

* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

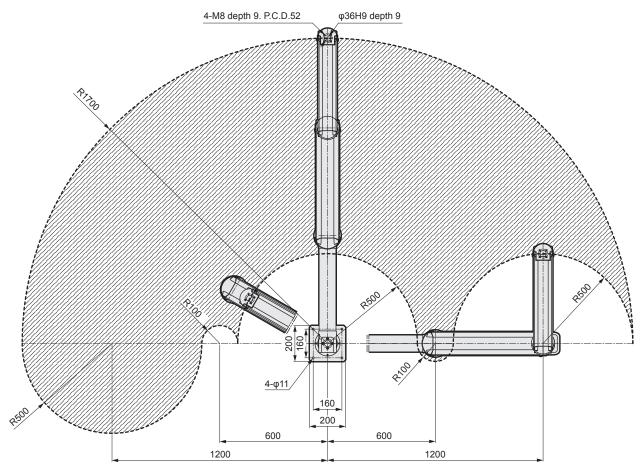
700


10

600

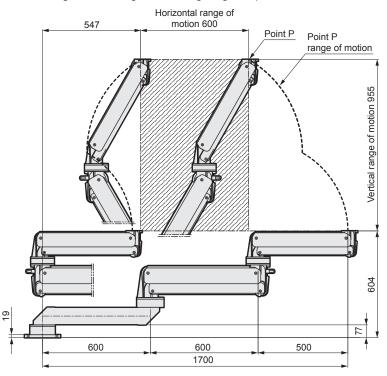
Dimensions (multi-axis)

PFB2-M-XZ (φ100+φ125 axes)


* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

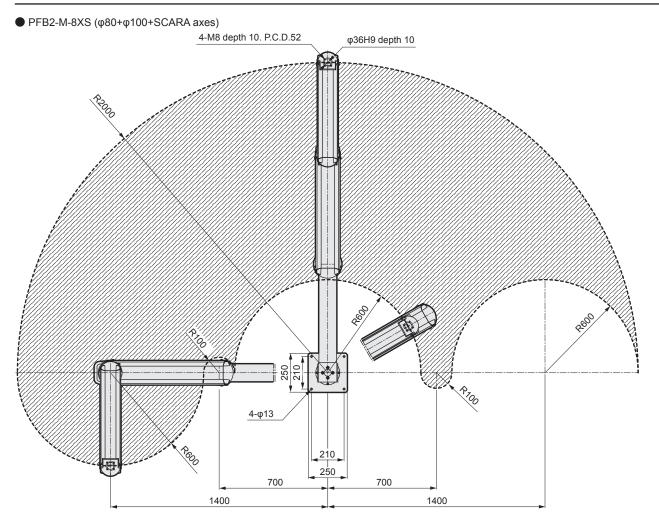
11 **CKD**

Dimensions (multi-axis)

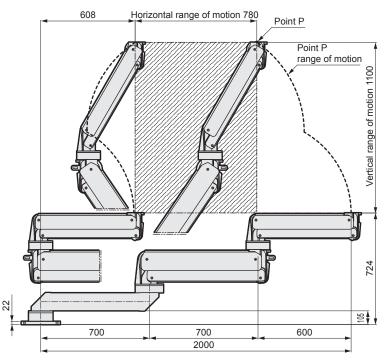

PFB2-M-68S (φ63+φ80+SCARA axes)

Point P range of motion (plane view)

Note: Range of motion at the descending edge of point P is shown.

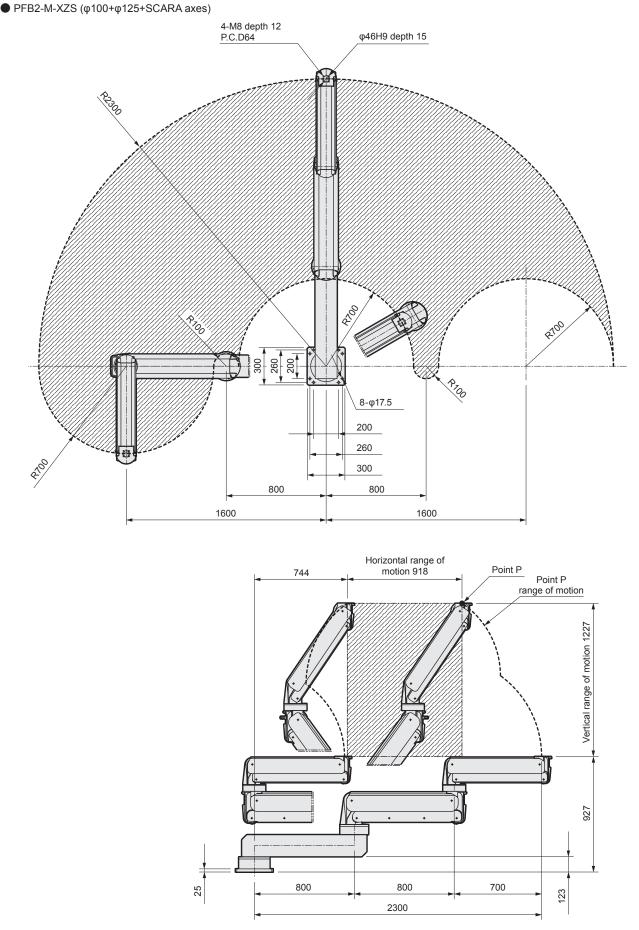

Structurally, the range of motion changes according to the rising height of point P.

* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.


Dimensions (multi-axis)

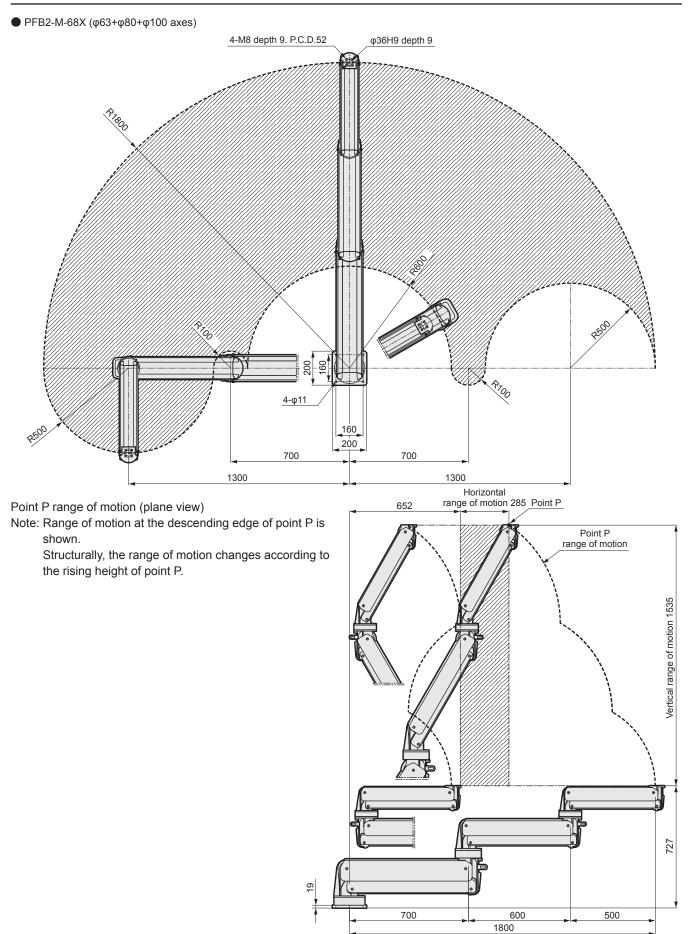
Point P range of motion (plane view)

Note: Range of motion at the descending edge of point P is shown.


Structurally, the range of motion changes according to the rising height of point P.

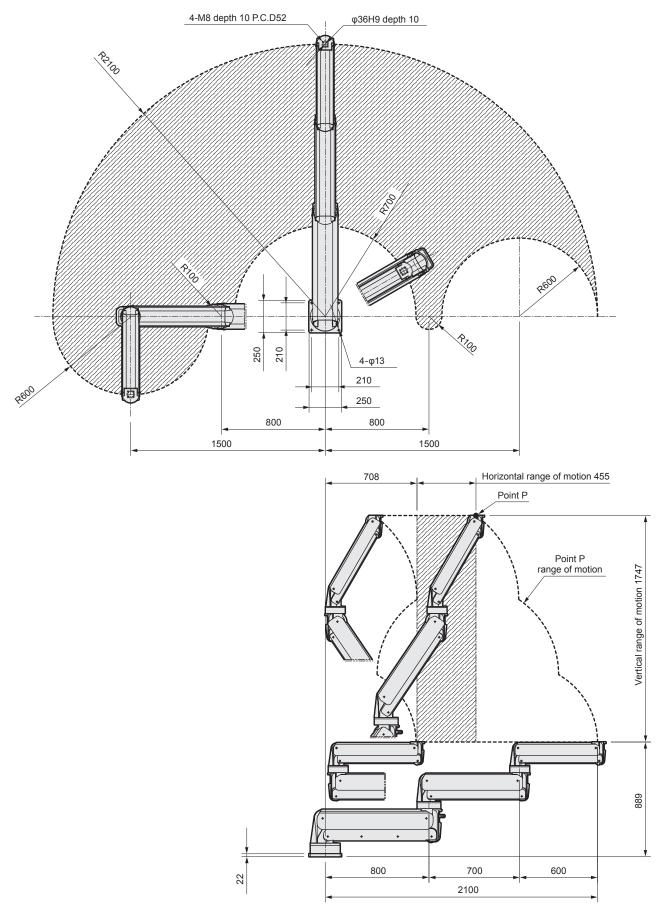
* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

PFB2 Series Dimensions (multi-axis)


Dimensions (multi-axis)

 * Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

Dimensions (multi-axis)

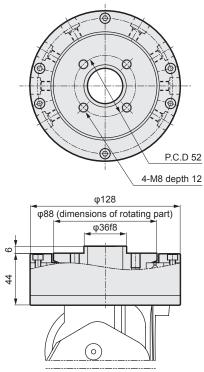

* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.

CKD

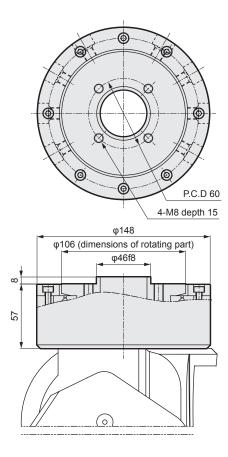
PFB2 Series Dimensions (multi-axis)

Dimensions (multi-axis)

PFB2-M-8XZ (φ80+φ100+φ125 axes)



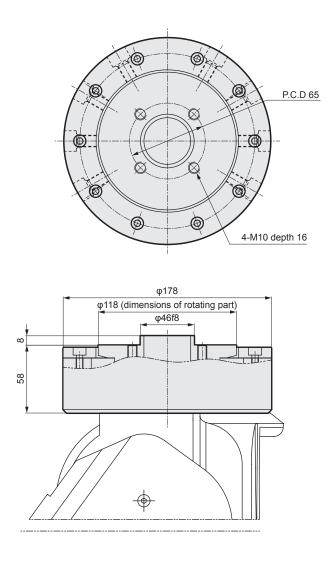
* Refer to page 17 for the optional dimensions of the tip rotation mechanism (R) option.


PFB2 Series

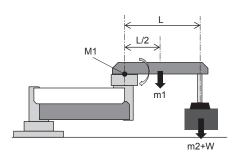
Optional dimensions

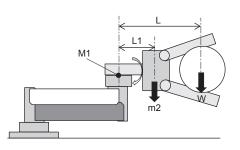
- Tip rotation mechanism (R)
- For PFB2-S-6, PFB2-S-8, PFB2-M-6S, PFB2-M-8S, PFB2-M-68, PFB2-M-8X, PFB2-M-68S, PFB2-M-8XS, PFB2-M-68X, PFB2-M-8XZ

• For PFB2-S-X, PFB2-M-XS PFB2-M-XZ and PFB2-M-XZS



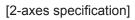
Optional dimensions

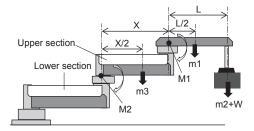

- Tip rotation mechanism (R)
- For PFB2-S-Z and PFB2-M-ZS



Moment load

[Single-axis specification]

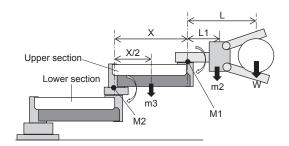

- When mounting the SCARA arm
- $M1 = (m2+W) \times L + m1 \times L/2$
- m1 : SCARA arm weight
- m2 : Jig weight
- W: Weight of workpiece
- L : Distance from the mounting center of Power Arm to the center of gravity of the jig and workpiece



- · When the jig is offset $M1 = W \times L + m2 \times L1$
- m2 : Jig weight
- W : Weight of workpiece
- L : Distance from the mounting center of Power Arm to the center of gravity of the workpiece
- L1 : Distance from the mounting center of Power Arm to the center of gravity of the jig

	M1	
PFB2-S-6	12	1
PFB2-S-8	15	
PFB2-S-X	40	1
PFB2-S-Z	78	(kgf·m)

* The calculated moment load should be within the values in the table



· When mounting the SCARA arm (1) Moment applied to the upper section $M1 = (m2+W) \times L + m1 \times L/2$ (2) Moment applied to the lower section $M2 = (m2+W) \times (L+X) + m1 \times$

(L/2+X) + m3×X/2

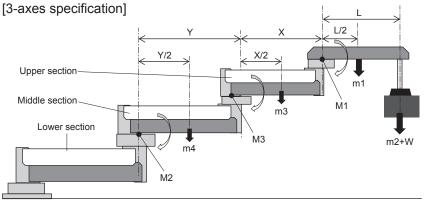
- m1 : SCARA arm weight
- m2 : Jig weight
- m3 : Power Arm weight φ63: 12 kg, φ80: 17 kg, φ100: 28 kg, φ125: 60 kg
- W : Weight of workpiece
- L : Distance from the mounting center of Power Arm to the center of gravity of the jig and workpiece
- X : Power Arm length φ63: 500 mm, φ80: 600 mm, φ100: 700 mm, φ125: 800 mm

- · When the jig is offset
- (1) Moment applied to the upper section
- $M1 = W \times L + m2 \times L1$

(2) Moment applied to the lower section $M2 = W \times (L+X) + m2 \times (L1+X) +$

m3×X/2

- m2 : Jig weight
- m3 : Power Arm weight
 - φ63 : 12 kg, φ80: 17 kg, φ100: 28 kg, φ125: 60 kg
- W : Weight of workpiece
- L : Distance from the mounting center of Power Arm to the center of gravity of the workpiece
- L1: Distance from the mounting center of Power Arm to the center of gravity of the jig
- X : Power Arm length φ63: 500 mm, φ80: 600 mm, φ100: 700 mm, φ125: 800 mm


Upper section	Lower section	
M1	M2	
12	15	
15	40	
40	78	
12	—	
15	—	
40	—	
78	—	(kgf∙m
	section M1 12 15 40 12 15 40 12 15 40	section section M1 M2 12 15 15 40 40 78 12 — 15 — 40 — 40 —

^{*} The calculated moment load for each joint should be within the values in the table

CKD

Moment load

· When mounting the SCARA arm

(1) Moment applied to the upper section

 $M1 = (m2+W) \times L + m1 \times L/2$

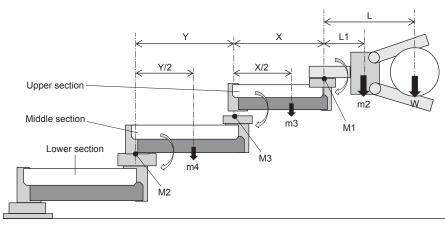
(2) Moment applied to the middle section

 $M3 = (m2+W)\times(L+X) + m1\times(L/2+X) + m3\times X/2$

(3) Moment applied to the lower section

 $M2 = (m2+W) \times (L+X+Y) + m1 \times (L/2+X+Y) + m3 \times (X/2+Y) + m4 \times Y/2$

- m1 : SCARA arm weight
- m2 : Jig weight
- m3, m4 : Power Arm weight
- φ63: 12 kg, φ80: 17 kg, φ100: 28 kg, φ125: 60 kg
- W : Weight of workpiece


L : Distance from the mounting center of Power Arm to the center of gravity of the jig and workpiece

X, Y : Power Arm length

 $\phi 63$: 500 mm, $\phi 80$: 600 mm, $\phi 100$: 700 mm, $\phi 125$: 800 mm

	Upper section	Middle section	Lower section	
	M1	M3	M2	
PFB2-M-68X	12	15	40	
PFB2-M-8XZ	15	40	78	
PFB2-M-68S	12	15	_	
PFB2-M-8XS	15	40	—	
PFB2-M-XZS	40	78	_	(kgf∙r

* The calculated moment load for each joint should be within the values in the table

· When the jig is offset

(1) Moment applied to the upper section

 $M1 = W \times L + m2 \times L1$

(2) Moment applied to the middle section

 $\begin{aligned} \text{M3} &= \text{W} \times (\text{L} + \text{X}) + \text{m2} \times (\text{L} 1 + \text{X}) + \text{m3} \times \text{X}/2 \\ \text{(3) Moment applied to the lower section} \\ \text{M2} &= \text{W} \times (\text{L} + \text{X} + \text{Y}) + \text{m2} \times (\text{L} 1 + \text{X} + \text{Y}) + \text{m3} \times (\text{X}/2 + \text{Y}) + \text{m4} \times \text{Y}/2 \end{aligned}$

m2 : Jig weight

m3, m4 : Power Arm weight

φ63: 12 kg, φ80: 17 kg, φ100: 28 kg, φ125: 60 kg

W : Weight of workpiece

L : Distance from the mounting center of Power Arm to the center of gravity of the workpiece

L1 : Distance from the mounting center of Power Arm to the center of gravity of the jig

X, Y : Power Arm length

φ63: 500 mm, φ80: 600 mm, φ100: 700 mm, φ125: 800 mm

	Upper section M1	Middle section M3	Lower section M2	
PFB2-M-68X	12	15	40	
PFB2-M-8XZ	15	40	78	
PFB2-M-68S	12	15	—	
PFB2-M-8XS	15	40	—	
PFB2-M-XZS	40	78	-	(kgf∙n

* The calculated moment load for each joint should be within the values in the table

Safety Precautions

Be sure to read this section before use.

When designing and manufacturing equipment using CKD products, the manufacturer is obligated to ensure that the safety of the mechanism, pneumatic control circuit and/or water control circuit and the system that runs the electrical controls are secured.

It is important to select, use, handle and maintain CKD products appropriately to ensure their safe usage. Observe warnings and precautions to ensure device safety.

Check that device safety is ensured, and manufacture a safe device.

WARNING

1 This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience.

2 Use this product in accordance with specifications.

This product must be used within its stated specifications. In addition, never modify or additionally machine this product. This product is intended for use in general industrial machinery equipment or parts. It is not intended for use outdoors (except for products with outdoor specifications) or for use under the following conditions or environments. (Note that this product can be used when CKD is consulted prior to its usage and the customer consents to CKD product specifications.

The customer should provide safety measures to avoid danger in the event of problems.)

Ouse for applications requiring safety, including nuclear energy, railways, aircraft, marine vessels, vehicles, medical devices, devices or applications in contact with beverages or foodstuffs, amusement devices, emergency cutoff circuits, press machines, brake circuits, or safety devices or applications.

2 Use for applications where life or assets could be significantly affected, and special safety measures are required.

3 Observe organization standards and regulations, etc., related to the safety of the device design and control, etc.

ISO4414, JIS B 8370 (General rules for pneumatic systems) JFPS2008 (Principles for pneumatic cylinder selection and use)

Including High Pressure Gas Safety Act, Industrial Safety and Health Act, other safety rules, body standards and regulations, etc.

4 Do not handle, pipe, or remove devices before confirming safety.

Inspect and service the machine and devices after confirming safety of all systems related to this product. 2Note that there may be hot or charged sections even after operation is stopped.

When inspecting or servicing the device, turn OFF the energy source (air supply or water supply), and turn OFF power to the facility. Discharge any compressed air from the system,

and pay attention to possible water leakage and leakage of electricity.

When starting or restarting a machine or device that incorporates pneumatic components, make sure that the system safety, such as pop-out prevention measures, is secured.

5 Observe the warnings and cautions on the following pages to prevent accidents.

Precautions are ranked as "DANGER", "WARNING", and "CAUTION" in this section.

DANGER: In the case where the product operation is mishandled and/or when the urgency of a dangerous situation is high, it may lead to fatalities or serious injuries.

WARNING: A dangerous situation may occur if handling is mistaken, leading to fatal or serious iniuries

CAUTION: A dangerous situation may occur if handling is mistaken, leading to minor injuries or property damage.

Note that some items indicated with "CAUTION" may lead to serious results depending on the conditions. All items contain important information and must be observed.

Limited warranty and disclaimer

1 Warranty period

This warranty is valid for one (1) year after delivery to the customer's designated site.

2 Scope of warranty

In case any defect clearly attributable to CKD is found during the warranty period, CKD shall, at its own discretion, repair the defect or replace the relevant product in whole or in part and at no cost, according to its own judgment. Note that the following failures are excluded from the warranty scope:

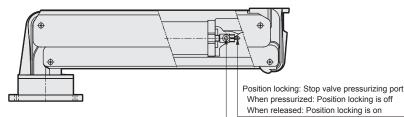
- (1) Failures due to use outside the conditions and environments set forth in the catalog or these specifications.
- (2) Failures resulting from factors other than this product.
- (3) Failures caused by improper use of the product.
- (4) Failures resulting from modifications or repairs made without CKD consent.
- (5) Failures caused by matters that could not be predicted with the technologies in practice when the product was delivered.
- (6) Failures resulting from natural disasters or accidents for which CKD is not liable.

The warranty covers the actual delivered product, as a single unit, and does not cover any damages resulting from losses induced by malfunctions in the delivered product.

3 Compatibility check

The customer is responsible for confirming the compatibility of CKD products with the customer's systems, machines and equipment.

Safety precautions | Be sure to read this section before use.


Arm side pressurizing port

WARNING

Mounting, installation and adjustment

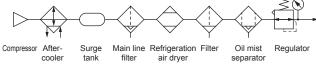
[During adjustment]

 If the primary pressure (source pressure) suddenly decreases and the stop valve for position locking is activated, supply balance pressure to the arm side before depressurizing; then leave for one second or more and pressurize the stop valve to release it. The arm will fall if pressurized simultaneously.

Use/maintenance

[Disassemblv]

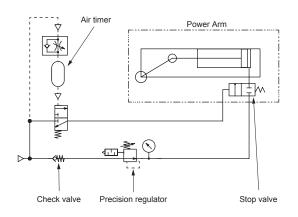
Do not disassemble or modify the product. Contact CKD for details.



Design/selection

[Pneumatic source]

- Prepare air pressure supplied to the Power Arm in the range of operating air pressure (balance pressure)+0.05MPa to 0.7MPa.
- Prepare clean air ([standard air circuit] compressed air quality grade: 1.5.1 to 1.6.1 equivalent) for supplied air.


Standard air circuit

Securely connect pneumatic piping, so that it does not come out while working.

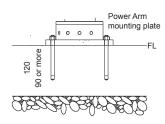
[Recommended air circuit]

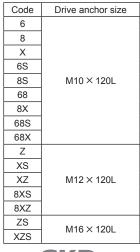
To prevent sudden rising and falling during air supply, use the recommended circuit below.

Mounting, installation and adjustment

[Installation location]

- Do not install on soft floors.
- Do not install outdoors or in harsh environments (dust / corrosive gas, etc.).
- Do not allow people other than workers to enter the work site
- Set the balance pressure by gradually increasing the pressure from 0 MPa. If pressurized at once, the arm may leap up.


Use/maintenance


[During operation]

- Do not carry loads exceeding the maximum load capacity.
- Do not put hands or fingers into mechanical section gaps.
- Do not load unevenly or so as to risk collapse.
- Do not leave the work area partway through the operation.

Anchor installation

- 1) When installing the Power Arm body, make sure that the installation surface is accurately leveled. The tip cannot hold its position unless it is leveled.
- 2) When installing on the ground, be sure to use a drive anchor. Refer to figure.
- 3) Concrete compressive strength must be 2060 N/cm² to prevent fallout
- 4) Installation must be performed by a professional.

PFB2 Order Sheet (Basic Specifications)

Date

Sales office

Customer company name	Office manager	Contact
Address / 🕿	Childe manager	Contact
Contact		
1. Enter details of work in progress and purpose of use for PFB2.		

2 Chang/waight/tung of wartering	to be transported			
2. Shape/weight/type of workpiece (1) Height H =	mm	Fill i	n the shape dimensions.]
(2) Width $W =$	mm		in the shape dimensions.	
(3) Depth L =	mm			
(4) Diameter $\varphi =$	mm			
(5) Weight				
(6) Type	kg Type			
Examples of shape dimens		-		
		-		
		* For multiple workpieces	s, attach the shape dimension	ns separately.
3. PFB2 tip attachment				
Manufacturer ((CKD/customer) *	If CKD is selected as the manuf	facturer, detailed dimensions of the	workpiece are required.
Grip method F	Fork / Chuck / Vac	uum suction / Other ()
Summary weight	Approx.	kg When manufa	actured by customer	
4. PFB2 control box				
Manufacturer ((Required / Not red	quired)		
Control method ((Manual pressure i	regulating control system	/ Automatic pressure regulati	ng control system)
5. PFB2 power source	Pneumatic supply	pressure M	Pa Power	V
	* For air supply p	ressure, fill in the pressure	e which can be supplied by the	ne customer.
6. PFB2 installation method	Fixed on floor / Mo	ovable on floor (dolly) / Ot	her ()
7. PFB2 working environment	Water drops (Yes	/ No) 🛛 🔳 Dust (Yes / N	lo) 📕 Other ()
8. PFB2 operating frequency	times/day	days/month		
9. Work layout				
When considering the arm sha	ft configuration, we	e need to confirm the vert	ical and horizontal movable r	ange required.
Provide layout dimensions with	n the workpiece sta	art and end points indicate	d.* Attach drawings if availab	ole.
The figure below is an example	e of layout dimensi	ons showing the start and	I end point height positions.	
Layout diagram showing the start and end	d point heights when pic	king workpieces up off the convey	or and stacking them in 4 rows 4 deep	on a transport dolly
Start point		End point	A: Workpiece start point heig B: Workpiece end point maxii C: Workpiece end point minin D: Dolly table height	mum height

CKD

Workpiece

Conveyor

FL

∢

<

ш

°

77 -

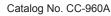
Dolly

(4)

Dolly

PFB2 Order Sheet (Work Layout Diagram)

9-1. Workpiece start point/end point position layout diagram (cross-section)


		011			star	r pu	1110	CIIU	i pu	in it j	pus	nuo	i iu	you	n ai	ayı	am	(cro	133	300		• /										
+																																
+																																\vdash
_																																
1	_																															\vdash
+																																╞
1																																T
+																																┢
_																																
Ţ																																
+																																t
+													-		-								-			-		-				\vdash
1																													_	_		
T																																Γ
+			-							-									-	-						-			-	-		t
+			-							-													<u> </u>					<u> </u>				\vdash
2	. W	ork	biec	e sta	art p	oint	/enc	l po	int c	osit	ion	lavo	ut d	iaar	am	(plai	ne fi	aure	e) '	* Inc	licat	e th	e de	sire	d ar	rm a	arrar	naer	nen	t if a	pplia	ca
Τ												, 						Ĭ	, 									Ŭ				Γ

Related products

PFB2 Series

Balancer unit BBS Series

- A maximum load of 200 kg can be balanced with just 5 kg, and workpieces can be lifted with very little force
- Brake equipped as standard. Safety mechanism that ensures workpieces do not fall even if the air is cut off
- Retains optimal balance by automatically recognizing weight differences between workpieces (BBS-A)
- Compatible with all-air method not requiring electricity. Specifications for explosion-proof environments also available

Ultra low sliding balance cylinder BBS Series Catalog No. CC-1212A

- With position locking mechanism for safety concerns
- (BBS-OU) ■ Special packing and treatment for low sliding
- Compatible with lateral load as well (BBS-OS/OU-B)

Catalog No. CB-024SA

Digital electro pneumatic regulator EVD Series

Superior operability and installability

- Digital display mounted to make control status visible at a glance
- Parallel input type equipped as standard
 Compact design
- Two-way connection possible with D sub-connector
- Enabling module connection

Built-in microcomputer for higher functionality

- Error display function Zero/span adjustment function
- \bullet Direct memory function \bullet Switch output function
- High accuracy, quick response pressure control

Eco-friendly design

- Lead-free/PVC-free Materials display
- Auto power OFF function equipped to save energy

Catalog No. CC-1072A

Precision regulator RP2000 Series

High-precision pressure control

- Repeatability: Within ±0.5% of full scale
 - Sensitivity: Within 0.2% of full scale regardless of the flow rate.

Long service life

- Low-sliding packing used for moving parts. Also uses grease resistant to dry air.
- Stable flow characteristics with minimal pressure drop

Large relief flow rate

wordiscontionke

CKD Corporation

Website http://www.ckd.co.jp/

U.S.A

- CKD USA CORPORATION CHICAGO HEADQUARTERS
- 4080 Winnetka Avenue, Rolling Meadows, IL 60008, USA PHONE +1-847-368-0539 FAX +1-847-788-0575 CINCINNATI OFFICE SAN ANTONIO OFFICE SAN JOSE OFFICE DETROIT OFFICE

- Mexico
- CKD MEXICO, S. DE R.L. DE C.V. Cerrada la Noria No. 200 Int. A-01, Querétaro Park II, Parque Industrial Querétaro, Santa Rosa Jáuregui, Querétaro, C.P. 76220, México PHONE +52-442-161-0624

Europe

CKD EUROPE B.V. Beechavenue 125A, 1119 RB Schiphol-Rijk, The Netherlands PHONE +31-23-554-1490 GERMANY OFFICE CKD CORPORATION EUROPE BRANCH

KD CORPORATION EUROPE BRANCH ISALES HEADQUARTERS Beechavenue 125A, 1119 RB Schiphol-Rijk, The Netherlands PHONE +31-23-554-1490 CZECH OFFICE UK OFFICE

- Malaysia M-CKD PRECISION SDN.BHD.
- HEAD OFFICE
 Lot No.6,Jalan Modal 23/2, Seksyen 23, Kawasan MIEL,
 Fasa 8, 40300 Shah Alam, Selangor Darul Ehsan, Malaysia
 PHONE +60-(0)3-5541-1468 FAX +60-(0)3-5541-1533
 JOHOR BAANCH OFFICE
 PENANG BRANCH OFFICE

Thailand

CKD THAI CORPORATION LTD. SALES HEADQUARTERS

- SALES HEADQUARTERS 19th Floor, Smooth Life Tower, 44 North Sathorn Road, Silom, Bangrak, Bangkok 10500, Thailand PHONE +66-(0)2-267-6300 FAX +66-(0)2-267-6304-5 RAYONG OFFICE RAYONG OFFICE EASTERN SEABOARD OFFICE LAMPHUN OFFICE KORAT OFFICE AMATANAKORN OFFICE PRACHINBURI OFFICE SARABURI OFFICE

2-250 Ouji, Komaki City, Aichi 485-8551, Japan PHONE +81-568-74-1338 FAX +81-568-77-3461

- Singapore CKD SINGAPORE PTE. LTD. No. 33 Tannery Lane #04-01 Hoesteel Industrial Building, Singapore 347789, Singapore PHONE +65-67442623 FAX +65-67442486 CKD CORPORATION BRANCH OFFICE No. 33 Tannery Lane #04-01 Hoesteel Industrial Building, Singapore 347789, Singapore PHONE +65-67447260 FAX +65-68421022

India

- KD INDIA PRIVATE LTD. Unit No. 607, 6th Floor, Welldone Tech Park, Sector 48, Sohna Road, Gurgaon-122018, Haryana, India PHONE +91-(0) 124-418-8212
- PHONE +91-(0) 124-418-8212 KD INDIA PRIVATE LTD. BANGALORE BRANCH No. 201/B, 2nd Floor, Museum Terraces Apartment, No. 29, Museum Road, Bangalore-560001, Karnataka, India PHONE +91-(0) 80-4212-7008/7009 FAX +91-(0) 80-4212-7007 Indonesia

- III OUTESTA
 PT CKD TRADING INDONESIA
 SALES HEADQUARTERS
 Menara Bidakara 2, 18th Floor, Jl. Jend. Gatot Subroto Kav.
 71-73, Pancoran, Jakarta 12870, Indonesia
 PHONE +62-(0)21-2938-6601 FAX +62-(0)21-2906-9470
 BEKASI OFFICE
 KARAWANG OFFICE
 SURABAYA OFFICE
 Visite office
- Vietnam

CKD VIETNAM ENGINEERING CO.,LTD. 18th Floor, CMC Tower, Duy Tan Street, Cau Giay District, Hanoi, Vietnam PHONE +84-(0)24-3795-7631 FAX +84-(0)24-3795-7637

Taiwan 台湾喜開理股份有限公司

- G / 高谷開) 生扱(ガオ) 0% スロ) TAIWAN CKD CORPORATION 16F-3, No. 7, Sec. 3, New Taipei Blvd., Xinzhuang Dist., New Taipei City 242, Taiwan PHONE +886-(0):2-8522-8198 FAX +886-(0):2-8522-8128 ・新竹営業所 (HSINCHU OFFICE) ・台中営業所 (TAINAN OFFICE)

喜開理(上海)機器有限公司

China

- China 喜開理(上海)機器有限公司 CKD(SHANGHAI)CORPORATION 営業/上海酒專務所(SALES HEADQUARTERS / SHANGHAI PUXI OFFICE) Room 601, 6th Floor, Yuanzhongkeyan Building, No. 1905 Hongmei Road, Xinhui District, Shanghai 200233, China PHONE +88-(0)21-61911888 FAX +88-(0)21-60905356 上海浦東事務所 (SHANGHAI PUDONG OFFICE) 城州事務所 (HUNSHAN OFFICE) 武山事務所 (KUNSHAN OFFICE) 武山事務所 (KUNSHAN OFFICE) 武山事務所 (CHENGDU OFFICE) 武山事務所 (CHANGSHA OFFICE) 江州事務所 (ZHENGZHOU OFFICE) 江州事務所 (ZHENGZHOU OFFICE) 江州事務所 (CHANGSHAN OFFICE) 江州事務所 (CHANGSHAN OFFICE) 江州事務所 (CHANGSHAN OFFICE) 江州事務所 (CHANGSHAN OFFICE) 東事務所 (EAST SHENZHEN OFFICE) 東事務所 (CHANGCHUN OFFICE) 東事務所 (CHANGCHUN OFFICE) 東事務所 (BEIJING OFFICE) 大連事務所 (BEIJING OFFICE) 大連事務所 (GINGDAQ OFFICE) 大連事務所 (GINGDAQ OFFICE) 大連事務所 (CHANGCHUN OFFICE) 大車事務所 (CHANGCHUN OFFICE) 大車務所 (CHANGCHUN OFFICE) 大車務 (CHANGCHUN OFFICE) 大車

Korea

- **KOREA CORPORATION** HEADQUARTERS
- HEAUQUARITERS (3rd Floor), 44, Sinsu-ro, Mapo-gu, Seoul 121-856, Korea PHONE +82-(0)2-783-5201~5203 FAX +82-(0)2-783-5204 水原営業所(SUWON OFFICE) 天安営業所(CHEONAN OFFICE) 蔚山営業所(ULSAN OFFICE)

The goods and/or their replicas, the technology and/or software found in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan.

If the goods and/or their replicas, the technology and/or software found in this catalog are to be exported, law requires that the exporter makes sure that they will never be used for the development and/or manufacture of weapons for mass destruction.